Initial inventory levels for a book publishing firm



Similar documents
REVISTA INVESTIGACIÓN OPERACIONAL VOL., 32, NO. 2, , 2011

Sun Synchronous Orbits for the Earth Solar Power Satellite System

DEVELOPMENT OF MODEL FOR RUNNING DIESEL ENGINE ON RAPESEED OIL FUEL AND ITS BLENDS WITH FOSSIL DIESEL FUEL

Online Insurance Consumer Targeting and Lifetime Value Evaluation - A Mathematics and Data Mining Approach

QUANTITATIVE METHODS CLASSES WEEK SEVEN

Finite Dimensional Vector Spaces.

Term Structure of Interest Rates: The Theories

TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS

Session 4: Descriptive statistics and exporting Stata results

Modern Portfolio Theory (MPT) Statistics

Evaluating Direct Marketing Practices On the Internet via the Fuzzy Cognitive Mapping Method

Long run: Law of one price Purchasing Power Parity. Short run: Market for foreign exchange Factors affecting the market for foreign exchange

Problem Set 6 Solutions

Introduction to EDI. Instructor: Jerry Gao Ph.D. San Jose State University URL:

Online Load Balancing and Correlated Randomness

ERLANG C FORMULA AND ITS USE IN THE CALL CENTERS

NATIONAL OPEN UNIVERSITY OF NIGERIA. B. Sc Data Management. in the. School of Science & Technology

Dehumidifiers: A Major Consumer of Residential Electricity

GROUP MEDICAL INSURANCE PROPOSAL FORM GROUP MEDICAL INSURANCE PROPOSAL FORM

ANALYSIS OF ORDER-UP-TO-LEVEL INVENTORY SYSTEMS WITH COMPOUND POISSON DEMAND

Category 7: Employee Commuting

Mininum Vertex Cover in Generalized Random Graphs with Power Law Degree Distribution

Section 3: Logistic Regression

An Effective Resource Management for Cloud Services using Clustering Schemes

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)

December Homework- Week 1

The influence of advertising on the purchase of pharmaceutical products

Question 3: How do you find the relative extrema of a function?

Lecture 20: Emitter Follower and Differential Amplifiers

REFINED CALCULATION AND SIMULATION SYSTEM OF LOCAL LARGE DEFORMATION FOR ACCIDENT VEHICLE

The example is taken from Sect. 1.2 of Vol. 1 of the CPN book.

STOCK MARKET DECISION MAKING MACHINE

Non-Linear and Unbalanced Three-Phase Load Static Compensation with Asymmetrical and Non Sinusoidal Supply

The international Internet site of the geoviticulture MCC system Le site Internet international du système CCM géoviticole

Adverse Selection and Moral Hazard in a Model With 2 States of the World

5 2 index. e e. Prime numbers. Prime factors and factor trees. Powers. worked example 10. base. power

INFLUENCE OF DEBT FINANCING ON THE EFFECTIVENESS OF THE INVESTMENT PROJECT WITHIN THE MODIGLIANIMILLER THEORY

FACULTY SALARIES FALL NKU CUPA Data Compared To Published National Data

Keywords Cloud Computing, Service level agreement, cloud provider, business level policies, performance objectives.

Approximate Counters for Flash Memory

DYNAMIC PROGRAMMING APPROACH TO TESTING RESOURCE ALLOCATION PROBLEM FOR MODULAR SOFTWARE

Game of Platforms: Strategic Expansion into Rival (Online) Territory

Managing the Outsourcing of Two-Level Service Processes: Literature Review and Integration

Do Not Cut, Fold, or Staple Forms on This Page Do Not Cut, Fold, or Staple Forms on This Page

Control of Perceived Quality of Service in Multimedia Retrieval Services: Prediction-based mechanism vs. compensation buffers

Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means

CPU. Rasterization. Per Vertex Operations & Primitive Assembly. Polynomial Evaluator. Frame Buffer. Per Fragment. Display List.

