More on Market-Making and Delta-Hedging



Similar documents
14 Greeks Letters and Hedging

Chapters 15. Delta Hedging with Black-Scholes Model. Joel R. Barber. Department of Finance. Florida International University.

Lecture 15. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6

Week 13 Introduction to the Greeks and Portfolio Management:

Hedging. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Hedging

On Market-Making and Delta-Hedging

1 The Black-Scholes model: extensions and hedging

Lecture 11: The Greeks and Risk Management

Black-Scholes and the Volatility Surface

Option Pricing. 1 Introduction. Mrinal K. Ghosh

Additional questions for chapter 4

Understanding Options and Their Role in Hedging via the Greeks

Risk Management and Governance Hedging with Derivatives. Prof. Hugues Pirotte

Caput Derivatives: October 30, 2003

Black-Scholes model: Greeks - sensitivity analysis

EXP Capital Markets Option Pricing. Options: Definitions. Arbitrage Restrictions on Call Prices. Arbitrage Restrictions on Call Prices 1) C > 0

Finance 436 Futures and Options Review Notes for Final Exam. Chapter 9

The Greeks Vega. Outline: Explanation of the greeks. Using greeks for short term prediction. How to find vega. Factors influencing vega.

Lectures. Sergei Fedotov Introduction to Financial Mathematics. No tutorials in the first week

Vanna-Volga Method for Foreign Exchange Implied Volatility Smile. Copyright Changwei Xiong January last update: Nov 27, 2013

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price

Valuation, Pricing of Options / Use of MATLAB

Lecture 12: The Black-Scholes Model Steven Skiena. skiena

The Black-Scholes-Merton Approach to Pricing Options

The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models

Hedging of Financial Derivatives and Portfolio Insurance

CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options

Options Pricing. This is sometimes referred to as the intrinsic value of the option.

Risk/Arbitrage Strategies: An Application to Stock Option Portfolio Management

Or part of or all the risk is dynamically hedged trading regularly, with a. frequency that needs to be appropriate for the trade.

FIN Investments Option Pricing. Options: Definitions. Arbitrage Restrictions on Call Prices. Arbitrage Restrictions on Call Prices

Call Price as a Function of the Stock Price

Options/1. Prof. Ian Giddy

Review of Basic Options Concepts and Terminology

CHAPTER 22 Options and Corporate Finance

The Black-Scholes Formula

GAMMA.0279 THETA VEGA RHO

Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)

1 Introduction to Option Pricing

Introduction to Options. Derivatives

CHAPTER 15. Option Valuation

Hedging Barriers. Liuren Wu. Zicklin School of Business, Baruch College (

Option Valuation. Chapter 21

Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies

VALUATION IN DERIVATIVES MARKETS

CHAPTER 21: OPTION VALUATION

Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D

Notes on Black-Scholes Option Pricing Formula

FIN FINANCIAL INSTRUMENTS SPRING 2008

Path-dependent options

Betting on Volatility: A Delta Hedging Approach. Liang Zhong

Lecture 21 Options Pricing

Martingale Pricing Applied to Options, Forwards and Futures

Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah

CURRENCY OPTION PRICING II

Options 1 OPTIONS. Introduction

Sensitivity Analysis of Options. c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 264

Understanding the True Cost of VA Hedging in Volatile Markets November 2008

TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13

Options: Valuation and (No) Arbitrage

Return to Risk Limited website: Overview of Options An Introduction

S 1 S 2. Options and Other Derivatives

The Black-Scholes pricing formulas

Option Pricing. Chapter 11 Options on Futures. Stefan Ankirchner. University of Bonn. last update: 13/01/2014 at 14:25

Market s gamma hedging absorption capability for barrier options

Overview. Option Basics. Options and Derivatives. Professor Lasse H. Pedersen. Option basics and option strategies

Don t be Intimidated by the Greeks, Part 2 August 29, 2013 Joe Burgoyne, OIC

Chapter 21 Valuing Options

b. June expiration: = /32 % = % or X $100,000 = $95,

Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.

6 Hedging Using Futures

Informed Trading and Option Spreads

Black-Scholes. 3.1 Digital Options

Digital Options. and d 1 = d 2 + σ τ, P int = e rτ[ KN( d 2) FN( d 1) ], with d 2 = ln(f/k) σ2 τ/2

Lecture 4: The Black-Scholes model

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Mathematical Finance

Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas

OPTIONS, FUTURES, & OTHER DERIVATI

Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008

Volatility as an indicator of Supply and Demand for the Option. the price of a stock expressed as a decimal or percentage.

