XR-2206 Monolithic Function Generator



Similar documents
XR-T5683A PCM Line Interface Chip

LM566C Voltage Controlled Oscillator

LINEAR INTEGRATED-CIRCUIT FUNCTION GENERATOR

LM1596 LM1496 Balanced Modulator-Demodulator

ICL8038. Features. Precision Waveform Generator/Voltage Controlled Oscillator. Ordering Information. Pinout. Functional Diagram


Features. Applications

High Speed, Low Power Dual Op Amp AD827

LM386 Low Voltage Audio Power Amplifier

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

ICS514 LOCO PLL CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET

LM1036 Dual DC Operated Tone/Volume/Balance Circuit

INTEGRATED CIRCUITS DATA SHEET. TDA7000 FM radio circuit. Product specification File under Integrated Circuits, IC01

DM74121 One-Shot with Clear and Complementary Outputs

4-bit binary full adder with fast carry CIN + (A1 + B1) + 2(A2 + B2) + 4(A3 + B3) + 8(A4 + B4) = = S1 + 2S2 + 4S3 + 8S4 + 16COUT

TRIPLE PLL FIELD PROG. SPREAD SPECTRUM CLOCK SYNTHESIZER. Features

LM118/LM218/LM318 Operational Amplifiers

SP490/491 Full Duplex RS-485 Transceivers

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/ FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

LH0091 True RMS to DC Converter

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

Kit 27. 1W TDA7052 POWER AMPLIFIER

ICS SPREAD SPECTRUM CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET

LM381 LM381A Low Noise Dual Preamplifier

CMOS Switched-Capacitor Voltage Converters ADM660/ADM8660

TS555. Low-power single CMOS timer. Description. Features. The TS555 is a single CMOS timer with very low consumption:

ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS

CD4013BC Dual D-Type Flip-Flop

How To Control A Power Supply On A Powerline With A.F.F Amplifier

USER MANUAL FIBER OPTIC ANALOG TRANSMITTER AND RECEIVER MODULE

INTEGRATED CIRCUITS DATA SHEET. TDA W BTL mono audio amplifier. Product specification File under Integrated Circuits, IC01

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer

SPREAD SPECTRUM CLOCK GENERATOR. Features

LM833 LOW NOISE DUAL OPERATIONAL AMPLIFIER

Features. Modulation Frequency (khz) VDD. PLL Clock Synthesizer with Spread Spectrum Circuitry GND

INTEGRATED CIRCUITS. 74LVC08A Quad 2-input AND gate. Product specification IC24 Data Handbook Jun 30

LM101A LM201A LM301A Operational Amplifiers

UC3842/UC3843/UC3844/UC3845

DATA SHEET. TDA1543 Dual 16-bit DAC (economy version) (I 2 S input format) INTEGRATED CIRCUITS

1 TO 4 CLOCK BUFFER ICS551. Description. Features. Block Diagram DATASHEET

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

How to Read a Datasheet

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages

2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS

TL084 TL084A - TL084B

Vdc. Vdc. Adc. W W/ C T J, T stg 65 to C

Rail-to-Rail, High Output Current Amplifier AD8397

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

DM Segment Decoder/Driver/Latch with Constant Current Source Outputs

TEA1024/ TEA1124. Zero Voltage Switch with Fixed Ramp. Description. Features. Block Diagram

FM/AM RADIO IC CD2003GP/GB. 1 Overview. 2 Block Diagram And Pin Descriptions

NE555 SA555 - SE555. General-purpose single bipolar timers. Features. Description

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier

INTEGRATED CIRCUITS. NE558 Quad timer. Product data Supersedes data of 2001 Aug Feb 14

MM74HC273 Octal D-Type Flip-Flops with Clear

Description. 5k (10k) - + 5k (10k)

