Marine HF SSB Installation and Grounding. Anatomy of the Best Tour 2006



Similar documents
Siemens Energy & Automation. structured. WIRING Product Training Series: Advanced Video Session 3

LDG RBA-4:1Balun LDG RBA-1:1Balun

Video Camera Installation Guide

2 Meter Half-Wave J-Pole Antenna From 450 Ohm Ladder Line

Byonics Micro Trak 1000 High Altitude Balloon Tracker

EMC Standards: Standards of good EMC engineering

The Antenna Balun. What is this thing and why do I need it?

TM Advanced Tracking Technologies, Inc ATTI All rights reserved

G4HUP Panoramic Adaptor Installation FT847

Cheap Antennas for the AMSAT LEO's Kent Britain -- WA5VJB

EH-20 20m antenna. By VE3RGW

Digital Active Indoor Antenna SRT ANT 10 ECO

Grounding and Shield Termination. Application Note 51204

Just a Dipole. Gary Wescom N0GW July 16, 2007

MODEL 2202IQ (1991-MSRP $549.00)

Grounding Demystified

Design and Certification of ASH Radio Systems for Japan

Installation Instructions Hustler 6-BTV Trap Vertical

Here are the details with pictures of the items for sale as listed below. Please Scroll Down.

Constructing a precision SWR meter and antenna analyzer. Mike Brink HNF, Design Technologist.

'' EGGBEATER '' ANTENNA VHF/UHF ~ PART 2

HF Radio Installation Procedure For Marine Applications

Single Transistor FM Transmitter Design

SMA Interface Mating Dimensions (Per MIL-STD-348)

LDG DTS-4/4R Desktop Coaxial Switch / Remote

Technician Licensing Class

Features. Applications. Transmitter. Receiver. General Description MINIATURE MODULE. QM MODULATION OPTIMAL RANGE 1000m

My Loop Antenna. Stephen E. Sussman-Fort, Ph.D. AB2EW.

Current Probes. User Manual

************* OWNER'S MANUAL BAMF800/2 BAMF1250/2 BAMF1800/2 BAMF2200/2 BAMF2600/2 BAMF1200/4 BAMF1600/4 BAMF2000/1D BAMF4000/1D BAMF5500/1D

Modifying the Yaesu FT-847 External MHz Reference Input

GLOLAB Two Wire Stepper Motor Positioner

Portable Multiband Radio ( A) Features Faxback Doc. # 56400

PLEASE - Read this entire booklet and study the diagrams before building a Quad, it can save you unwarranted frustrations!

40m-10m DELTA LOOP ANTENNA - GU3WHN

Mesikukantie 16, Vantaa, Tel (0) Rautatehtaankatu 4, Turku Tel (0)

Short Range Wireless Switch System Handheld 8 Installation and Operations Guide

DIVISION 26 - ELECTRICAL SECTION CABLES FOR INSTRUMENTATION

Assembly Instructions: Shortwave Radio Kit

This paper will explain some of the more important factors on how UTP wires work; specifically it will cover the following:

T855 Day & Night Security Camera

Basic Wire Antennas. Part II: Loops and Verticals

Shielding Effectiveness Test Method. Harbour s LL, SB, and SS Coaxial Cables. Designs for Improved Shielding Effectiveness

There are at least six ways to go about loading a short vertical monopole.

Selecting Receiving Antennas for Radio Tracking

THE KW107 SUPERMATCH ATU manual, courtesy of Barry G0DWZ

Why is Passive Intermodulation Important?

EMC STANDARDS STANDARDS AND STANDARD MAKING BODIES. International. International Electrotechnical Commission (IEC)

StructureScan HD Module. Installation Guide ENGLISH

MARS-ALE Application Note. RS-232 Computer Control Interface for LDG Electronics DTS-4/DTS-6 Desktop Coaxial Switches. Version 1.

Effects of Number of Radials on Portable Vertical Antenna Performance

Avaya WLAN 9100 External Antennas for use with the WAO-9122 Access Point

Selecting a Transmission Line for Your Broadcast System

ANTENNER och TILLBEHÖR

Small HF Antennas ! The Small Space and Big Antenna Dilemma! Constraints

FM Radio Transmitter & Receiver Modules

INSTALLATION INSTRUCTIONS HUSTLER 4-BTV, 5-BTV TRAP VERTICAL WARNING INSTALLATION OF THIS PRODUCT NEAR POWER LINES IS DANGEROUS

HF with the KAM Series Radio Modems

Understanding the Electrical Performance of Category Cables

End Fed Antenna. Operating Manual. version 1.1

An equivalent circuit of a loop antenna.

