Strengthening of Brick Masonry Walls against Earthquake Loading



Similar documents
ACCELERATING ADMIXTURE RAPIDITE -ITS EFFECT ON PROPERTIES OF CONCRETE

EXPERIMENTAL STUDY OF EFFECT OF SODIUM SILICATE (NA 2 SIO 3 ) ON PROPERTIES OF CONCRETE

Chapter. Restoration of Damaged Structures

MODELLING OF AN INFILL WALL FOR THE ANALYSIS OF A BUILDING FRAME SUBJECTED TO LATERAL FORCE

Experimental assessment of concrete damage due to exposure to high temperature and efficacy of the repair system

STRENGTH OF CONCRETE INCORPORATING AGGREGATES RECYCLED FROM DEMOLITION WASTE

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,

PRESENTATION ON REPAIR AND REHABILITATION OF BUILDINGS DAMAGED IN EARTHQUAKE. By H P Gupta & D K Gupta

ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT

Mortars for Brickwork - Selection and Quality Assurance

Chapter. Earthquake Damage: Types, Process, Categories

INFLUENCE OF STEEL FIBERS AS ADMIX IN NORMAL CONCRETE MIX

Fire-Damage or Freeze-Thaw of Strengthening Concrete Using Ultra High Performance Concrete

Foundations 65 5 FOUNDATIONS. by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. Seismic Retrofit Training

COST-EFFECTIVE RETROFITTING MEASURES FOR KASHMIR VALLEY

The Original Carbon Fiber Reinforced Polymer System

Seismic Retrofitting and Repair Manual for Buildings

EXPERIMENTAL INVESTIGATION ON BEHAVIOUR OF NANO CONCRETE

Methods for Seismic Retrofitting of Structures

Seismic Risk Prioritization of RC Public Buildings

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

beams columns blast walls slabs pipes protective coatings polymer concrete Solutions Looking for Problems...

THE EFFECT OF STIRRUPS AND HOOKED STEEL FIBERS INSTEAD ON MOMENT-ROTATION CAPACITY OF BEAM-COLUMN CONNECTIONS

Testing and appraisal of Lucobit polymer effect as an additive on asphalt mixture performance

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13)

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS

FERROCEMENT FOR HURRICANE PRONE STATE OF FLORIDA

BEHAVIOR OF SHORT CONCRETE COLUMNS REINFORCED BY CFRP BARS AND SUBJECTED TO ECCENTRIC LOAD

Effect of basalt aggregates and plasticizer on the compressive strength of concrete

GRADATION OF AGGREGATE FOR CONCRETE BLOCK

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS

EFFECT OF NANO-SILICA ON CONCRETE CONTAINING METAKAOLIN

Retrofitting of Existing RCC Buildings by Method of Jacketing

Choosing the Right Mortar for the Job

1.5 Concrete (Part I)

Technical Notes 3B - Brick Masonry Section Properties May 1993

SEISMIC RETROFITTING OF EARTHQUAKE-DAMAGED CONCRETE COLUMNS BY LATERAL PRE-TENSIONING OF FRP BELTS. K. Nasrollahzadeh Nesheli 1 and K.

International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS

SEISMIC ANALYSIS AND RETROFITTING OF R.C.C STRUCTURE

NAPCA BULLETIN APPLICATION PROCEDURES FOR CONCRETE WEIGHT COATING APPLIED BY THE COMPRESSION METHOD TO STEEL PIPE

Interpretation of clogging effects on the hydraulic behavior of ion treated geotextiles

LAYING BLOCK AND BRICK

FACT SHEET: HYDRATED LIME FOR MASONRY PURPOSES

A NEW APPROACH FOR MEASUREMENT OF TENSILE STRENGTH OF CONCRETE

EXPERIMENTAL INVESTIGATION ON STRENGTH AND DURABILITY PROPERTIES OF HYBRID FIBER REINFORCED CONCRETE

SPECIFIC GRAVITY OF COARSE AGGREGATE AASHTO T 85

CONCRETE SEGMENTAL RETAINING WALL SYSTEM

Detailing of Reinforcment in Concrete Structures

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

cement Masonry Cement Engineered for quality and reliability, Lafarge cements for masonry deliver consistent performance. page 2 Lafarge Cement

REVISION OF GUIDELINE FOR POST- EARTHQUAKE DAMAGE EVALUATION OF RC BUILDINGS IN JAPAN

A Study on the Flexural and Split Tensile Strengths of Steel Fibre Reinforced Concrete at High Temperatures

A Decade of Performance of FRP-Repaired Concrete Structures

Saint Gobain Gyproc India Ltd. (Formerly India Gypsum Ltd.)