Option Pricing with S+FinMetrics. PETER FULEKY Department of Economics University of Washington

Options pricing in discrete systems

Introduction to Stochastic Differential Equations (SDEs) for Finance

Option Pricing. Chapter 9 - Barrier Options - Stefan Ankirchner. University of Bonn. last update: 9th December 2013

FTS Real Time System Project: Using Options to Manage Price Risk

Summary of Interview Questions. 1. Does it matter if a company uses forwards, futures or other derivatives when hedging FX risk?

1 The Black-Scholes Formula

Black-Scholes Equation for Option Pricing

FINANCIAL ENGINEERING CLUB TRADING 201

How To Price A Call Option

OPTIONS CALCULATOR QUICK GUIDE. Reshaping Canada s Equities Trading Landscape

The Impact of Stochastic Volatility on Pricing, Hedging, and Hedge Efficiency of Variable Annuity Guarantees

Chapter 15 OPTIONS ON MONEY MARKET FUTURES

Lecture 17/18/19 Options II

Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12

Research on Option Trading Strategies

One Period Binomial Model

OPTIONS MARKETS AND VALUATIONS (CHAPTERS 16 & 17)

Transcription:

More on Market-Making and Delta-Hedging

What do market makers do to delta-hedge? Recall that the delta-hedging strategy consists of selling one option, and buying a certain number shares An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 (e 0.08/365 1) Day 1: If share price = $40.5, call price is $3.0621, and = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market)

What do market makers do to delta-hedge? Recall that the delta-hedging strategy consists of selling one option, and buying a certain number shares An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 (e 0.08/365 1) Day 1: If share price = $40.5, call price is $3.0621, and = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market)

What do market makers do to delta-hedge? Recall that the delta-hedging strategy consists of selling one option, and buying a certain number shares An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 (e 0.08/365 1) Day 1: If share price = $40.5, call price is $3.0621, and = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market)

What do market makers do to delta-hedge? Recall that the delta-hedging strategy consists of selling one option, and buying a certain number shares An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 (e 0.08/365 1) Day 1: If share price = $40.5, call price is $3.0621, and = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market)

What do market makers do to delta-hedge? Recall that the delta-hedging strategy consists of selling one option, and buying a certain number shares An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 (e 0.08/365 1) Day 1: If share price = $40.5, call price is $3.0621, and = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market)

What do market makers do to delta-hedge? Recall that the delta-hedging strategy consists of selling one option, and buying a certain number shares An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 (e 0.08/365 1) Day 1: If share price = $40.5, call price is $3.0621, and = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market)

What do market makers do to delta-hedge? Recall that the delta-hedging strategy consists of selling one option, and buying a certain number shares An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 (e 0.08/365 1) Day 1: If share price = $40.5, call price is $3.0621, and = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market)

What do market makers do to delta-hedge? Recall that the delta-hedging strategy consists of selling one option, and buying a certain number shares An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 (e 0.08/365 1) Day 1: If share price = $40.5, call price is $3.0621, and = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market)

What do market makers do to delta-hedge? Recall that the delta-hedging strategy consists of selling one option, and buying a certain number shares An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 (e 0.08/365 1) Day 1: If share price = $40.5, call price is $3.0621, and = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market)

What do market makers do to delta-hedge? Recall that the delta-hedging strategy consists of selling one option, and buying a certain number shares An example of Delta hedging for 2 days (daily rebalancing and mark-to-market): Day 0: Share price = $40, call price is $2.7804, and = 0.5824 Sell call written on 100 shares for $278.04, and buy 58.24 shares. Net investment: (58.24 $40)$278.04 = $2051.56 At 8%, overnight financing charge is $0.45 = $2051.56 (e 0.08/365 1) Day 1: If share price = $40.5, call price is $3.0621, and = 0.6142 Overnight profit/loss: $29.12 $28.17 $0.45 = $0.50(mark-to-market) Buy 3.18 additional shares for $128.79 to rebalance Day 2: If share price = $39.25, call price is $2.3282 Overnight profit/loss: $76.78 + $73.39 $0.48 = $3.87(mark-to-market)

Self-Financing Trading: Discrete Time Let X k denote the value of the hedging portfolio at time k Let k denote the number of shares of stock held between times k and k + 1 At time k, after rebalancing (i.e., moving from a position of k 1 to a position of k ), the amount we hold in the money market account is X k S k k The value of the portfolio at time k + 1 is X k+1 = k S k+1 + (1 + r)(x k k S k )