The VHF / UHF «Eggbeater» Antenna ~ Revisited ~

Broadband Terminated Vee Beam Wire Antenna

Cellular Wireless Antennas

Adding Heart to Your Technology

for Communication Systems Protection EMI CD-ROM INCLUDED

ISS Minimalist Antenna

Guide. Installation. Signal Booster. Wilson. In-Building Wireless Smart Technology Signal Booster. Contents:

WPR400 Wireless Portable Reader

THERMAL ANEMOMETRY ELECTRONICS, SOFTWARE AND ACCESSORIES

Manual. Simrad StructureScan LSS-1 Sonar Module. English

Battery Power Inverters

Setting Up and Testing the MAX Hardware

VE3MLB Phased Double V Antenna for 75/80 Meter Band

USB 3.0* Radio Frequency Interference Impact on 2.4 GHz Wireless Devices

GENERAL POWER SYSTEM WIRING PRACTICES APPLIED TO TECNADYNE DC BRUSHLESS MOTORS

The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam

Designing Log Periodic Antennas

Antenna Basic Concepts

Good EMC Design Principles: cable routing

MGL Avionics CAN bus interface for Trig Avionics TT21/TT22 transponders

Understanding Range for RF Devices

ST Series POWER SUPPLIES USER INSTRUCTIONS

Odyssey of the Mind Technology Fair. Simple Electronics

Control Update. Wireless PTC Technology White Paper Positive Train

Common Mode Choke Filtering Improves CMRR in Ethernet Transformer Applications. Application Note. June 2011

Broadband Telecommunications Drop Amplifier

MobileMaxx 3G. Cellular Signal Booster Need help? Tech Support Mon.- Fri. Hours: 7 am to 6 pm MST

Battery Handbook. By: RON SMITH

Dummies guide to aircraft antennas

Pillbox Antenna for 5.6 GHz Band Dragoslav Dobričić, YU1AW

Research RF Sputtering Packages

DEPARTMENT OF DEFENSE TEST METHOD STANDARD METHOD OF INSERTION LOSS MEASUREMENT

TIMING SIGNALS, IRIG-B AND PULSES

Model S9v Multiband Vertical Antenna Installation Guide

Embedded FM/TV Antenna System

Características. Starligh SA 9 de julio 1595 Córdoba Argentina /

WiMo Antennen und Elektronik GmbH Am Gäxwald 14, D Herxheim Tel. (07276) FAX

Traditional Sonar and DSI Sonar Installation

Coaxial Cable Products Guide. Connectivity for Business-Critical Continuity

Transcription:

Marine HF SSB Installation and Grounding Anatomy of the Best Tour 2006

Marine HF Installation Considerations This document is meant to be an overview of Marine HF radio installation For detailed installation instructions beyond the scope of this document, we recommend that you follow ABYC (American Boat and Yacht Council) guidelines. Further information is available at www.abycinc.org

Marine HF Installation Considerations NMEA also provides additional installation instructions and guidelines These instructions are meant to be a superset of the ABYC guidelines in regards to marine electronics installation Go to www.nmea.org for more information

Marine HF SSB Physical Installation Install in well ventilated areas Make sure controls are easy to get to in an emergency or bad weather Make sure display is angled for easy viewing Keep radio at compass-safe distance Make sure it is audible in critical areas on the boat Think about 3rd party product interconnection Avoid exposure to sea spray

Marine HF SSB Tuner (AT 140) Physical Mounting Install in well ventilated areas Tuners are designed to resist moisture, but not a great idea to expose to frequent splashing water Ensure one of the water drains is facing downward Mount as close to antenna feed point as practical

Marine HF SSB Power Considerations Icom HF SSB s typically draw 30 amps on TX The cabling provided with the radio is sufficient for the supplied run length (10 feet) ABYC E011 provides more detailed standards for ship electrical systems. See: www.abycinc.org/standards/purpose.cfm#e11 Use larger gauge wire for longer runs. More on this on the next few pages