NONLINEAR BEHAVIOR AND FRAGILITY ASSESSMENT OF MULTI-STORY CONFINED MASONRY WALLS UNDER CYCLIC LOADS

Quality control: Annex-A.

Post Earthquake Quick Damage Inspection of Buildings in Nepal

A COMPREHENSIVE STUDY ON PARTIAL REPLACEMENT OF CEMENT WITH SUGARCANE BAGASSE ASH, RICE HUSK ASH & STONE DUST

Seismic Retrofit of Existing Buildings: Innovative Alternatives

Chapter 8 Design of Concrete Mixes

Strong earthquakes in seismic regions are inevitable! Build your house safely to avoid future disaster!

CONCRETE SEGMENTAL RETAINING WALL SYSTEM

Assistant Professor of Civil Engineering, University of Texas at Arlington

A Comparative Analysis of Modulus of Rupture and Splitting Tensile Strength of Recycled Aggregate Concrete

STUDY OF PROMOTION SYSTEM FOR PP-BAND RETROFITTING OF NON-ENGINEERED MASONRY HOUSES

6 RETROFITTING POST & PIER HOUSES

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

Modern Codes for Design of Concrete Concrete Structures Presentation Outline

Repair and Rehabilitation of Nehru Memorial College of K.V.G. Group of Institutions at Mangalore - A Case Study

Damage assessment of flood affected mud houses in Pakistan

Uniaxial Compressive Strength of Cold-formed Steel Tubular Sections with Recycled Aggregate Concrete Infill

Monocouche Best Practice Guide. New-Build Housing Managing movement to avoid cracking

Experimental and analytical investigation of ferrocement water pipe

A short Research Paper. Affordable Solution for Earthquake Resistant Building Construction in Haiti. Dawang Sherpa

SECTION PERMEABLE INTERLOCKING CONCRETE PAVEMENT

Section 5A: Guide to Designing with AAC

Reinforced Concrete Design

SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701)

CCU Engineering Specifications. Section PRECAST CONCRETE PRODUCTS

How To Repair A House After An Earthquake

What you need to know about concrete block basement construction.

CW 3110 SUB-GRADE, SUB-BASE AND BASE COURSE CONSTRUCTION TABLE OF CONTENTS

Seismic performance evaluation of an existing school building in Turkey

201 WATER STREET FORWARDERS MUSEUM AND VISITORS INFORMATION CENTRE

Dubai Municipality Standard DMS 1: Part 5: 2004

MILMAN & ASSOCIATES STRUCTURAL CONSULTING ENGINEERS/ PROJECT MANAGERS

DIVISION: MASONRY SECTION: MASONRY ANCHORS REPORT HOLDER: HILTI, INC DALLAS PARKWAY, SUITE 1000 PLANO, TEXAS 75024

Prepared For San Francisco Community College District 33 Gough Street San Francisco, California Prepared By

Salt Weathering of Masonry Walls The Venice Experience. By M. Collepardi, S. Collepardi and R. Troli

SECTION 311 PLACEMENT AND CONSTRUCTION OF CEMENT TREATED SUBGRADESOIL CEMENT BASE COURSE

Evaluation of the Seismic Performance of Brick Walls Retrofitted and Repaired by Expansive Epoxy Injection

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

EXPERIMENT NO.1. : Vicat s apparatus, plunger

EFFECT OF DIESEL CONTAMINATION ON GEOTECHNICAL PROPERTIES OF CLAY NEAR BPCL

BILL OF QUANTITY FOR THE WORK OF "REPAIRING OF CIVIL & PLUMBING WORKS INSIDE AND OUTSIDE OF THE WORKSHOP"

Foundation Experts, LLC Specializes in Foundation Repair and Waterproofing

EFFECT OF WINDOW OPENINGS ON REINFORCED CONCRETE FRAMES WITH MASONRY INFILL

Analysis of M35 and M40 grades of concrete by ACI and USBR methods of mix design on replacing fine aggregates with stone dust

