Antti Salonen KPP227 - HT 2015 KPP227

Similar documents
Supply Chain Inventory Management Chapter 9. Copyright 2013 Pearson Education, Inc. publishing as Prentice Hall 09-01

Chapter 6. Inventory Control Models

Teaching Manual-Operation Management. Gunadarma University. Week : 9 Subject : INVENTORY MANAGEMENT Content :

MATERIALS MANAGEMENT. Module 9 July 22, 2014

Chapter 12 Inventory Control and Management

Operations Management. 3.3 Justify the need for Operational Planning and Control in a selected Production Process

Chapter 14 Inventory Management

INVENTORY MANAGEMENT

Economic Ordering Quantities: A Practical Cost Reduction Strategy for Inventory Management

INVENTORY MANAGEMENT. 1. Raw Materials (including component parts) 2. Work-In-Process 3. Maintenance/Repair/Operating Supply (MRO) 4.

Operations Management

MGT Exam 2 Formulas. Item $ Usage % of $ usage Cumulative % of $ Cumulative % of no. of items Class

Logistics Management Inventory Cycle Inventory. Özgür Kabak, Ph.D.

Agenda. TPPE37 Manufacturing Control. A typical production process. The Planning Hierarchy. Primary material flow

Inventory Management - A Teaching Note

Inventory: Independent Demand Systems

An Overview on Theory of Inventory

By: ATEEKH UR REHMAN 12-1

INDUSTRIAL STATISTICS AND OPERATIONAL MANAGEMENT. 7. Inventory Management

After this unit you should be able to answer following questions A. Concept Questions B. Short notes 1. Inventory and Inventory management 2.

Alessandro Anzalone, Ph.D. Hillsborough Community College, Brandon Campus

Abstract: Why inventory exists. Types of inventory. This is sequel to OM 601 assignment.

Principles of Inventory Management (PIM)

Small Lot Production. Chapter 5

講 師 : 周 世 玉 Shihyu Chou

Ud Understanding di inventory issues

TYPES OF INVENTORIES AND EFFECTIVE CONTROL SYSTEMS

Universidad del Turabo MANA 705 DL Workshop Eight W8_8_3 Aggregate Planning, Material Requirement Planning, and Capacity Planning

Basics of inventory control

Inventory Management, Just-in-Time, and Backflush Costing

A Cross-Functional View of Inventory Management, Why Collaboration among Marketing, Finance/Accounting and Operations Management is Necessary

Glossary of Inventory Management Terms

CHAPTER 6 AGGREGATE PLANNING AND INVENTORY MANAGEMENT 명지대학교 산업시스템공학부

Project and Production Management Prof. Arun Kanda Department of Mechanical Engineering Indian Institute of Technology, Delhi

Planning Optimization in AX2012

Demand

Supply Chain Management: Inventory Management

Effective Replenishment Parameters. By Jon Schreibfeder EIM. Effective Inventory Management, Inc.

Inventory Control Subject to Known Demand

LECTURE 1 SERVICE INVENTORY MANAGEMENT

Chapter 24 Stock Handling and Inventory Control. Section 24.1 The Stock Handling Process Section 24.2 Inventory Control

Chapter 9 Managing Inventory in the Supply Chain

Operations and Supply Chain Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology Madras

Four Strategies for Smarter Inventory Control

Inventory Management and Risk Pooling. Xiaohong Pang Automation Department Shanghai Jiaotong University

Chapter 12. Inventory Management. Operations Management - 5 th th Edition. Roberta Russell & Bernard W. Taylor, III.

How To Manage Production

Inventory Management

Course Supply Chain Management: Inventory Management. Inventories cost money: Reasons for inventory. Types of inventory

BSCM Sample TEST. CPIM(Certified In Production & Inventory Management) - 1 -

Replenishment Types. Buy Type M, known as Min/Max, is set up on the warehouse item record on the Purchasing tab.