Marine HF SSB Power Considerations Icom SSB HF s spec @ 13.6 V ± 15%

Marine HF SSB Power Considerations Using the previous table and the formula V = IR, on a 25 foot run of 8 gauge wire, you can expect about.5 volt drop at 30 amps 13.6 +/- 15% is the tolerance of Icom HF radios Our radios will run at full specifications as low as 11.6 volts So for example, assume we are starting with a battery voltage with 13.6 volts on it. Under transmit, if the radio is drawing 30 amps, there will be a.5 volt drop, thus delivering 13.1 volts to the radio under load. Well within specification

Marine HF SSB Power Considerations However, with the engine off, battery voltage may settle to a nominal voltage of around 12 volts (depending on state of charge). Drop.5 volts and the power available is now only 11.5 volts at the radio, below specification. 6 gauge may be a better choice in this case. Icom suggests avoiding any run beyond 20 feet, and even for that, supply 6 gauge wire.

Marine HF SSB Antenna Selection Whips of 16 or longer are generally used on power boats (Sailboats will generally use either whips or insulated backstays) There is a minimum length of whip that you can used, depending on the lowest frequency you wish to use: The Lowest Frequency Required Antenna Element Length 1.6 MHz band 7 M; 23.0 feet or longer 4 MHz band 3 m; 9.8 feet or longer

Marine HF SSB Antenna Selection Avoid multiples of half wavelength for antenna element lengths, since tuning becomes difficult. L: Antenna element length to be avoided (m) F: Operating frequency (MHz) N: Natural number (n = 1,2,3, ) Formula: L = (300/f) * (1/2) * n Example at 16 MHz avoid the following lengths L = (300/16) x (1/2) x n = 9.4, 18.8

Sample Marine HF SSB Whip Antennas Digital 24 534- SSW Shakespeare 27.6 5390 Shakespeare 23 5310-R Digital 16 544- SSW

Marine HF SSB Backstay Antennas Alexander- Roberts Backstay Insulator Gam / McKim Split Lead Antenna

Marine HF SSB Antenna Installation Marine HF Whip antennas should be mounted with at much spacing as possible from other antennas. Allow at least 3 feet or more from a VHF antenna Icom HF SSB s put out 150 watts. That amount of power can really get into shipboard electronics. Take care with antenna placement

Sample HF SSB Whip Antenna Mounts Mounts can typically these can be nylon or stainless steel. We always recommend stainless for its durability. Rail mounts can come either with a ratchet or fixed. Surface mounts can be flange, ratchet or lift-n-lay. Rail Mounts Surface Mounts

Marine HF SSB Feed-line Installation The line between tuner & antenna should be short. Remember, it is now part of the antenna also! Use reasonably heavy gauge, high voltage wire like GTO-15

Marine HF SSB Feed-line Installation If you are going to run the feed-line alongside a stay or other metal, stand it off a few inches. Example: Note: Materials should be marine grade

Marine HF SSB Antenna Coax Considerations HF Antenna Coax feed can be any almost any length to feed tuner Avoid adding extra jumpers (multiply by.5 db the number of cable junctions) Solder on PL-259 Connectors preferred

Marine HF SSB Antenna Coax Considerations Minimum Bend Radius (inches) RG58 RG 8X RG 8/U RG 213 LMR240 LMR400 2.0 2.4 4.5 5.0.75 1.0 Take care not to exceed bend radius or your feed line will become less efficient. Better quality cable has more liberal bend radius limits.

Marine HF SSB Antenna Coax Considerations Coaxial Cable Loss Characteristics (50 Ohm, 50 MHz) Signal Loss per 100 feet (db). Higher quality cable provides less loss. We generally recommend at least RG 8/U RG58 RG 8X RG 8/U RG 213 LMR240 LMR400 3.0 2.5 1.3 1.3 1.7.9

Marine HF SSB General Grounding Considerations There are four significant kinds of grounding systems on most vessels DC Ground AC Ground Lightning Ground RF Ground We will only discuss DC and RF Ground

Marine HF SSB DC Grounding Considerations For our HF SSB s, always run a ground return wire the same gauge as the hot lead. Do not rely on a metal hull or superstructure to conduct the return. Run the return to the battery or distribution panel rated to handle the current without significant IR drop! Ensure if possible that the battery ground touches the water at ONE point only to help reduce stray galvanic currents.