Transcription:

International Journal of Advanced Structures and Geotechnical Engineering ISSN 2319-5347, Vol. 01, No. 01, July 2012 Strengthening of Brick Masonry Walls against Earthquake ing KHAN SHAHZADA, MUHAMMAD JAVED, BASHIR ALAM, MANSOOR KHAN, ZAIGHAM ALI, Department of Civil Engineering University of Engineering & Technology, Peshawar, Pakistan Email: khanshahzada@nwfpuet.edu.pk, shah_civil2003@yahoo.com Abstract: This paper presents a research on the enhancement of unconfined and unreinforced brick masonry walls against earthquake ings in Pakistan. Different unreinforced brick masonry walls have been examined for compressive strength before and after retrofitting. In this research Ferro-cementing has been used for the strength improvement of unreinforced brick masonry. The impact of plaster on the durability of walls has also been regarded. The research of trial outcomes generate, that appropriate retrofitting can reduce the problems occurring due to future earthquakes. Retrofitting improved not only the overall strength of unreinforced brick masonry walls by 40 % and also enhanced its ductility. Keywords: Unconfined Masonry Structures, Ductility, Compression Strength, Earthquake Disaster, and Retrofitting 1. Introduction: The easy construction and availability of the burnt bricks make it one of the most widely used construction material in Pakistan. Ordinary structures like small living units; small government buildings, non- profit agencies, health care facilities and other important facilities are constructed from brick masonry. At the same time, Pakistan s Khyber Pukhtoon Khwa (previously North West Frontier Province) faced disastrous earthquakes in history. One such earthquake hit the northern areas of Disputed Territory of Kashmir and northern Pakistan rendering many homeless and claimed thousands of lives. In the absence of any legitimate building code and lack of knowledge for behavior of the brick masonry caused even greater damage. The reconnaissance survey reports indicated that the unreinforced masonry buildings such as stone masonry, brick masonry and concrete block masonry were either partially or completely damaged (Durrani et al. 2005, Naeem et al. 2005) [1]. Buildings which are properly designed and detailed on the basis of modern seismic building codes are less affected because these buildings dissipate energy through inelastic behavior. Improper design and detailing of buildings can make these buildings vulnerable to earthquakes. The enormous losses inflicted by the October 8, 2005 earthquake in the Northern Areas of Pakistan were mainly due to the fact that in the absence of a seismic building code, buildings were either non-engineered or designed for gravity s only (Javed et al. 2008, Naseer et al. 2010) [2]. Application of wire mesh increases the lateral strength capacity of unreinforced masonry walls significantly (Shahzada et al. 2008 [4], Shahzada et al. 2009). In this context a study was carried out to strengthen the existing unreinforced brick masonry walls with Ferrocement technique with a potential of constructing new structures with Ferro-cement. 2. Methodology: The study includes experimental evaluation of the strength of brick masonry under certain conditions. For this purpose total of 20 samples of brick wall segments were constructed. The bricks were layered in English course. The masonry walls were constructed under ordinary conditions having mix proportions of 1:6 (cement: sand). Water cement ratio was kept at 0.8. The dimensions of the walls were 16 x20 x9 (Length x Height x Width). A total of 20 walls were constructed out of which 10 were plastered and the remaining 10 were without plaster as shown in Figure 1 and Figure 2. The walls were cured in open air and were tested after 28 days in the Universal Testing Machine (UTM) in the Structural laboratory of Civil Engineering Department, University of Engineering & Technology Peshawar, Pakistan. Half of the non plastered and plastered walls were retrofitted after initial testing as shown in figure 3 and figure 4. Figure 1: Construction of Wall IJASGE 010103 Copyright 2012 BASHA RESEARCH CENTRE. All rights reserved.

