Standard 0603 SMD LED



Similar documents
Low Current SMD LED PLCC-2

UV SMD LED PLCC-2 FEATURES APPLICATIONS. at I F (ma) (ma) MIN. TYP. MAX. MIN. TYP. MAX. MIN. TYP. MAX.

Power SMD LED PLCC-2 Plus

Low Current SMD LED PLCC-2

Standard SMD LED PLCC-2

High Speed Infrared Emitting Diode, 940 nm, GaAlAs, MQW

Silicon PIN Photodiode

Ultrabright White LED, Ø 3 mm

Dome Lens SMD LED FEATURES APPLICATIONS. WAVELENGTH (nm)

High Power Infrared Emitting Diode, 940 nm, GaAlAs, MQW

Standard SMD LED PLCC-2

Silicon NPN Phototransistor

Ambient Light Sensor

Silicon PIN Photodiode

Silicon NPN Phototransistor

Small Signal Fast Switching Diode

High Power Infrared Emitting Diode, 940 nm, GaAlAs/GaAs

Silicon PIN Photodiode

Small Signal Fast Switching Diode FEATURES PART ORDERING CODE INTERNAL CONSTRUCTION TYPE MARKING REMARKS

High Speed Infrared Emitting Diode, 870 nm, GaAlAs Double Hetero

Optocoupler, Phototransistor Output, 4 Pin LSOP, Long Creepage Mini-Flat Package

Preamplifier Circuit for IR Remote Control

Optocoupler, Phototransistor Output, Dual Channel, SOIC-8 Package

High Power Infrared Emitting Diode, 940 nm, GaAlAs/GaAs

Reflective Optical Sensor with Transistor Output

IR Receiver Module for Light Barrier Systems

High Intensity SMD LED High Intensity SMD LED

Optocoupler, Phototransistor Output, AC Input

Reflective Optical Sensor with Transistor Output

Photovoltaic MOSFET Driver with Integrated Fast Turn-Off, Solid-State Relay

Optocoupler, Phototransistor Output, with Base Connection, 300 V BV CEO

SMD Aluminum Solid Capacitors with Conductive Polymer

Optocoupler, Phototransistor Output, with Base Connection

Optocoupler, Phototransistor Output, with Base Connection

IR Sensor Module for Reflective Sensor, Light Barrier, and Fast Proximity Applications

Optocoupler, Phototransistor Output, High Reliability, 5300 V RMS, Low Input Current

High Performance Schottky Rectifier, 3.0 A

High Performance Schottky Rectifier, 1.0 A

1 Form A Solid State Relay

Aluminum Capacitors Solid Axial

Schottky Rectifier, 1.0 A

DOMINANT. Opto Technologies Innovating Illumination. InGaN White S-Spice : SSW-SLD DATA SHEET: SpiceLED TM. Features: Applications:

Aluminum Electrolytic Capacitors Axial Miniature, Long-Life

1 Form A Solid State Relay

Aluminum Electrolytic Capacitors Radial Miniature, Low Impedance, High Vibration Capability

Electrical Double Layer Energy Storage Capacitors Power and Energy Versions

Aluminum Electrolytic Capacitors Power Economic Printed Wiring

SURFACE MOUNT LED LAMP STANDARD BRIGHT 0606

Aluminum Electrolytic Capacitors Power Eurodin Printed Wiring

EVERLIGHT ELECTRONICS CO., LTD. Technical Data Sheet 0805 Package Chip LED Preliminary

Schottky Rectifier, 1.0 A

50 W Power Resistor, Thick Film Technology, TO-220

Solid Tantalum Surface Mount Capacitors TANTAMOUNT, Molded Case, Low ESR

SPEC NO: DSAJ8637 REV NO: V.6B DATE: JUL/01/2016 PAGE: 1 OF 5 APPROVED:

SMD PTC - Nickel Thin Film Linear Thermistors

Preamplifier Circuit for IR Remote Control

High Performance Schottky Rectifier, 1 A

P6KE6.8A thru P6KE540A. TRANSZORB Transient Voltage Suppressors. Vishay General Semiconductor. FEATURES PRIMARY CHARACTERISTICS

Optocoupler, Photodarlington Output, Dual Channel, SOIC-8 Package

Surface Mount Multilayer Ceramic Chip Capacitor Solutions for High Voltage Applications

Pulse Proof, High Power Thick Film Chip Resistors

Preamplifier Circuit for IR Remote Control

Power Resistor Thick Film Technology

0.45mm Height 0402 Package Pure Green Chip LED Technical Data Sheet. Part No.: LL-S160PGC-G5-1B

IR Detector for Mid Range Proximity Sensor

P-Channel 20 V (D-S) MOSFET

ESCC 4001/026 Qualified ( ) High Stability Thick Film Resistor Chips

Power MOSFET. IRF510PbF SiHF510-E3 IRF510 SiHF510. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

P-Channel 20-V (D-S) MOSFET

1.5KE6.8A thru 1.5KE540A, 1N6267A thru 1N6303A. TRANSZORB Transient Voltage Suppressors. Vishay General Semiconductor.