Precision, Unity-Gain Differential Amplifier AMP03

8-channel analog multiplexer/demultiplexer

TS321 Low Power Single Operational Amplifier

ACT4077 Driver for MACAIR A3818, A5690, A5232, A4905 & MIL-STD-1553

Triple single-pole double-throw analog switch

PS323. Precision, Single-Supply SPST Analog Switch. Features. Description. Block Diagram, Pin Configuration, and Truth Table. Applications PS323 PS323

CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate Quad 2-Input NAND Buffered B Series Gate

LM380 Audio Power Amplifier

LM380 Audio Power Amplifier

Low Cost Instrumentation Amplifier AD622

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS Jan 08

NE555 SA555 - SE555. General-purpose single bipolar timers. Features. Description

How To Power A Power Supply On A Microprocessor (Mii) Or Microprocessor Power Supply (Miio) (Power Supply) (Microprocessor) (Miniio) Or Power Supply Power Control (Power) (Mio) Power Control

MM74HC174 Hex D-Type Flip-Flops with Clear

Quad 2-input NAND Schmitt trigger

Low Noise, Matched Dual PNP Transistor MAT03

High Speed, Low Power Monolithic Op Amp AD847

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

TSL INTEGRATED OPTO SENSOR

MM74HC4538 Dual Retriggerable Monostable Multivibrator

74HCU General description. 2. Features and benefits. 3. Ordering information. Hex unbuffered inverter

DM74LS47 BCD to 7-Segment Decoder/Driver with Open-Collector Outputs

DM74LS191 Synchronous 4-Bit Up/Down Counter with Mode Control

Obsolete Product(s) - Obsolete Product(s)

LM108 LM208 LM308 Operational Amplifiers

PHOTOTRANSISTOR OPTOCOUPLERS

MM74HC14 Hex Inverting Schmitt Trigger

MM74HCT373 MM74HCT374 3-STATE Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop

Transistor Amplifiers

MC Low noise quad operational amplifier. Features. Description

TL074 TL074A - TL074B

NE592 Video Amplifier

Supertex inc. HV Channel High Voltage Amplifier Array HV256. Features. General Description. Applications. Typical Application Circuit

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer

TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TAR5SB15~TAR5SB50

KA7500C. SMPS Controller. Features. Description. Internal Block Diagram.

EVALUATION KIT AVAILABLE High-Frequency Waveform Generator TOP VIEW

Pulse Width Modulation Amplifiers EQUIVALENT CIRCUIT DIAGRAM. 200mV + - SMART CONTROLLER .01F OSC Q pF

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

Transcription:

...the analog plus company TM XR-0 Monolithic Function Generator FEATURES Low-Sine Wave Distortion, 0.%, Typical Excellent Temperature Stability, 0ppm/ C, Typ. Wide Sweep Range, 000:, Typical Low-Supply Sensitivity, 0.0%V, Typ. Linear Amplitude Modulation TTL Compatible FSK Controls Wide Supply Range, 0V to V Adjustable Duty Cycle, % TO % APPLICATIONS Waveform Generation Sweep Generation AM/FM Generation V/F Conversion FSK Generation Phase-Locked Loops (VCO) June -3 GENERAL DESCRIPTION The XR-0 is a monolithic function generator integrated circuit capable of producing high quality sine, square, triangle, ramp, and pulse waveforms of high-stability and accuracy. The output waveforms can be both amplitude and frequency modulated by an external voltage. Frequency of operation can be selected externally over a range of 0.0Hz to more than MHz. The circuit is ideally suited for communications, instrumentation, and function generator applications requiring sinusoidal tone, AM, FM, or FSK generation. It has a typical drift specification of 0ppm/ C. The oscillator frequency can be linearly swept over a 000: frequency range with an external control voltage, while maintaining low distortion. ORDERING INFORMATION Operating Part No. Package Temperature Range XR-0M Lead 300 Mil CDIP - C to C XR-0P Lead 300 Mil PDIP 0 C to C XR-0CP Lead 300 Mil PDIP 0 C to 0 C XR-0D Lead 300 Mil JEDEC SOIC 0 C to 0 C Rev..03 EXAR Corporation, 0 Kato Road, Fremont, CA 3 (0) -000 (0) -0