Facts About Chronc Fatgu Syndrom - sample thereof

1. Online Event Registration 2. Event Marketing 3. Automated Event Progress Reports 4. Web based Point of Sale Terminal 5. Marketing System

WORKERS' COMPENSATION ANALYST, 1774 SENIOR WORKERS' COMPENSATION ANALYST, 1769

Advantageous Selection versus Adverse Selection in Life Insurance Market

Performance Evaluation

Intermediate Macroeconomic Theory / Macroeconomic Analysis (ECON 3560/5040) Final Exam (Answers)

est with berkeley / uc berkeley exte xtension / be your best with berkel

Evaluating Microsoft Hyper-V Live Migration Performance Using IBM System x3650 M3 and IBM N series N5600

STOCK MARKET DECISION MAKING MACHINE. Petr Dostál, Karel Rais

Online Price Competition within and between Heterogeneous Retailer Groups

tis, cis cunc - cunc - tis, cis tis, cis cunc - tis, func - def - def - tis, U func - def - func - tis, pa - tri pa - tri pa - tri tu - per - tu -

CST

Learning & Development

union scholars program APPLICATION DEADLINE: FEBRUARY 28 YOU CAN CHANGE THE WORLD... AND EARN MONEY FOR COLLEGE AT THE SAME TIME!

Traffic Flow Analysis (2)

Transistor is a semiconductor device with fast respond and accuracy. There are two types

Probabilistic maintenance and asset management on moveable storm surge barriers

Coordination, Cooperation, Contagion and Currency Crises 1

CALCULATING MARGINAL PROBABILITIES IN PROC PROBIT Guy Pascale, Memorial Health Alliance

Tax Collection, Transfers, and Corruption: the Russian Federation at the Crossroads 1)

Reputation Management for DHT-based Collaborative Environments *

Architecture of the proposed standard

Compression Outline. LZ77: Sliding Window Lempel-Ziv. Lempel-Ziv Algorithms. CPS 296.3:Algorithms in the Real World

Natural Gas & Electricity Prices

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

by John Donald, Lecturer, School of Accounting, Economics and Finance, Deakin University, Australia

Rural and Remote Broadband Access: Issues and Solutions in Australia

Incomplete 2-Port Vector Network Analyzer Calibration Methods

is knowing the car market inside out.

VOL. 25, NÚM. 54, EDICIÓN JUNIO 2007 PP

Virtual Sensors

Personalized Web Search by User Interest Hierarchy

Category 11: Use of Sold Products

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions

West Virginia. Instructions. Income/Business Franchise Tax for S Corps & Partnerships (Pass-Through Entities) Guyandotte River, Mingo County

AP Calculus AB 2008 Scoring Guidelines

New Basis Functions. Section 8. Complex Fourier Series

Authenticated Encryption. Jeremy, Paul, Ken, and Mike

Use a high-level conceptual data model (ER Model). Identify objects of interest (entities) and relationships between these objects

PARTICULAR RELIABILITY CHARACTERISTICS OF TWO ELEMENT PARALLEL TECHNICAL (MECHATRONIC) SYSTEMS

Exponential Generating Functions

Transcription:

Mőhlytaulmáy Vállalatgazdaságta Itézt 93 Budapst, Fıvám tér 8. (+36 ) 482-5566, Fax: 482-5567 www.u-crvus.hu/vallgazd Ital vtry lvls fr a b publshg frm Imr Dbs Ágs Wmmr 23. sz. Mőhlytaulmáy HU ISSN 786-33 2. márcus Budapst Crvus Egytm Vállalatgazdaságta Itézt Fıvám tér 8. H-93 Budapst Hugary