Power MOSFET FEATURES. IRFZ44PbF SiHFZ44-E3 IRFZ44 SiHFZ44 T C = 25 C

Power Resistor for Mounting onto a Heatsink Thick Film Technology

Power MOSFET FEATURES. IRF610PbF SiHF610-E3 IRF610 SiHF610. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 200 V Gate-Source Voltage V GS ± 20

EVERLIGHT ELECTRONICS CO.,LTD.

2.5 A Output Current IGBT and MOSFET Driver

TLRK1100C(T11), TLRMK1100C(T11), TLSK1100C(T11), TLOK1100C(T11), TLYK1100C(T11)

Thick Film Resistor Networks, Dual-In-Line, Molded DIP

Data Sheets of AVA Technology SMD Type White LED. Model : T5050. AVA Technology Co.

N-Channel 100 V (D-S) MOSFET

Pulse Proof Thick Film Chip Resistors

Harvatek Surface Mount CHIP LED Data Sheet HT-380FCH-ZZZZ

Power MOSFET FEATURES. IRL540PbF SiHL540-E3 IRL540 SiHL540

Knob Potentiometer FEATURES. P16NP P16NM Panel Cutout. Thickness nut 2 mm washer 1.5 mm. Panel sealing ring 12 wrench Thread M10 x

Power MOSFET FEATURES. IRF740PbF SiHF740-E3 IRF740 SiHF740. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 400 V Gate-Source Voltage V GS ± 20

AC and Pulse Film Foil Capacitors KP Radial Potted Type

EVERLIGHT ELECTRONICS CO.,LTD.

Metal Film Resistors, Pulse Withstanding Protective

SuperTan Extended (STE) Capacitors, Wet Tantalum Capacitors with Hermetic Seal

1W High Power Purple LED Technical Data Sheet. Part No.: LL-HP60MUVA

IR Receiver Modules for Remote Control Systems

Metal Film Resistors, Industrial, Flameproof

PMEG3015EH; PMEG3015EJ

PMEG2020EH; PMEG2020EJ

1.50mm Height 2220 Package Top View Full Color Chip LEDs Technical Data Sheet. Part No.: LL-R5050RGBC-001

DOMINANT. Opto Technologies Innovating Illumination. 150 InGaN Warm White : NAF-BSG DATA SHEET : Primax TM. Features: Applications:

AC Line Rated Ceramic Disc Capacitors Class X1, 760 V AC / Class Y1, 500 V AC

CLA LF: Surface Mount Limiter Diode

Medium power Schottky barrier single diode

P-Channel 1.25-W, 1.8-V (G-S) MOSFET

Schottky Rectifier, 1 A

Transcription:

TLMS, TLMO, TLMY, TLMG, TLMP, TLMB Standard 63 SMD LED DESCRIPTION 8562 The new 63 LED series have been designed in the smallest SMD package. This innovative 63 LED technology opens the way to smaller products of higher performance more design in flexibility enhanced applications The 63 LED is an obvious solution for small-scale, high power products that are expected to work reliability in an arduous environment. PRODUCT GROUP AND PACKAGE DATA Product group: LED Package: SMD 63 Product series: standard Angle of half intensity: ± 8 FEATURES Smallest SMD package 63 with exceptional brightness.6 mm x.8 mm x.6 mm (L x W x H) High reliability lead frame based Temperature range -4 C to + C Footprint compatible to 63 chipled Wavelength 466 nm (blue), 57 nm (green), 56 nm (pure green), 589 nm (yellow), 66 nm (orange), 633 nm (red) AllnGaP and GaN technology Viewing angle: extremely wide 6 Grouping parameter: luminous intensity, wavelength Available in 8 mm tape Compatible to IR reflow soldering Preconditioning according to JEDEC level 2 AEC-Q qualified Material categorization: for definitions of compliance please see /doc?9992 APPLICATIONS Backlight keypads Navigation systems Cellular phone displays Displays for industrial control systems Automotive features Miniaturized color effects Traffic displays PARTS TABLE PART COLOR LUMINOUS INTENSITY WAVELENGTH FORWARD VOLTAGE (mcd) at (nm) at (V) at (ma) (ma) (ma) MIN. TYP. MAX. MIN. TYP. MAX. MIN. TYP. MAX. TECHNOLOGY TLMS-GS8 Red 32 63-2 627 633 639 2-2. 3. 2 AlInGaP TLMO-GS8 Orange 5 8-2 6 66 69 2-2. 3. 2 AlInGaP TLMY-GS8 Yellow 5 8-2 58 589 595 2-2. 3. 2 AlInGaP TLMG-GS8 Green 2.5 35-2 564 57 575 2-2. 3. 2 AlInGaP TLMP-GS8 Pure green 6.3 5-2 55 56 566 2-2. 3. 2 AlInGaP TLMB-GS8 Blue 4 5 - - 466 - - 3.9 4.5 GaN Rev. 2.7, 2-Mar-6 Document Number: 8373 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT /doc?9