Timing Capacitor TC TC VCO GND BIAS 0 SYNCO Timing Resistors TR TR Current Switches Multiplier And Sine Shaper STO FSKI AMSI 3 MO WAVEA 3 WAVEA SYMA SYMA Figure. XR-0 Block Diagram Rev..03

AMSI STO MO TC TC TR TR 3 3 0 SYMA SYMA WAVEA WAVEA GND SYNCO BIAS FSKI AMSI STO MO TC TC TR TR 3 3 0 SYMA SYMA WAVEA WAVEA GND SYNCO BIAS FSKI Lead PDIP, CDIP (0.300 ) Lead SOIC (Jedec, 0.300 ) PIN DESCRIPTION Pin # Symbol Type Description AMSI I Amplitude Modulating Signal Input. STO O Sine or Triangle Wave Output. 3 MO O Multiplier Output. Positive Power Supply. TC I Timing Capacitor Input. TC I Timing Capacitor Input. TR O Timing Resistor Output. TR O Timing Resistor Output. FSKI I Frequency Shift Keying Input. 0 BIAS O Internal Voltage Reference. SYNCO O Sync Output. This output is a open collector and needs a pull up resistor to. GND Ground pin. 3 WAVEA I Wave Form Adjust Input. WAVEA I Wave Form Adjust Input. SYMA I Wave Symetry Adjust. SYMA I Wave Symetry Adjust. Rev..03 3

DC ELECTRICAL CHARACTERISTICS Test Conditions: Test Circuit of Figure Vcc = V, T A = C, C = 0.0 F, R = 00k, R = 0k, R 3 = k Unless Otherwise Specified. S open for triangle, closed for sine wave. XR-0M/P XR-0CP/D Parameters Min. Typ. Max. Min. Typ. Max. Units Conditions General Characteristics Single Supply Voltage 0 0 V Split-Supply Voltage 3 3 V Supply Current 0 ma R 0k Oscillator Section Max. Operating Frequency 0. 0. MHz C = 000pF, R = k Lowest Practical Frequency 0.0 0.0 Hz C = 0 F, R = M Frequency Accuracy % of f o f o = /R C Temperature Stability Frequency 0 0 0 ppm/ C 0 C T A 0 C R = R = 0k Sine Wave Amplitude Stability 00 00 ppm/ C Supply Sensitivity 0.0 0. 0.0 %/V V LOW = 0V, V HIGH = 0V, R = R = 0k Sweep Range 000: 000: 000: f H = f L f H @ R = k f L @ R = M Sweep Linearity 0: Sweep % f L = khz, f H = 0kHz 000: Sweep % f L = 00Hz, f H = 00kHz FM Distortion 0. 0. % 0% Deviation Recommended Timing Components Timing Capacitor: C 0.00 00 0.00 00 F Figure Timing Resistors: R & R 000 000 k Triangle Sine Wave Output Figure 3 Triangle Amplitude 0 0 mv/k Figure, S Open Sine Wave Amplitude 0 0 0 0 mv/k Figure, S Closed Max. Output Swing Vp-p Output Impedance 00 00 Triangle Linearity % Amplitude Stability 0. 0. db For 000: Sweep Sine Wave Distortion Without Adjustment.. % R = 30k With Adjustment 0..0 0.. % See Figure and Figure Notes Output amplitude is directly proportional to the resistance, R 3, on Pin 3. See Figure 3. For maximum amplitude stability, R 3 should be a positive temperature coefficient resistor. Bold face parameters are covered by production test and guaranteed over operating temperature range. Rev..03