Inventory Control and supply chain Management Notes ( By Neha Chhabra) The 5 M s : the basic fundamentals of an organisation

tutor2u Stock Control The Importance of Managing Stocks AS & A2 Business Studies PowerPoint Presentations 2005

Inventory Management IV: Inventory Management Systems

Inventory Control Models

ISE 421 QUANTATIVE PRODUCTION PLANNING

Inventory basics. 35A00210 Operations Management. Lecture 12 Inventory management. Why do companies use inventories? Think about a Siwa store

Chapter 9. Inventory management

It is concerned with decisions relating to current assets and current liabilities

Inventory Theory Inventory Models. Chapter 25 Page 1

Q IP6C no cop. 5

Inventory Management & Optimization in Practice

Moving Parts Planning Forward

Introduction to Inventory Replenishment

Material Requirements Planning (MRP)

Chapter 13. Working Capital Management

SCORE. Counselors to America s Small Business INVENTORY CONTROL

CHAPTER 20 INVENTORY MANAGEMENT, JUST-IN-TIME, AND SIMPLIFIED COSTING METHODS

Strategic Framework to Analyze Supply Chains

Material Requirements Planning. Lecturer: Stanley B. Gershwin

Chapter 16 Inventory Management and Control

Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 4(1): (ISSN: )

Reorder level = demand during lead time = lead time x demand per unit time ROL = LT x D

Inventory Management and Risk Pooling

Quantity and Inventory

Standard Work for Optimal Inventory Management

The word stock can refer to a number of things: products that are not yet finished, but where the production process has started

RELATIONSHIP BETWEEN INVENTORY MANAGEMENT AND INDUSTRIES BECOMING SICK, ESPECIALLY IN THIRD WORLD COUNTRIES

Inventory Theory 935

The Newsvendor Model

Inventory Management: Fundamental Concepts & EOQ. Chris Caplice ESD.260/15.770/1.260 Logistics Systems Oct 2006

INVENTORY MANAGEMENT AND CONTROL * Controlling Inventories. How to determine how much to order and how often to order.

INVENTORY MANAGEMENT WITH INDEPENDENT DEMAND Cases

Inventory - Prerequisite

Materials: Inventory Control

Effective Replenishment Parameters By Jon Schreibfeder

MOS 3330 Test 2 Review Problems & Solutions

INVENTORY MANAGEMENT, SERVICE LEVEL AND SAFETY STOCK

Logistics Management Customer Service. Özgür Kabak, Ph.D.

WORKING CAPITAL MANAGEMENT

INVENTORY Systems & Models

Demand forecasting & Aggregate planning in a Supply chain. Session Speaker Prof.P.S.Satish

EVERYTHING YOU NEED TO KNOW ABOUT INVENTORY

Understanding Gross Margin Impacts on Profitability

Operations and Supply Chain Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Live Learning Center. Solution-Driven Integrated Learning Paths. Make the Most of Your Educational Experience

Spare part inventory control for an aircraft component repair shop

Technology Trends in MRO Inventory Management

Achieving Effective Inventory Management with Dynamics GP and RockySoft

Transcription:

- HT 2015 1

Inventory management Inventory management concerns short-range decisions about supplies, inventories, production levels, staffing patterns, schedules and distribution. The decisions are often of a tactical (rather than strategic) character. Strategic Tac+c Opera+onal 2

What is inventory? An inventory is a stock or store of goods. Goods inventory management is essential to the successful operation of most organizations for a number of reasons, like: the amount of money inventory represents (capital investment) The impact on daily operations 3

What is inventory? Inventory is a stock of anything, held to meet future demand. Firms typically stock a large amount of items, ranging from small items (such as screws and nuts) to large items (such as machines and castings), depending on the kind of business. Manufacturing companies (for example) carry supplies of: raw material purchased parts sub assemblies/partially completed items (Work in Process WIP) finished goods spare parts for machines, tools and other supplies. 4

Accounting categories Inventories for a manufacturing plant exist in three forms (so called accounting categories): Raw material Work in process (WIP) Finished goods 1. Raw material at the plant passes through one or more processes, which transforms them into various levels of WIP inventory. 2. When this inventory is processed at the final operation, it becomes finished goods inventory. 3. Finished goods can be held at a plant, a distribution center (DC), and retail locations. 5

Nature and importance of inventory Inventories are not only necessary for operations, but also for customer satisfaction. Hence, a typical firm can have about 30 % of it s current assets and 90 % of it s working capital invested in inventory. Question: What can be possible benefits and drawbacks of inventory? 6

Functions of Inventory 1. To meet anticipated customer demand Anticipation stock: Inventories are held to satisfy an expected average demand. 2. To smooth production requirements Seasonal inventories: Inventories are built during off-season to satisfy the demand during high season. 3. To decouple operations Buffers: Inventories are held between successive operations to maintain continuity of production despite e.g. breakdowns. 4. To protect against stock outs Safety stocks: Inventories are held to cover for late deliveries and unexpected increases in demand. 7