TLMS, TLMO, TLMY, TLMG, TLMP, TLMB ABSOLUTE MAXIMUM RATINGS (T amb = 25 C, unless otherwise specified) TLMS, TLMO, TLMY, TLMG, TLMP PARAMETER TEST CONDITION SYMBOL VALUE UNIT Reverse voltage () V R 2 V DC forward current T amb 75 C 3 ma Surge forward current t p μs SM.5 A Power dissipation P V 9 mw Junction temperature T j +2 C Operating temperature range T amb -4 to + C Storage temperature range T stg -4 to + C Soldering temperature acc. Vischay specification T sd +26 C Thermal resistance junction/ambient mounted on PC board (pad size > 5 mm 2 ) R thja 48 K/W Note () Driving the LED in reverse direction is suitable for short term application ABSOLUTE MAXIMUM RATINGS (T amb = 25 C, unless otherwise specified) TLMB PARAMETER TEST CONDITION SYMBOL VALUE UNIT Reverse voltage () V R 5 V DC forward current T amb 6 C 5 ma Surge forward current t p μs SM. A Power dissipation P V 68 mw Junction temperature T j + C Operating temperature range T amb -4 to + C Storage temperature range T stg -4 to + C Soldering temperature acc. Vischay specification T sd +26 C Thermal resistance junction/ambient mounted on PC board (pad size > 5 mm 2 ) R thja 48 K/W Note () Driving the LED in reverse direction is suitable for short term application OPTICAL AND ELECTRICAL CHARACTERISTICS (T amb = 25 C, unless otherwise specified) TLMS, RED PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT Luminous intensity l V 32 63 - mcd Dominant wavelength λ d 627 633 639 nm Peak wavelength λ p - 645 - nm Angle of half intensity ϕ - ± 8 - deg Forward voltage V F - 2. 3. V Reverse voltage I R = μa V R 6 - - V Junction capacitance V R = V, f = MHz C j - 5 - pf OPTICAL AND ELECTRICAL CHARACTERISTICS (T amb = 25 C, unless otherwise specified) TLMO, ORANGE PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT Luminous intensity l V 5 8 - mcd Dominant wavelength λ d 6 66 69 nm Peak wavelength λ p - 6 - nm Angle of half intensity ϕ - ± 8 - deg Forward voltage V F - 2. 3. V Reverse voltage I R = μa V R 6 - - V Junction capacitance V R = V, f = MHz C j - 5 - pf Rev. 2.7, 2-Mar-6 2 Document Number: 8373 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT /doc?9