DC ELECTRICAL CHARACTERISTICS (CONT D) XR-0M/P XR-0CP/D Parameters Min. Typ. Max. Min. Typ. Max. Units Conditions Amplitude Modulation Input Impedance 0 00 0 00 k Modulation Range 00 00 % Carrier Suppression db Linearity % For % modulation Square-Wave Output Amplitude Vp-p Measured at Pin. Rise Time 0 0 ns C L = 0pF Fall Time 0 0 ns C L = 0pF Saturation Voltage 0. 0. 0. 0. V I L = ma Leakage Current 0. 0 0. 00 A = V FSK Keying Level (Pin ) 0... 0... V See section on circuit controls Reference Bypass Voltage. 3. 3.3. 3 3. V Measured at Pin 0. Notes Output amplitude is directly proportional to the resistance, R 3, on Pin 3. See Figure 3. For maximum amplitude stability, R 3 should be a positive temperature coefficient resistor. Bold face parameters are covered by production test and guaranteed over operating temperature range. Specifications are subject to change without notice ABSOLUTE MAXIMUM RATINGS Power Supply............................... V Power Dissipation....................... 0mW Derate Above C...................... mw/ C Total Timing Current........................ ma Storage Temperature............ - C to 0 C SYSTEM DESCRIPTION The XR-0 is comprised of four functional blocks; a voltage-controlled oscillator (VCO), an analog multiplier and sine-shaper; a unity gain buffer amplifier; and a set of current switches. The VCO produces an output frequency proportional to an input current, which is set by a resistor from the timing terminals to ground. With two timing pins, two discrete output frequencies can be independently produced for FSK generation applications by using the FSK input control pin. This input controls the current switches which select one of the timing resistor currents, and routes it to the VCO. Rev..03

F FSK Input R R C VCO Current Switches Mult. And Sine Shaper Symmetry Adjust K 3 0 3 XR-0 R3 0K K F F S THD Adjust 00 S = Open For Triangle = Closed For Sinewave Triangle Or Sine Wave Output Square Wave Output.K.K Figure. Basic Test Circuit Peak Output Voltage (Volts) 3 Triangle Sinewave 0 0 0 0 0 00 R 3 in (K Figure 3. Output Amplitude as a Function of the Resistor, R3, at Pin 3 I CC (ma) 0 K 0K 30K K 0 C Max. Package Dissipation 0 (V) Figure. Supply Current vs Supply Voltage, Timing, R Rev..03

Timing Resistor ( ) 0M M 00K 0K MAXIMUM ÁÁÁÁÁÁ TIMING R ÁÁÁÁÁÁ ÁÁÁÁÁ NORMAL ÁÁÁÁÁ RANGE MINIMUM ÁÁÁÁÁ TIMING R ÁÁÁÁÁ TYPICAL ÁÁÁÁÁ VALUE ÁÁÁÁÁ K 0-0 0 Frequency (Hz) 0 0 Normal Output Amplitude V V.0 0. 0 / DC Voltage At Pin Figure. R versus Oscillation Frequency. Figure. Normalized Output Amplitude versus DC Bias at AM Input (Pin ) Distortion (%) ÁÁÁÁÁÁÁ C = 0.0 F ÁÁÁÁÁÁÁ Trimmed For Minimum Distortion At 30 K 3 ÁÁÁÁÁÁÁ 0.0 0 00 0 3 Timing R K( Distortion (%) 3 0 R=3K ÁÁÁ ÁÁÁÁ R L =0K ÁÁÁÁ V OUT =0.VRMS Pin 0 00 K 0K 00K M Frequency (Hz) Figure. Trimmed Distortion versus Timing Resistor. Figure. Sine Wave Distortion versus Operating Frequency with Timing Capacitors Varied. Rev..03

3 R=M C=0.0 F Frequency Drift (%) 0 - - R=00K R=0K R=K R=K R=K R=0K R=00K R=K R=M -3-0 - 0 0 00 ÁÁ Rc Sweep Input - V C I C R I T Pin or I B 3V - Ambient Temperature (C ) Figure. Frequency Drift versus Temperature. Figure 0. Circuit Connection for Frequency Sweep. F C VCO Mult. And Sine Shaper 3 S S Closed For Sinewave 00 M R R K Current Switches 0 3 XR-0 R 3 0K 0K F 0 F Triangle Or Sine Wave Output Square Wave Output.K.K Figure. Circuit tor Sine Wave Generation without External Adjustment. (See Figure 3 for Choice of R 3 ) Rev..03