Ital vtry lvls fr a b publshg frm Imr Dbs Ágs Wmmr Dpartmt f Lgstcs ad Supply Cha Maagmt Isttut f Busss Ecmcs Crvus Uvrsty f Budapst Budapst Crvus Egytm, 93 Budapst, Fıvám tér 8. Absztrat. Egy öyvadó vállalatt vzsgálu. A adó adváyat a száss értésítés lác (s- és agyrsdlm) rsztül értésít. A érdés az, hgy gy ú öyv példáyat hgya allála az értésítés lácba. Fltétlzzü, hgy a rslt smrt, Psslszlású. A észltzés öltségt szté smrt tétlzzü fl. Cél a öltség mmalzálása. Kulcsszava: Optmalzálás, Úságárusfú prbléma, Játélmélt, Készltgazdáldás Abstract. Th am f th papr s t aalyz a practcal ral wrld prblm. A publshg hus s gv. Th publshg frm has ctacts t a umbr f whlsalr / rtalr trprss ad drct ctact t custmrs t satsfy th mart dmad. Th b publshrs wr a prct dustry. Th publshr facs wth th prblm t allcat th stcs f a gv, wly publshd b t th whlsalr ad rtalr, ad t hld sm cps t satsfy th custmrs drct frm th publshr. Th dstrbut f th dmad s uw, but t ca b stmatd. Th csts csst f vtry hldg ad shrtag, bacrdr csts. Th dcs mar wats t mmz ths rlvat csts. Th prblm ca b mdld as a -warhus ad N-rtalr supply cha wth t dtcal dmad dstrbut. Th prblm structur s smlar that f a wsvdr mdl. It s assumd that th dmad dstrbut fllws a Pss dstrbut. Kywrds: Optmzat, Nwsby prblm Gam thry, Ivtry ctrl 2

. Itrduct Ivtry gams ar vstgatd th last yars. A umbr f publcats aalyz wsvdr-, r wsby-typ vtry gams. O f th frst paprs ths fld was publshd by Lppma ad McCardl (997). Thy hav xamd a wsby-typ vtry gam wth tw playrs ad dpdt radm dmads. Thy l fr a Nash qulbrum ad vstgat pssbl dcs ruls. Othr paprs vstgat a smlar stuat, but mr tha tw playrs. Ths paprs ar Mtrucch ad Scars (27), ad Müllr, Scars, ad Shad (22). Th last papr dals wth th cpratv slut f th wsby-typ vtry gam, ad shws that thr xsts a cr f ths gam. Athr papr xams th cct btw Nash ad Staclbrg sluts f wsvdr prblms. (Sr (27)) Sh has shw that thr xsts such a stuat, whr ths tw typ f gam sluts hav th sam. Othr applcats xam th bac-rdrs sluts (Ntss t al. (26)), ad th mult-chl prblms f vtry ctrl f wsvdr gams. (Rgrs ad Tsubata (99)) Th am f th papr s t aalyz a practcal ral wrld prblm. Th publshg frm has ctacts t a umbr f whlsalr / rtalr trprss ad drct ctact t custmrs t satsfy th mart dmad. Th b publshrs wr a prct dustry. Th publshr facs wth th prblm t allcat th stcs f a gv, wly publshd b t th whlsalr ad rtalr, ad t hld sm cps t satsfy th custmrs drct frm th publshr. Th dstrbut f th dmad s uw, but t ca b stmatd. Th csts csst f vtry hldg ad shrtag, bacrdr csts. Th dcs mar wats t mmz ths rlvat csts. Th prblm s mdld as a -warhus ad N-rtalr supply cha wth t dtcal dmad dstrbut. Th prblm structur s smlar that f a wsvdr mdl. It s assumd that th dmad dstrbut fllws a Pss dstrbut. W hav chs ths dstrbut, bcaus th dmad prcss f sllg bs ca b charactrzd wth ths radm prcss. Th papr rgazs, as fllws. I th scd sct w shw th paramtrs, dcs varabls ad th csts fucts f th mdl. Th xt sct dals wth th prprts f th mdl, ad slvs th mdl. Th furth sct suppls a umrcal xampl t charactrz th structur f a ptmal slut. Ad last w summarz th rsults f th papr. 2. Th mdl W wll us th fllwg tats. Paramtrs f th mdl: - umbr f th rtalr, - c f fxd csts f th publshg hus, - c v varabl csts f th publshg hus, - p sllg prc f th b, 3

4 - h vtry hldg csts f th publshg hus, - h vtry hldg csts f th rtalrs, (,2,,), - D radm dmad fr rtalr, (,2,,), - paramtr f th Pss dstrbut fr rtalr, (,2,,). Th prbablty f dmad f th Pss dstrbut has th xt frm: D P ) (. Th cumulatd dstrbut s dfd, as ( ) F. W assum that th radm dmads f th rtalrs ar dpdt. Ths assumpt mas that th cumulatd prbablty f th dmad fr th publshg hus fllws a Pss dstrbut, as wll: D P!, ad th cumulatd dstrbut ( )! F. Dcs varabls: - th umbr f th bs publshd by th publshg hus, - th umbr f th rdrd bs frm th publshg hus. W ca assum that th umbr f publshd bs s t hghr tha that f bs rdrd by rtalrs frm publshg hus. It s frmulatd, as. Ths prblm ca b mdld as a -warhus ad -rtalr supply cha. Th matral flw f th systm s dpctd fgur.