TLMS, TLMO, TLMY, TLMG, TLMP, TLMB OPTICAL AND ELECTRICAL CHARACTERISTICS (T amb = 25 C, unless otherwise specified) TLMY, YELLOW PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT Luminous intensity l V 5 8 - mcd Dominant wavelength λ d 58 589 595 nm Peak wavelength λ p - 59 - nm Angle of half intensity ϕ - ± 8 - deg Forward voltage V F - 2. 3. V Reverse voltage I R = μa V R 6 - - V Junction capacitance V R = V, f = MHz C j - 5 - pf OPTICAL AND ELECTRICAL CHARACTERISTICS (T amb = 25 C, unless otherwise specified) TLMG, GREEN PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT Luminous intensity l V 2.5 35 - mcd Dominant wavelength λ d 564 57 575 nm Peak wavelength λ p - 572 - nm Angle of half intensity ϕ - ± 8 - deg Forward voltage V F - 2. 3. V Reverse voltage I R = μa V R 6 - - V Junction capacitance V R = V, f = MHz C j - 5 - pf OPTICAL AND ELECTRICAL CHARACTERISTICS (T amb = 25 C, unless otherwise specified) TLMP, PURE GREEN PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT Luminous intensity l V 6.3 5 - mcd Dominant wavelength λ d 55 56 566 nm Peak wavelength λ p - 562 - nm Angle of half intensity ϕ - ± 8 - deg Forward voltage V F - 2. 3. V Reverse voltage I R = μa V R 6 - - V Junction capacitance V R = V, f = MHz C j - 5 - pf OPTICAL AND ELECTRICAL CHARACTERISTICS (T amb = 25 C, unless otherwise specified) TLMB, BLUE PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT Luminous intensity = ma l V 4 5 - mcd Dominant wavelength = ma λ d - 466 - nm Peak wavelength = ma λ p - 428 - nm Angle of half intensity = ma ϕ - ± 8 - deg Forward voltage = ma V F - 3.9 4.5 V Reverse voltage I R = μa V R 5 - - V Rev. 2.7, 2-Mar-6 3 Document Number: 8373 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT /doc?9

TLMS, TLMO, TLMY, TLMG, TLMP, TLMB LUMINOUS INTENSITY/FLUX CLASSIFICATION GROUP LUMINOUS INTENSITY I V (mcd) MIN. MAX. Pa 4 6.3 Pb 5 8 Qa 6.3 Qb 8 2.5 Ra 6 Rb 2.5 2 Sa 6 25 Sb 2 32 Ta 25 4 Tb 32 5 Ua 4 63 Ub 5 8 Va 63 Vb 8 25 Wa 6 Wb 25 2 Note Luminous intensity is tested at a current pulse duration of 25 ms. The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each reel (there will be no mixing of two groups on each reel). In order to ensure availability, single brightness groups will not be orderable. In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped in any one reel. In order to ensure availability, single wavelength groups will not be orderable. COLOR CLASSIFICATION DOM. WAVELENGTH (nm) GROUP BLUE PURE GREEN GREEN YELLOW ORANGE MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. - - - 55 554 564 566 - - - - - 2 46 464 554 557 566 569 58 583 6 63-3 464 468 557 56 569 572 583 586 63 66-4 468 472 56 563 572 575 586 589 66 69-5 472 476 563 566 - - 589 592 69 62-6 - - - - - - 592 595 - - Note Wavelengths are tested at a current pulse duration of 25 ms and an accuracy of ± nm. GROUP NAME ON LABEL LUMINOUS INTENSITY GROUP HALFGROUP WAVELENGTH Q b 4 Note One packing unit/tape contains only one classification group of luminous intensity, color and forward voltage. Only one single classification groups is not available. The given groups are not order codes, customer specific group combinations require marketing agreement. No color subgrouping for super red. Rev. 2.7, 2-Mar-6 4 Document Number: 8373 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT /doc?9

TLMS, TLMO, TLMY, TLMG, TLMP, TLMB TYPICAL CHARACTERISTICS (T amb = 25 C, unless otherwise specified) - Forward Current (ma) 4 35 3 25 2 5 5 2 4 6 8 2 98 T amb - Ambient Temperature ( C) 2.4 2.35 orange 2.3 2.25 2.2 2.5 2. 2.5 2..95.9.85.8 993 T am b - Ambient Temperature ( C) V - Forward Voltage (V) F Fig. - Forward Current vs. Ambient Temperature Fig. 4 - Forward Voltage vs. Ambient Temperature d - Change of Dom. Wavelength (nm) 8 orange 6 4 2-2 - 4-6 98 T amb - Ambient Temperature ( C) I - Forward Current (ma)..5 2. 2.5 3. 999 F orange Fig. 2 - Change of Dominant Wavelength vs. Ambient Temperature Fig. 5 - Forward Current vs. Forward Voltage I Vrel - Relative Luminous Intensity 2..6.2.8.4 orange. 988 T amb - Ambient Temperature ( C) I - Relative Luminous Intensity Vrel 99. orange. - Forward Current (ma) Fig. 3 - Relative Luminous Intensity vs. Ambient Temperature Fig. 6 - Relative Luminous Intensity vs. Forward Current Rev. 2.7, 2-Mar-6 5 Document Number: 8373 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT /doc?9