F F = M RC R R K C VCO Current Switches 0 F Mult. And Sine Shaper 3 R 3 0K Symmetry Adjust K R B S Closed For Sinewave 3 S R A 00 Triangle Or Sine Wave Output Square Wave Output XR-0 0 F 0K.K.K Figure. Circuit for Sine Wave Generation with Minimum Harmonic Distortion. (R 3 Determines Output Swing - See Figure 3) F >V F <V F FSK Input R R C VCO Current Switches Mult. And Sine Shaper 3 00 FSK Output F=/RC F=/RC 0 3 R 3 XR-0 0K F 0 F.K.K Figure 3. Sinusoidal FSK Generator Rev..03

R R C VCO Current Switches F Mult. And Sine Shaper 3 Duty Cycle = f C R R R R R Sawtooth Output Pulse Output 0 3 XR-0 R 3 K F 0 F.K.K.K Figure. Circuit for Pulse and Ramp Generation. Frequency-Shift Keying The XR-0 can be operated with two separate timing resistors, R and R, connected to the timing Pin and, respectively, as shown in Figure 3. Depending on the polarity of the logic signal at Pin, either one or the other of these timing resistors is activated. If Pin is open-circuited or connected to a bias voltage V, only R is activated. Similarly, if the voltage level at Pin is V, only R is activated. Thus, the output frequency can be keyed between two levels. f and f, as: f = /R C and f = /R C For split-supply operation, the keying voltage at Pin is referenced to V -. Output DC Level Control APPLICATIONS INFORMATION Sine Wave Generation Without External Adjustment Figure shows the circuit connection for generating a sinusoidal output from the XR-0. The potentiometer, R at Pin, provides the desired frequency tuning. The maximum output swing is greater than V /, and the typical distortion (THD) is <.%. If lower sine wave distortion is desired, additional adjustments can be provided as described in the following section. The circuit of Figure can be converted to split-supply operation, simply by replacing all ground connections with V -. For split-supply operation, R 3 can be directly connected to ground. The dc level at the output (Pin ) is approximately the same as the dc bias at Pin 3. In Figure, Figure and Figure 3, Pin 3 is biased midway between V and ground, to give an output dc level of V /. Rev..03 0

With External Adjustment: The harmonic content of sinusoidal output can be reduced to -0.% by additional adjustments as shown in Figure. The potentiometer, R A, adjusts the sine-shaping resistor, and R B provides the fine adjustment for the waveform symmetry. The adjustment procedure is as follows:. Set R B at midpoint and adjust R A for minimum distortion.. With R A set as above, adjust R B to further reduce distortion. Triangle Wave Generation The circuits of Figure and Figure can be converted to triangle wave generation, by simply open-circuiting Pin 3 and (i.e., S open). Amplitude of the triangle is approximately twice the sine wave output. PRINCIPLES OF OPERATION Description of Controls Frequency of Operation: The frequency of oscillation, f o, is determined by the external timing capacitor, C, across Pin and, and by the timing resistor, R, connected to either Pin or. The frequency is given as: f 0 RC Hz and can be adjusted by varying either R or C. The recommended values of R, for a given frequency range, as shown in Figure. Temperature stability is optimum for k < R < 00k. Recommended values of C are from 000pF to 00 F. Frequency Sweep and Modulation: Frequency of oscillation is proportional to the total timing current, I T, drawn from Pin or : FSK Generation f 30I T (ma) Hz C( F) Figure 3 shows the circuit connection for sinusoidal FSK signal operation. Mark and space frequencies can be independently adjusted by the choice of timing resistors, R and R ; the output is phase-continuous during transitions. The keying signal is applied to Pin. The circuit can be converted to split-supply operation by simply replacing ground with V -. Timing terminals (Pin or ) are low-impedance points, and are internally biased at 3V, with respect to Pin. Frequency varies linearly with IT, over a wide range of current values, from A to 3mA. The frequency can be controlled by applying a control voltage, V C, to the activated timing pin as shown in Figure 0. The frequency of oscillation is related to VC as: Pulse and Ramp Generation f RC R R C V C 3 Hz Figure shows the circuit for pulse and ramp waveform generation. In this mode of operation, the FSK keying terminal (Pin ) is shorted to the square-wave output (Pin ), and the circuit automatically frequency-shift keys itself between two separate frequencies during the positive-going and negative-going output waveforms. The pulse width and duty cycle can be adjusted from % to % by the choice of R and R. The values of R and R should be in the range of k to M. where V C is in volts. The voltage-to-frequency conversion gain, K, is given as: K f V C 0.3 R C C Hz V CAUTION: For safety operation of the circuit, I T should be limited to 3mA. Rev..03