KHAN SHAHZADA, MUHAMMAD JAVED, BASHIR ALAM, MANSOOR KHAN, ZAIGHAM ALI, Figure 2: Plastering of Wall Figure 4: Plastering of Wire Mesh Folded Wall Figure 3: Retrofitting of Wall with Wire Mesh 2.1. Bricks: The strength of brick plays key role in the construction and stability of the buildings. For this reason, brick samples were collected and were tested in compression to evaluate their compressive strength. The water absorption test was also performed on the brick samples. Sand and cement were also tested according to ASTM standards. 2.1.1. Compressive Strength: The compression test for the bricks was carried out on U.T.M. of 200 ton capacity. Vertical alignment was provided so as to get rid of flexural and tensile stresses. A total of 10 bricks were tested as shown in figure 5. The dimensions of these bricks were taken before test. The average compressive strength is 1.89 ksi with standard deviation of 0.87. The details are given in Table 1. 2.1.2. Water Absorption of Bricks: Table 1: Compressive Strength of Bricks The brick samples were submerged in cold and clean water for 24 hours as shown in figure 6. The weight before and after submersion was recorded and the absorption of each specimen was calculated by the following formula; Absorption (%) = (Ws-Wd)/Wd * 100 Where, Wd= dry weight of specimen Ws= saturated weight of the specimen after submersion in water for 24 hours. Details for water absorption are given in table 2. S. No Trade Mark Length Width Height Area (in2) (tons) (kip) /Area (ksi) 1 N 8.60 4.04 3.00 34.74 29.40 64.80 1.87 2 N 8.67 3.96 3.10 34.33 13.70 30.19 0.88 3 N 8.46 3.96 2.87 33.50 46.80 103.15 3.08 4 N 8.62 4.08 2.87 35.16 24.10 53.12 1.51 5 N 8.60 4.04 2.95 34.74 18.10 39.89 1.15 6 N 8.58 4.04 2.94 34.60 30.40 67.00 1.94 7 N 8.56 4.08 2.81 34.92 50.50 111.30 3.19 8 N 8.48 4.18 2.77 35.44 30.50 67.22 1.90 9 N 8.73 4.15 2.87 36.22 11.80 26.01 0.72 10 N 8.65 3.69 2.83 31.91 39.10 86.18 2.70

Strengthening of Brick Masonry Walls against Earthquake ing Figure 5: Brick Compressive Strength Test S. No Trade Mark Table 2: Percentage Water Absorption Dry wt (lbs) (w1) Wet wt (lbs) (w2) Figure 6: Water Absorption Test of Brick Wt of Water (w3=w2-w1) lbs %age (w3/w1)*100 1 N 6.16 7.57 1.41 22.89 2 N 5.81 6.96 1.15 19.79 3 N 5.79 6.94 1.15 19.86 4 N 5.85 7.30 1.45 24.79 5 N 5.85 7.42 1.57 26.83 6 N 5.74 7.01 1.27 22.12 The average water absorption is 22.71 %, which is high enough and will absorb water from the mortar. 2.2. Sand: Sand used was clean, hard, strong, well graded and free of organic impurities, deleterious substances, silt and clay. All the sand passed through sieve no. 16. 2.3. Cement: In this work, locally manufactured ordinary Portland cement (Kohat cement) was used conforming to ASTM spec. C 150 (type-1). 3. Testing Procedure: The walls were subjected to compressive ing in the UTM. The Half number of the walls were tested up to the collapse level whereas, the remaining walls were subjected to 40% of the walls collapse which were later on retrofitted with Ferro- cement. The failure mechanism of walls with plaster before retrofitting is shown in figure 7. The rest of the 10 walls were then subjected to 40 percent of the ultimate. Cracks were observed in these walls. Five of the walls subjected to 40 percent ing were plastered; this plaster was removed after cracking. Wire mesh was wrapped around all of the cracked walls. Figure 7: Spalling of Plaster These walls were plastered again with a mortar of 1:5 cement sand ratio. After the period of curing, these walls were tested in UTM again to find their crushing strength. The damage mechanism of retrofitted walls is shown in figure 8 and figure 9.