TLMS, TLMO, TLMY, TLMG, TLMP, TLMB P V - Power Dissipation (mw) blue 9 8 7 6 5 4 3 2 2 4 6 8 2 95 T amb - Ambient Temperature ( C) I V rel - Relative Luminous Intensity 2. blue = ma.6.2.8.4. 99 T amb - Ambient Temperature ( C) Fig. 7 - Power Dissipation vs. Ambient Temperature Fig. - Relative Luminous Intensity vs. Ambient Temperature - Forward Current (ma) 2 blue 5 5 2 4 6 8 2 96 T amb - Ambient Temperature ( C) V F - Forward Voltage (V) 4.2 4.5 4. blue = ma 4.5 4. 3.95 3.9 3.85 3.8 3.75 3.7 3.65 3.6 994 T amb - Ambient Temperature ( C) Fig. 8 - Forward Current vs. Ambient Temperature Fig. - Forward Voltage vs. Ambient Temperature - Change of Dom. Wavelength (nm) 4 3 2 - blue = ma - Forward Current (ma) d blue - 2 T amb - Ambient Temperature ( C) 982 9 2 3 4 5 V F - Forward Voltage (V) 6 Fig. 9 - Change of Dominant Wavelength vs. Ambient Temperature Fig. 2 - Forward Current vs. Forward Voltage Rev. 2.7, 2-Mar-6 6 Document Number: 8373 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT /doc?9

TLMS, TLMO, TLMY, TLMG, TLMP, TLMB I V rel - Relative Luminous Intensity blue.. 9 - Forward Current (ma) 2.4 2.35 pure green 2.3 2.25 2.2 2.5 2. 2.5 2..95.9.85.8 995 T amb - Ambient Temperature ( C) Fig. 3 - Relative Luminous Intensity vs. Forward Current Fig. 6 - Forward Voltage vs. Ambient Temperature d - Change of Dom. Wavelength (nm) pure green 8 6 4 2-2 - 4-6 983 T amb - Ambient Temperature ( C) - Forward Current (ma) pure green..5 2. 2.5 3. 9 Fig. 4 - Change of Dominant Wavelength vs. Ambient Temperature Fig. 7 - Forward Current vs. Forward Voltage I Vrel - Relative Luminous Intensity 2.4 2..6.2.8.4 pure green. 987 T amb - Ambient Temperature ( C) I - Relative Luminous Intensity Vrel. pure green. 9 - Forward Current (ma) Fig. 5 - Relative Luminous Intensity vs. Ambient Temperature Fig. 8 - Relative Luminous Intensity vs. Forward Current Rev. 2.7, 2-Mar-6 7 Document Number: 8373 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT /doc?9

TLMS, TLMO, TLMY, TLMG, TLMP, TLMB d - Change of Dom. Wavelength (nm) 8 green 6 4 2-2 - 4-6 984 T amb - Ambient Temperature ( C) - Forward Current (ma) green..5 2. 2.5 3. 92 Fig. 9 - Change of Dominant Wavelength vs. Ambient Temperature Fig. 22 - Forward Current vs. Forward Voltage I Vrel - Relative Luminous Intensity 2.4 2..6.2.8.4 green. 989 T am b - Ambient Temperature ( C) I Vrel - Relative Luminous Intensity. green. 92 - Forward Current (ma) Fig. 2 - Relative Luminous Intensity vs. Ambient Temperature Fig. 23 - Relative Luminous Intensity vs. Forward Current 2.4 2.35 green 2.3 2.25 2.2 2.5 2. 2.5 2..95.9.85.8 996 T amb - Ambient Temperature ( C) - Change of Dom. Wavelength (nm) d 8 6 4 2-2 - 4 yellow - 6 985 T amb - Ambient Temperature ( C) Fig. 2 - Forward Voltage vs. Ambient Temperature Fig. 24 - Change of Dominant Wavelength vs. Ambient Temperature Rev. 2.7, 2-Mar-6 8 Document Number: 8373 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT /doc?9