Output Amplitude: Maximum output amplitude is inversely proportional to the external resistor, R 3, connected to Pin 3 (see Figure 3). For sine wave output, amplitude is approximately 0mV peak per k of R 3 ; for triangle, the peak amplitude is approximately 0mV peak per k of R 3. Thus, for example, R 3 = 0k would produce approximately 3V sinusoidal output amplitude. Amplitude Modulation: Output amplitude can be modulated by applying a dc bias and a modulating signal to Pin. The internal impedance at Pin is approximately 00k. Output amplitude varies linearly with the applied voltage at Pin, for values of dc bias at this pin, within volts of / as shown in Figure. As this bias level approaches /, the phase of the output signal is reversed, and the amplitude goes through zero. This property is suitable for phase-shift keying and suppressed-carrier AM generation. Total dynamic range of amplitude modulation is approximately db. CAUTION: AM control must be used in conjunction with a well-regulated supply, since the output amplitude now becomes a function of. VR V 3 3 0 VR V VR Int ni. Reg. VR V V Figure. Equivalent Schematic Diagram Rev..03

LEAD CERAMIC DUAL-IN-LINE (300 MIL CDIP) Rev..00 D E E Base Plane A A Seating Plane L B e B α c INCHES MILLIMETERS SYMBOL MIN MAX MIN MAX A 0.00 0.00..0 A 0.0 0.00 0.3. B 0.0 0.0 0.3 0. B 0.0 0.0.. c 0.00 0.0 0.0 0. D 0.0 0.0.0.3 E 0.0 0.30.3. E 0.300 BSC. BSC e 0.00 BSC. BSC L 0. 0.00 3..0 α 0 0 Note: The control dimension is the inch column Rev..03 3

LEAD PLASTIC DUAL-IN-LINE (300 MIL PDIP) Rev..00 E D E Seating Plane A L B e B A A α e A e B C INCHES MILLIMETERS SYMBOL MIN MAX MIN MAX A 0. 0.0 3..33 A 0.0 0.00 0.3. A 0. 0... B 0.0 0.0 0.3 0. B 0.030 0.00 0.. C 0.00 0.0 0.0 0.3 D 0. 0.0..3 E 0.300 0.3.. E 0.0 0.0.0. e 0.00 BSC. BSC e A 0.300 BSC. BSC e B 0.30 0.30. 0. L 0. 0.0..0 α 0 0 Note: The control dimension is the inch column Rev..03

LEAD SMALL OUTLINE (300 MIL JEDEC SOIC) Rev..00 D E H Seating Plane e B A C A α L INCHES MILLIMETERS SYMBOL MIN MAX MIN MAX A 0.03 0.0.3. A 0.00 0.0 0.0 0.30 B 0.03 0.00 0.33 0. C 0.00 0.03 0.3 0.3 D 0.3 0.3 0.0 0.0 E 0. 0..0.0 e 0.00 BSC. BSC H 0.3 0. 0.00 0. L 0.0 0.00 0.0. α 0 0 Note: The control dimension is the millimeter column Rev..03

NOTICE EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user s specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies. EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances. Copyright EXAR Corporation Datasheet June Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited. Rev..03