Fgur. Matral flw f th systm. (O-warhus -rtalr.). rtalr Publshg hus 2. rtalr 2 3 3. rtalr Lt us w mdl th cst fucts. Th mdl cssts f ( + ) csts fucts: cst fuct f th publshg hus ad cst fucts f th rtalrs. W mdl th cas frm th pt f vw f th publshg hus. Th publshg hus wats t mmz th rlvat cst, s that th hus ds t w th prcs csts f th rtalrs, but stmats thm. Frst w cstruct th cst fuct f th publshg hus. W assum that th csts fuct cssts f fxd csts, varabl csts f th publshg hus, ad th sum vtry hldg csts ad lst sals. Th frm f th cst fuct s th fllwg: C ( ) c + c K ( ). f v + Th fuct K ( ) s mdld, as K ( ) h ( ) + p ( ) +! +! Th frst part f fuct F ( ) shws th avrag vtry hldg csts. Th scd part s th avrag lst sals csts. Th cst fucts f th rtalrs ar mdld as a pur wsby prblm. W assum that th publshg hus has frmat abut th csts paramtrs f th rtalrs, ly. 5

stmats abut th csts. Th fxd ad varabl csts f rtalrs ar ttally uw fr th publshg hus. Th cst fucts ar C +! ( ) h ( ) + p ( )!, (,2,,). Th gal f th rtalrs s t mmz th wsby-typ vtry csts. A rtalr has frmat abut th rdrg ruls f th thr rtalrs, s ths dcss ar dpdt ach thr. W ca w summarz ur mdl, as a gam thrtc mdl. Th prblm s th fllwg: ( ) m C, (,,2,,), (). (2) I th xt sct w xam th ffrd mdl. W wll shw that ths mdl s a smpl gam ad w l fr th ptmal slut f ths play. 3. Sm prprts f th mdl ad ts slut Th prblm ()-(2) ca b trprtd, as a Nash gam wth ( + ) playr. W prv that th Nash slut f ths vtry gam s Part qulbrum, s th cmpttv slut s ths spcal cas a cpratv gam slut, as wll. Prprty. Th ptmal slut f mdl ()-(2) s a Nash qulbrum. Prf. Lt us assum that w hav calculatd th ptmal slut f th prblm, ad ptmal slut s valus { }. Lt us w frst aalyz th umbr f publshd bs, ad lt us fx th ptmal rtalr quatts { }. Th w slv th xt prblm: C ( ) c + c + K ( ) m f v,. Ths prblm ca b slvd, ad th ptmal slut s a Nash slut. If w vstgat a rtalr, th th xt prblm must b slvd: 6

7 ( ) ( ) ( ) m!! + + p h C,. Th slut f ths prblm s vry smpl, s fr xampl Naddr (966). Wth ths last prpst w hav prvd ths prprty. Th prprty hav shw that th qulbrum ths Nash gam ca b calculatd, as a Part ffct slut. Prprty 2. Th Nash qulbrum f mdl ()-(2) s a Part ptmal slut, as wll. Prf. Th frst prprty hlds fr th ptmal slut f prblm ()-(2). Lt us rfrmulat th prblm: ( ) ( ) m + C C,. Th ptmal slut f ths prblm s a Nash slut, ad th cumulatd cst fuct s a Part ptmum. S th ptmal slut f ths prblm s a cpratv slut f gam ()-(2). Wth ths prpst w hav prvd that th slut s a cpratv qulbrum fr ths prblm. Ths last prprty hlps us t dtrm th ptmal slut f th mdl ()-(2). Th ptmal rdrgs ca b calculatd, as th ptmal slut f ptmzat prblm (3)-(4): ( ) m C, (3). (4)