KHAN SHAHZADA, MUHAMMAD JAVED, BASHIR ALAM, MANSOOR KHAN, ZAIGHAM ALI, Figure 8: Damage Pattern of Retrofitted wall Figure 9: Retrofitted Walls after Test This was done so as to find the comparative strength between normal masonry walls and wire mesh retrofitted walls. 4. Results and Discussion: For further evaluation, half of the un-reinforced brick masonry samples were coated with cement-sand Plaster. The plastered samples had an average failure of 42.5 Tons, whereas the non-plastered walls failed at an average of 40 Tons. This indicated that the plastered walls could take an additional 5.8% of the as compared with the non-plastered walls. The crack pattern for both cases was same. The cracks started at 70-75% of the average cracking and grew rapidly once initiated. The strain rate was kept high for the tests which depict the stresses caused by an earthquake. The test data for un-retrofitted walls is provided in the Table 3 below; After running these tests, the damaged samples were covered with one layer of ferrocement wire mesh and 5mm thick plain mortar of 1:2 (cement: sand). The axial was applied at a slow rate by UTM. For plain plastered walls the first crack was observed at 31 Ton. More cracks started appearing at regular increments of 4-5 Tons. The lowest ultimate was observed at 53.6 Tons while the highest was 66.5 Tons. The confinement provided by ferrocement increased the failure by 15-20 Tons which is 40% increase in the strength. The fact that the specimen was intact and did not shatter into pieces was very intriguing. Table 3: Test Results of Unreinforced Brick Masonry Walls Specimen Designation Plastered Un-plastered Max. failure 45.6 47.4 29.3 59.9 40.6 36.3 27.9 44.0 39.7 42.3 Average Failure 40% 42.5 17.0 40.0 16.0 The non-plastered walls were also retrofitted with the ferrocement and plastered afterwards. The cracks were observed at relatively lower (29 Ton) compressive strength. The lowest ultimate was 47.1 Ton while the highest was 55.7 Ton. This shows that the nonplastered walls suffered greater damage during the initial testing. Table 4 presents a summary of the testing results after retrofitting. A small comparison between table 3 and table 4 is presented in the Figure 11. This indicates substantial increase in the strength capacity of the masonry walls after retrofitting. Table 4: Maximum Failure after Retrofitting Specimen Designation Plastered Un-plastered Max. failure 61.4 66.50 57.30 57.10 53.60 47.10 52.30 54.00 55.70 42.3 Average Failure 40% 59.18 40.00 52.28 30.00

s (Ton) Strengthening of Brick Masonry Walls against Earthquake ing 70 60 50 40 30 20 10 0 plastered retrofitted 5. Conclusions: Detailed Analysis of Walls plastere retofitted Columns non plastered non plastered retrofitted Figure 11: Comparison of the Results Series1 Experiments were conducted to find out the compressive strength of un-retrofitted and retrofitted brick masonry walls. The brick walls were coated with single layer Ferrocement wire mesh. It was noted that the ferrocement coating on masonry walls increases the compressive strength. Ferrocement specimens having one layer of wire mesh wrapped around showed an increase in failure of up to 40% as compared to controlled specimen. The excessive mortar thickness applied to cover wire mesh leads to premature cracking. Also the premature cracking can occur if the ferrocement is not properly cured. The biggest advantage of the ferrocement is the fact that it does not disintegrate after failure unlike normal masonry walls, hence reducing the falling hazard. The ordinary brick masonry walls fail suddenly leading to brittle failure, however the ferrocement walls crack at slightly lower s but the subsequent widening and growth leading to failure happens at greater s. 6. References: [1] Durrani, A. J., Elnashai, A. S., Hashash, Y. M. A., Kim, S. J., Masud, A., [2005] The Kashmir Earthquake of October 08, 2005: A Quick Look Report, Mid-America, Earthquake Center, University of Illinois at Urbana-Champaign. [2] Javed M., Khan A.N. and Magenes G. [2008] Performance of masonry structures during earthquake -2005 in Kashmir. Mehran University Research Journal of Engineering & Technology, Vol. 27, No. 3, pp. 271-282 [3] Khan. A.N. et al. [2005] Reconnaissance Report on the 8th October, 2005 Earthquake, Pakistan, EERI Website, report, 20 pp. [4] Khan Shahzada et. al, Improvement of Masonry Structures Against Seismic Force Published in Bulletin of the International Institute of Seismology and Earthquake Engineering Tsukuba, Japan September, 2008. [5] Khan Shahzada et. al, Sustainable Buildings in Dera Ismail Khan and Adjoining Areas: An Experimental Study International Conference on Integrating Disaster Management and Climate Change Adaptation Into Policy Making Baragali, Pakistan October 15-17,2009. [6] Naseer, A., Khan, A, N., Ali, Q., Hussain, Z. [2010] Observed Seismic Behavior of Buildings in Northern Pakistan during Kashmir Earthquake, Earthquake Spectra, Vol. 26, No. 2, pp 425-449.