Functions of Inventory 5. To take advantage of order cycles Cycle stock: Inventories are held to minimize purchasing cost resulting in order cycles. 6. To hedge against price increases Inventories are held to avoid a substantial price increase. 7. To permit operations Pipeline inventory: Inventories are held in order to avoid shortages of e.g. raw material which can result in production stops (work in process). 8

Types of inventory 1. Cycle inventory Increased inventory and lower cost by ordering larger quantities. Lot sizing principles: The lot size Q must equal the demand during the time between orders The longer the time between orders, the greater the cycle inventory. 2. Safety stock inventory Protects against uncertainties in demand, lead time and supply. 3. Anticipation inventory Used to absorb uneven rates of demand or supply. 4. Pipeline inventory Inventory that is created when an order for an item is issued but not yet placed in inventory. (Inventory moving from point to point in the material flow process) 9

Inventory levels Inadequate control of inventories can result in both under- and overstocking of items. 10

Inventory levels Inadequate control of inventories can result in both under- and overstocking of items. Under-stocking Results in missed deliveries, lost sales, dissatisfied customers and production bottle necks. 11

Inventory levels Inadequate control of inventories can result in both under- and overstocking of items. Under-stocking Results in missed deliveries, lost sales, dissatisfied customers and production bottle necks. Over-stocking Results in unnecessary capital being tied up, that could have been used for something more productive. 12

Inventory levels Inadequate control of inventories can result in both under- and overstocking of items. Under-stocking Results in missed deliveries, lost sales, dissatisfied customers and production bottle necks. Over-stocking Results in unnecessary capital being tied up, that could have been used for something more productive. Although overstocking may appear to be the lesser of the two evils, excessive overstocking can be staggering where holding costs are high. This is one factor dealt with by e.g. lean production (JIT, reduced waste etc). 13

Cost information The costs associated with inventories are: Holding costs Relates to physically having items in storage (see next slide). Ordering cost (or setup costs) Relates to ordering and receiving inventory, which vary with the actual placement of an order. These costs include e.g. determining how much is needed, preparing the invoice, shipping, goods inspection, moving the goods to temporary storages etc. Shortage costs Relates to the case when demand exceeds supply. These costs include e.g. opportunity cost of making the sale, loss of customer goodwill or even cost of lost production (if the customer is internal) 14

Holding or carrying cost Inventory holding (or carrying) cost is the cost of keeping items on hand. These cost components change with inventory level. The components of holding cost Cost of capital To finance an investment (often up to 15 %) Storage and handling costs Inventory needs space and must be moved in and out of storage Taxes, insurance and shrinkage Shrinkage can take three forms: Pilferage/Theft Obsolescence due to e.g. model changes Deterioration implies a lower value 15

Pressures for low inventory Inventory represents a temporary monetary investment => firm must pay (rather than receive) interest. Inventory hides quality problems. Inventory takes up space that could be used for a more profitable activity. Inventory needs to be handled => increased materials handling requirements. 16

Pressures for high inventory Customer service Inventory can speed up delivery and avoids stock outs and backlogs. Ordering cost Minimize the cost of preparing purchase order. Setup cost Producing inventory reduces the amount of setups between different items. Labor and equipment utilization Increased productivity Transportation cost Inventory on hands allows the possibility to optimize transportation. Quantity discounts The more you buy at one time, the cheaper the price/item 17

However It is not unusual for managers to discover that their firm has a 10 year supply of some items => a balance is needed! 18

Inventory concerns Level of customer service To have the right goods, in sufficient quantities, in the right place at the right time Cost of ordering and carrying inventory Overall objective To achieve satisfactory customer service levels while keeping inventory costs within reasonable bounds. 19

Inventory measures The average aggregate inventory value is the total value of all items held in inventory and represents the inventory investments over a period of time. Average aggregate inventory value = i (No of unit X i * Value of unit X i ) However, it is also important to consider weeks of supply (how many weeks of demand the average inventory can cover) and inventory turnover (how many times the whole inventory is replaced per year). Weeks of supply = Average aggregate inventory/weekly sales (at cost) Inventory turnover = Annual sales (at cost)/ Average aggregate inventory 20

EXAMPLE 1 Inventory measures 21

22

23

24

Problem to solve 25

Solution 26

The Pareto principle The Pareto Principle (also called 80/20 rule) The 80/20 rule means that in anything, a few (20 percent) are vital and many (80 percent) are trivial. 27