TLMS, TLMO, TLMY, TLMG, TLMP, TLMB I V rel - Relative Luminous Intensity 2..6.2.8.4 yellow. 992 T amb - Ambient Temperature ( C) I - Relative Luminous Intensity Vrel. yellow. 94 - Forward Current (ma) Fig. 25 - Relative Luminous Intensity vs. Ambient Temperature Fig. 28 - Relative Luminous Intensity vs. Forward Current 2.4 2.35 yellow 2.3 2.25 2.2 2.5 2. 2.5 2..95.9.85.8 997 T amb - Ambient Temperature ( C) d - Change of Dom. Wavelength (nm) 4 3 red 2 - - 2-3 - 4 986 T amb - Ambient Temperature ( C) Fig. 26 - Forward Voltage vs. Ambient Temperature Fig. 29 - Change of Dominant Wavelength vs. Ambient Temperature I - Forward Current (ma) F yellow I Vrel - Relative Luminous Intensity 2..6.2.8.4 red = 2 ma 94..5 2. 2.5 3.. 99 T am b - Ambient Temperature ( C) Fig. 27 - Forward Current vs. Forward Voltage Fig. 3 - Relative Luminous Intensity vs. Ambient Temperature Rev. 2.7, 2-Mar-6 9 Document Number: 8373 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT /doc?9

TLMS, TLMO, TLMY, TLMG, TLMP, TLMB 2.2 2. 2..9.8.7 red.6 998 T amb - Ambient Temperature ( C) Fig. 3 - Forward Voltage vs. Ambient Temperature red I - Forward Current (ma) F..5 2. 2.5 3. 93 Fig. 32 - Forward Current vs. Forward Voltage I V rel - Relative Luminous Intensity red.. 93 - Forward Current (ma) Fig. 33 - Relative Luminous Intensity vs. Forward Current Rev. 2.7, 2-Mar-6 Document Number: 8373 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT /doc?9

TLMS, TLMO, TLMY, TLMG, TLMP, TLMB REEL DIMENSIONS in millimeters 943 Rev. 2.7, 2-Mar-6 Document Number: 8373 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT /doc?9

TLMS, TLMO, TLMY, TLMG, TLMP, TLMB TAPE DIMENSIONS in millimeters.2 ±.2.75 ±.5.75 ±.5 C Polarity A Ø.5 ±.5 Technical drawings according to DIN specifications 2 ±.5 4 ±. Not indicated tolerances ±.5 Material: Conductive black PC Direction of pulling out.95 ±.5 Ø.5 +. 4 ±..75 ±. 3.5 ±.5 8 +.3 -. Drawing-No.: 9.7-529.-4 Issue: 3; 24.9.3 Rev. 2.7, 2-Mar-6 2 Document Number: 8373 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT /doc?9

TLMS, TLMO, TLMY, TLMG, TLMP, TLMB PACKAGE DIMENSIONS in millimeters 9426 Rev. 2.7, 2-Mar-6 3 Document Number: 8373 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT /doc?9

TLMS, TLMO, TLMY, TLMG, TLMP, TLMB SOLDERING PROFILE Temperature ( C) 3 25 2 5 5 255 C 24 C 27 C 5 5 2 25 3 Time (s) 947-4 max. 2 cycles allowed Fig. 34 - Vishay Lead (Pb)-free Reflow Soldering Profile (acc. to J-STD-2C) DRY PACKING The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage. Aluminum bag IR Reflow Soldering Profile for lead (Pb)-free Soldering Preconditioning acc. to JEDEC Level 2 max. 2 s max. Ramp Up 3 C/s max. 3 s max. s max. 26 C 245 C max. Ramp Down 6 C/s RECOMMENDED METHOD OF STORAGE Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available: Storage temperature C to 3 C Storage humidity 6 % RH max. After more than year under these conditions moisture content will be too high for reflow soldering. In case of moisture absorption, the devices will recover to the former condition by drying under the following condition: 92 h at 4 C + 5 C / - C and < 5 % RH (dry air / nitrogen) or 96 h at 6 C + 5 C and < 5 % RH for all device containers or 24 h at C + 5 C not suitable for reel or tubes. An EIA JEDEC standard JESD22-A2 level 2a label is included on all dry bags. Label Reel 5973 FINAL PACKING The sealed reel is packed into a cardboard box. A secondary cardboard box is used for shipping purposes. Example of JESD22-A2 level 2 label 728 ESD PRECAUTION Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the antistatic shielding bag. Electrostatic sensitive devices warning labels are on the packaging. VISHAY SEMICONDUCTORS STANDARD BAR CODE LABELS The standard bar code labels are printed at final packing areas. The labels are on each packing unit and contain specific data. Rev. 2.7, 2-Mar-6 4 Document Number: 8373 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT /doc?9

Legal Disclaimer Notice Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, Vishay ), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer s technical experts. Product specifications do not expand or otherwise modify Vishay s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Revision: 3-Jun-6 Document Number: 9