Lt us w dtrm th ptmal dcss ths mdl. Th mdl ()-(2) ca b slvd wth Lagrag fuct. Th Lagrag fuct s L r L ({ } ) C ( ) +,, ({ }, ) [ C ( ) ] + [ C ( ) + ]. Th ptmal slut fr ths cas s p v + ( ) F ( ) F p + h fr th umbr f th publshd bs ad F p ( ) F ( ), (5), (,2,,), (6) p + h fr th rdrd bs. Hr th ptmal sluts ar valus, (,,2,,). I ths mdl th ptmal slut s dtrmd dpdc f th paramtr. A pssbl algrthm s shw th xt sct. 4. A umrcal xampl Th supply cha cssts f th publshg hus ad thr rtalrs, 3. I ths umrcal xampl w assum that th sllg prc s qual t 5,.. p 5. Th fxd cst f th publshg hus s,.. c f, th varabl cst s 2,.. c v 2. W assum that th vtry hldg csts ar qual fr th publshg hus ad th rtalrs, ad h h h h 2 h 3. Th dstrbut f th dmad s Pss dstrbut wth paramtrs: 5, 2 25, ad 3 3. Th prblm (3)-(4) ur cas s + 2 + 5 + + 3 + 5 5 ( ) + 5 ( ) + ( ) 2 5 25 ( ) + ( ) + 5 ( ) 3 ( ) + 5 ( ) 3 5! 3! 5! 3 + 2 3 + 25! 3! 3 5! 2 + 2 25! 25 + 5! 5 + 8

+ +. 2 3 Usg th rsults f (5)-(6), th ptmal slut s, 9, 52, 26, 3. 2 3 Th mmal cst f th publshg hus s C ( ) 2364. 95, C ( ) 36. 79, C ( ) 2. 46, ( ) 3. 643 2 2 Th ttal csts f ths supply cha ar 277.84. C. 3 3 5. Ccluss I ths papr w hav shw a supply cha wth wsvdr-typ vtry hldg csts. W hav vstgatd a ral publshg hus wth rtalrs. Th publshg hus wats t dtrm ptmal umbr f publshd bs ad th xpctd bs rdrg f th rtalrs. Th radm dmads fr bs f th rtalrs ar w frm frmr dmads. Th am f th publshg hus s t mmz th xpctd csts s that th rtalrs mmz th vtry hldg csts. T slv th prblm, w hav shw that ths prblm lads t a gam-thrtc mdl. Th playrs f th gam ar th publshg hus ad th rtalrs. Th structur f th prblm s vry smpl, s th Nash qulbrum f th prblm s a Part ffct slut, as wll. It mas that ths cas th Nash qulbrum s a slut f a cpratv gam. I a xt papr w ca aalyz a stuat wth t dpdt rtalrs dmad, as t s assumd by Mtrucch ad Scars (27), r Sr (27). 9

Rfrcs.. Lppma, S.A., McCardl, K.E. (997): Th cmpttv wsby, Oprats Rsarch 45, 54-65 2. Mlff, P., Nhéz, K. (26): A xtdd wsvdr mdl fr custmzd mass prduct, AMO Advacd Mdllg ad Optmzat, Elctrc Itratal Jural 3. Mlff, P., Nhéz, K. (27): Evaluatg th prpr srvc lvl a cpratv supply cha vrmt, MIM 7. IFAC wrshp maufacturg mdlg, maagmt ad ctrl, Budapst, Hugary, 23-26 4. Mtrucch, L., Scars, M. (27): Larg wsvdr gams, Gams ad Ecmc Bhavr 58, 36-337 5. Müllr, A., Scars, M., Shad, M. (22): Th rwsvdr gam has a mpty cr, Gams ad Ecmc Bhavr 38, 8-26 6. Naddr, E. (966): Ivtry systms, Jh Wly Ss, Ic., Nw Yr, Ld, Sydy 7. Ntss, S., Rud, N., Wag, Y. (26): Ivtry cmptt ad ctvs t bac-rdr, IIE Trasacts 38, 883-92 8. Rgrs, D.F., Tsubata, S. (99): Nwsby-typ rsults fr mult-chl vtry prblms: Bacrdrs ptmzat wth trmdat dlays, Jural f Opratal Rsarch Scty 42, 57-68 9. Sr, Y. (27): Cmpttv wsvdr prblms wth th sam Nash ad Staclbrg sluts, Oprats Rsarch Lttrs 35, 83-94