Marine HF SSB RF Ground Strap Considerations Use a 2 metal strap to connect Tuner AND SSB to ground point. It is best to make an individual run for each device. Avoid 1/4 Wave Lengths Use a DC Block as pictured in example. The helps prevent galvanic currents as we only need to pass RF. Capacitors are.15µf

Marine HF SSB RF Ground Point Considerations A ground shoe such as those made by Guest (Dynaplate) or Newmar should be fitted Other mount points like a lead keel will work as well Dimensions of 6-8 inches wide and a length of 16-18 inches should be sufficient. This can be two separate shoes if the curvature of the vessel does not allow for one large plate. Should be mounted in such a way that it does not come out of the water when healing or planing

Marine HF SSB RF Radial Considerations We do recommend radials be run, particularly if the ground point is in fresh water Twin Lead

Marine HF SSB Calculating Radial Lengths L: Counterpoise length for the operating frequency (m) F: Operating frequency (MHz) L = (300/f) x (1/4) Example: At an operating frequency of 16 MHz, use a counterpoise with the following length: L = (300/16) x (1/4) = 4.7 (m)

Sport Fisher HF

Trawler HF Anatomy of the Best Tour 2006

Sailboat HF Anatomy of the Best Tour 2006

Marine HF SSB Interference During or after installation, you may notice extraneous noise on receive (or on your transmissions to other vessels). Interference is any extraneous noise that is or appears to be on channel that interferes with the operators ability to communicate. This come from: Devices on-board the vessel Devices on other vessels And

Marine HF SSB Interference Atmospheric conditions RF adjacent channel Over the next few pages, we will concentrate our discussion on how to identify the source of on-board interference and how to eliminate it

Marine HF SSB On-Board Potential Interference Sources Navigation Equipment Autopilots Engine Alternator Depth Sounders Networked Equip. Computer Driven Equip. DC Motors Inverters Fluorescent Lamps/Dim Engine Tachometers Battery Chargers Television and Ant. Amps INMARSAT Stepper Motors Fans Air Conditioners AC Generators Engine Ignition

Marine HF SSB On-Board Interference Source Identification Turn off all equipment on vessel except affected device Turn on, one by one, each piece of equipment Repeat until source of interference is found NOTE! Some interference may not occur until the offending devices are warmed up!

Marine HF SSB On-Board Interference Source Identification When noise has been isolated to a particular piece of equipment check to see if: Noise is coming from equipment (over the air) Noise is being conducted through cables

Marine HF SSB On-Board Interference Source Identification To verify how the interference is entering the HF radio, disconnect the antenna. If the noise is still present, then the noise is coming in through the power leads, or other connections. If the noise disappears, then the noise is coming in through the antenna. How the interference is propagated will make a difference in what tools you use to solve the issue

Marine HF SSB On-Board EMI Resolution Shielded Cables Twisted Cables Grounding Filters Clip-On Ferrites Relocating Cable Runs Relocating Equipment Displays Relocating Antennas

Marine HF SSB On-Board EMI Resolution Shielded Cables Installation of shielded cables in the equipment that is CAUSING EMI interference may reduce or eliminate the transmission of EMI. Shields must be connected to the RF ground system. Shield connection should be made at the end closest to the transmitted signal. The other end should remain unconnected. Twisted Cables This is a easy thing to try. Twisting the power wires together on the affected HF may help reduce some interference.

Marine HF SSB On-Board EMI Resolution Grounding Grounding other equipment display cases and the cases of all the peripheral modules in the system may need to be performed. A #8 gauge wire, but not smaller than #12 gauge should be used for grounding. Filters Available filter types include alternator filters, noise filters and capacitors. The filters may be installed at the noise source or on leads entering the affected device. Ferrites Ferrite core toroids and split ferrites may be used to reduce conducted and radiated EMI from a noise generator.

Marine HF SSB On-Board EMI Resolution Relocating Cable Runs In certain installations, it may be necessary to relocate the routing of cables to reduce the coupling of signals from the interfering source cables into another device. Relocating Equipment Displays May be necessary to relocate the equipment display to reduce the coupling of signals from the interfering source into the affected device. Relocating Antennas May be necessary to relocate antennas to reduce the coupling of signals from the interfering source into the affected device.

Thanks for choosing Icom! 2006 Icom America Inc. The Icom Logo is a registered trademark of Icom Inc.