ABC analysis The product line of a typical firm is made up of individual products at different stages of their respective life cycles and with different degrees of sales success. E.g. 80 % of a firm s sales are generated by 20 % of the product line items. => important to primarily control these (and not the other 80 %). Percentage of items 28

ABC Analysis Classification of articles in regards to e.g. item value. Class A items constitute the most important class of inventories so far as the proportion in the total value of inventory. The A items consists of ~20% of the total items and accounts for ~80% of the total material usage. This items need a tightly controlled inventory system with constant attention. Class B items constitute an intermediate position, which constitute ~30% of the total items, accounts for ~15% of the total material consumption. These items need a formalized inventory system and periodic attention. Class C items are quite negligible. It consists of the remaining ~50% items, accounting for only ~5% of the monetary value of total material usage. Quite relaxed inventory procedures are used. 29

Now that we have identified the inventory items deserving the most attention, we devote the remainder of the lecture to the decisions of how much to order and when. 30

Inventory Control Systems Independent demand Items for which demand is influenced by market conditions and is not related to the inventory decisions for any other item held in stock or produced. Dependent demand Items required as components or inputs to a service or product. Dependent demand exhibits a pattern very different from that of independent demand and must be managed with different techniques. (will be covered in upcoming lectures) 31

Independent demand Wholesale and retail merchandise Service support inventory (e.g. office supplies) Product and replacement-part distribution inventories Maintenance, repair, and operating (MRO) supplies 32

Demand forecast and lead time information Inventories are used to satisfy order demand requirements, so it is essential to have reliable estimates of the amount and timing of demand. Similarly, it is essential to know how long it will take for orders to be delivered. Managers also need to know the extent to which demand and lead time (the time between submitting an order and receiving it) might vary. The greater the variability, the greater the need for additional stock to reduce the risk of a shortage between deliveries. 33

Definitions: A reminder Inventory holding cost is the sum of the cost of capital and the variable costs of keeping items on hand, such as storage and handling, taxes, insurance, and shrinkage. Ordering cost is the cost of preparing a purchase order for a supplier or a production order for the shop. Setup cost is the cost of changing over a machine to produce a different item. Cycle inventory is the portion of total inventory that varies directly with lot size. 34

Economic Order Quantity (EOQ) The lot size, Q, that minimizes total annual inventory holding and ordering costs. When to use EOQ: Constant and certain demand No lot size constraints Inventory holding cost and fixed cost per lot are the only costs Decisions for an item can be made independently Constant and certain lead time EOQ is a reasonable approximation, not an optimization tool! 35

EOQ calculation Q = Lot size (units) H = Holding cost for one unit during one year (SEK) D = annual demand (units/year) S = Ordering cost/set up cost (SEK/lot) 36

EOQ calculation Total annual cycle-inventory cost = Annual holding cost + Annual ordering or setup cost Economic order quantity: C = total annual cycle-inventory cost Q = lot size, in units H = cost of holding one unit in inventory for a year, often expressed as a percentage of the item s value D = annual demand, in units per year S = cost of ordering or setting up one lot 37

EOQ 38

Time Between Orders (TBO EOQ ) Sometimes, inventory policies are based on the time between replenishment orders, rather than on the number of units in the lot size. The Time Between Orders (TBO) for a particular lot size is the average elapsed time between receiving (or placing) replenishment orders of Q units. => TBO gives a hint on how often an order should be placed. 39

EXAMPLE 3 EOQ, Cost, TBO 40

a) 41

a) 42

b) 43

Problem to solve 44

Solution 45

EOQ sensitivity analysis TABLE 12.1 SENSITIVITY ANALYSIS OF THE EOQ Parameter EOQ Parameter Change EOQ Change Comments Demand 2DS H Order/Setup 2DS Costs H Holding 2DS Costs H Increase in lot size is in proportion to the square root of D. Weeks of supply decreases and inventory turnover increases because the lot size decreases. Larger lots are justified when holding costs decrease. 46

The EOQ and other lot-sizing methods answer the important question: How much should we order? Another important question that needs an answer is: When should we place the order? 47

Continuous review (Q) system A continuous review (Q) system, sometimes called a reorder point (ROP) system or fixed order-quantity system, tracks the remaining inventory of a SKU each time a withdrawal is made to determine whether it is time to reorder. A Q system means that whenever the inventory position reaches a certain point, a new order is placed! 48

Continuous review (Q) system Q system when demand and lead time are constant and certain 49

Continuous review (Q) system Q system when demand and lead time are constant and certain 50

Continuous review (Q) system Q system when demand and lead time are constant and certain Inventory position = On-hand inventory + Scheduled Receipts Back Orders IP = OH + SR BO If IP Reorder point => An order should be placed! 51

Problem to solve Inventory position = On-hand inventory + Scheduled receipts Backorders IP = OH + SR BO 52

Solution 53

Continuous review (Q) system Q system when demand is uncertain 54

Continuous review (Q) system Calculation of reorder point (ROP) when demand is uncertain: 1. Choose an appropriate service-level policy. E.g. choosing a 90 percent cycle service level means that the probability is 90 percent that the demand will not exceed the supply during the lead time. 2. Determine the demand during lead time probability distribution 3. Determine the safety stock and reorder point levels 55

Continuous review (Q) system The size of the safety stock depends on the variability, which is measured with probability distributions. Normal distribution Cycle-service level = 85% Probability of stockout (1.0 0.85 = 0.15) Average demand during lead time R zσ dlt Finding Safety Stock with a Normal Probability Distribution for an 85 Percent Cycle-Service Level 56

Continuous review (Q) system 57

EXAMPLE 4 Reorder point (ROP) & safety stock (normal distribution) 58

a) Normal distribution vv v 59

60

a) 61

b) Normal distribution 62

63

b) Normal distribution 64

Problem to solve 65

Solution 66

Continuous review (Q) system The size of the safety stock depends on the variability, which is measured with probability distributions. Discrete distribution Data are unavailable Each possible demand during lead time, along with it s probability is listed. R is selected from the list of demand levels. Find the smallest value of R that meets the desired service level. E.g. if the desired cycle-service level is 95% and R is set at 500 units the probabilities of all demands 500 must equal or exceed 0.95, and R is the smallest such quantity. 67

EXAMPLE 5 Reorder point (ROP) & Safety stock (discrete distribution) 68

69

70

Periodic review (P) system A periodic review (P) system, sometimes called a periodic reorder system or fixed interval reorder system, reviews an item s inventory position periodically rather than continuously (=> TBO is fixed). The lot size, Q, may change from one order to the next (demand is uncertain). Essential assumptions: item is delivered in lots inventory holding cost is not affected by lot sizing decisions decisions for one item are independent of decisions for other items amount received is exactly amount ordered A P system means that on a regular basis, a new order is placed. 71

Periodic review (P) system P system when demand is uncertain and lead time is certain Inventory position = On-hand inventory + Scheduled Receipts Back Orders IP = OH + SR BO An order is placed every period P and the amount to order = T-IP! 72

EXAMPLE 6 Order quantity 73

74

75

Periodic review (P) system Two decisions must be made: P: Length of time between reviews Could e.g. be based on the cost trade-offs of the EOQ, average time between orders of the EOQ (= TBO). T: Target inventory level Must equal to the expected demand during protection interval (P + L) plus enough safety stock to protect against demand and lead time uncertainties. T = average demand during the protection interval + safety stock for protection interval! =!! +! +!!!!! =!! +! +!!!!! +!! 76

EXAMPLE 7 P system 77

Demand for a bird feeder is normally distributed with a mean of 18 units per week and a standard deviation in weekly demand of 5 units. The lead time is 2 weeks, and the business operates 52 weeks per year. EOQ is 75 units and the safety stock is 9 units for a cycle-service level of 90 percent. What is the equivalent P system? Find P and T! Answers are to be rounded to the nearest integer. 78

79

80

Q system vs. P system Primary advantages of Q systems Review frequency may be individualized Fixed lot sizes can result in quantity discounts Lower safety stocks Primary advantages of P systems Convenient Orders can be combined Only need to know IP when review is made 81

Hybrid systems Optional replenishment systems Optimal review, min-max, or (s,s) system, like the P system Reviews IP at fixed time intervals and places a variable-sized order to cover expected needs Ensures that a reasonable large order is placed Base-stock system Replenishment order is issued each time a withdrawal is made Order quantities vary to keep the inventory position at R Minimizes cycle inventory, but increases ordering costs Appropriate for expensive items Visual systems Allows employees to place orders when inventory visibly reaches a certain marker. (E.g. Kanban) 82

Non-instantaneous replenishment If an item is being produced internally (rather than purchased) finished units may be used or sold as soon as they are completed, without waiting until a full lot is completed! Usually production rate, p, exceeds the demand rate, d, so there is a build-up of (p d) units for Q/p days! 83

Non-instantaneous replenishment Maximum cycle inventory (I max ): I max = Q p ( p d) = Q p d p where p = production rate d = demand rate Q = lot size Average cycle inventory is no longer Q/2 (as in EOQ). Instead it is I max /2 84

Non-instantaneous replenishment Total annual cost = Annual holding cost + Annual ordering or setup cost I C + D Q ( H ) ( S) max = C ( H ) + ( S) 2 => Q = 2 p d p D Q I = inventory D = annual demand p = production rate d = demand rate Q = lot size H = holding cost S = ordering/setup cost => Economic production lot size: DS p ELS = 2 H p d 85

EOQ vs. ELS Do NOT mix up Economic order size EOQ = 2DS H Economic production lot size ELS = 2DS H p p d 86

EXAMPLE 8 Non-instantaneous replenishment 87

88

Solution 89

Skärmurklipp gjort: 2010-11-21; 13:18 Problem to solve A toy manufacturer uses 48000 rubber wheels per year for its popular dump truck series. The firm makes its own wheels, which it can produce at a rate of 8 per day. The toy trucks are assembled uniformly over the entire year. Carrying cost is 1 per wheel a year. Setup cost for a production run of wheels is 45. The firm operates 240 days per year. Determine the: a. Optimal run size b. Minimum total annual cost for carrying and setup c. Cycle time for the optimum run size d. Run time D = 48000 wheels per year S = 45 H = 1 per wheel per year p = 800 wheels per day d = 48000 wheels per 240 days, or 200 wheels per day 90

Skärmurklipp gjort: 2010-11-21; 13:18 Solution a: ELS = 2DS H p p - d 2x48000x45 800 1 800-200 = = 2400 wheels b: C min = Carrying cost + Setup cost = D ( ) H + ( ) S I max 2 ELS 2400 I max = (p d) = (800 200) = 1800 wheels p 800 ELS C min = 1800 48000 ( ) 1 + ( ) 45 = 900 + 900 = 1800 2 2400 c: Cycle time = ELS 2400 ( ) = = 12 days d 200 d: Run time = ELS 2400 ( ) = = 3 days p 800 91

Quantity discounts Price incentives to purchase large quantities, create pressure to maintain a large inventory. Hence, a new approach is needed to find the best lot size - one that balances the advantages of lower prices for purchased materials and fewer orders (which are benefits of large order quantities) against the disadvantage of the increased cost of holding more inventory. 92

Quantity discounts Total annual cost =Annual holding cost + Annual ordering or setup cost + Annual cost of materials where Q = lot size H = holding cost D = annual demand d = demand rate S = ordering and/or setup cost P = price/unit Q D C = + 2 Q ( H ) + ( S) PD 93

Quantity discounts Step 1. Beginning with lowest price, calculate the EOQ for each price level until a feasible EOQ is found. It is feasible if it lies in the range corresponding to its price. Each subsequent EOQ is smaller than the previous one, because P, and thus H, gets larger and because the larger H is in the denominator of the EOQ formula. Step 2. If the first feasible EOQ found is for the lowest price level, this quantity is the best lot size. Otherwise, calculate the total cost for the first feasible EOQ and for the larger price break quantity at each lower price level. The quantity with the lowest total cost is optimal. 94

EXAMPLE 9 Quantity discounts 95

96

97

98

One period decisions One of the dilemmas facing many retailers is how to handle seasonal goods. Often, they cannot be sold at full markup the next year because of changes in styles. This type of situation is often called the newsboy problem. Step 1: List different demand levels and probabilities. Step 2: Develop a payoff table that shows the profit for each purchase quantity, Q, at each assumed demand level, D. Each row represents a different order quantity and each column represents a different demand. The payoff depends on whether all units are sold at the regular profit margin which results in two possible cases. 99

One period decisions Case 1. Case 2. 100

One period decisions Step 3: Calculate the expected payoff of each Q by using the expected value decision rule: For a specific Q, first multiply each payoff by its demand probability, and then add the products. Step 4: Choose the order quantity Q with the highest expected payoff. 101

EXAMPLE 10 One period decisions 102

103

Demand exceeds supply => Case 1 Supply exceeds demand => Case 2 104

105

Relevant book chapters Chapter: Managing inventories Supplement C: Special inventory models 106

Questions? antti.salonen@mdh.se Next lecture on Tuesday 2015-12-08 Scheduling, Assignment 107