Self-Financing Trading: Discrete Time Let X k denote the value of the hedging portfolio at time k Let k denote the number of shares of stock held between times k and k + 1 At time k, after rebalancing (i.e., moving from a position of k 1 to a position of k ), the amount we hold in the money market account is X k S k k The value of the portfolio at time k + 1 is X k+1 = k S k+1 + (1 + r)(x k k S k )

Self-Financing Trading: Discrete Time Let X k denote the value of the hedging portfolio at time k Let k denote the number of shares of stock held between times k and k + 1 At time k, after rebalancing (i.e., moving from a position of k 1 to a position of k ), the amount we hold in the money market account is X k S k k The value of the portfolio at time k + 1 is X k+1 = k S k+1 + (1 + r)(x k k S k )

Self-Financing Trading: Discrete Time Let X k denote the value of the hedging portfolio at time k Let k denote the number of shares of stock held between times k and k + 1 At time k, after rebalancing (i.e., moving from a position of k 1 to a position of k ), the amount we hold in the money market account is X k S k k The value of the portfolio at time k + 1 is X k+1 = k S k+1 + (1 + r)(x k k S k )

Self-Financing Trading: Discrete Time - The Gain So, the gain between time k and time k + 1 is X k+1 X k = k (S k+1 S k ) + r(x k k S k ) This means that the gain is the sum of the capital gain from the stock holdings: k (S k+1 S k ) and the interest earnings from the money-market account r(x k k S k )

Self-Financing Trading: Discrete Time - The Gain So, the gain between time k and time k + 1 is X k+1 X k = k (S k+1 S k ) + r(x k k S k ) This means that the gain is the sum of the capital gain from the stock holdings: k (S k+1 S k ) and the interest earnings from the money-market account r(x k k S k )

Self-Financing Trading: Discrete Time - Introducing the Money-Market Account Define the value of a share in the money-market account at time k to be M k = (1 + r) k and let the number of shares of the money-market held at time k be denoted by Γ k

Self-Financing Trading: Discrete Time - The new expression for the gain So, the gain between time k and time k + 1 can now be written as X k+1 X k = k (S k+1 S k ) + Γ k (M k+1 M k ) Thus, the gain is the sum of the capital gain from the stock investment holdings: k (S k+1 S k ) and the interest earnings from the money-market investment Γ k (M k+1 M k ) The wealth at time k + 1 can be expressed as X k+1 = k S k+1 + Γ k M k+1 However, k and Γ k cannot be chosen arbitrarily.

Self-Financing Trading: Discrete Time - The new expression for the gain So, the gain between time k and time k + 1 can now be written as X k+1 X k = k (S k+1 S k ) + Γ k (M k+1 M k ) Thus, the gain is the sum of the capital gain from the stock investment holdings: k (S k+1 S k ) and the interest earnings from the money-market investment Γ k (M k+1 M k ) The wealth at time k + 1 can be expressed as X k+1 = k S k+1 + Γ k M k+1 However, k and Γ k cannot be chosen arbitrarily.

Self-Financing Trading: Discrete Time - The new expression for the gain So, the gain between time k and time k + 1 can now be written as X k+1 X k = k (S k+1 S k ) + Γ k (M k+1 M k ) Thus, the gain is the sum of the capital gain from the stock investment holdings: k (S k+1 S k ) and the interest earnings from the money-market investment Γ k (M k+1 M k ) The wealth at time k + 1 can be expressed as X k+1 = k S k+1 + Γ k M k+1 However, k and Γ k cannot be chosen arbitrarily.

Self-Financing Trading: Discrete Time - The new expression for the gain So, the gain between time k and time k + 1 can now be written as X k+1 X k = k (S k+1 S k ) + Γ k (M k+1 M k ) Thus, the gain is the sum of the capital gain from the stock investment holdings: k (S k+1 S k ) and the interest earnings from the money-market investment Γ k (M k+1 M k ) The wealth at time k + 1 can be expressed as X k+1 = k S k+1 + Γ k M k+1 However, k and Γ k cannot be chosen arbitrarily.

Self-Financing Trading: Discrete Time - The self-financing condition The agent arrives at time k + 1 with a portfolio of k shares of stock and Γ k shares of the money market account and then rebalances, i.e., chooses k+1 and Γ k+1 After rebalancing, the wealth of the agent is X k+1 = k+1 S k+1 + Γ k+1 M k+1 The wealth of the agent cannot be changed through rebalancing, so it must be that X k+1 = k+1 S k+1 + Γ k+1 M k+1 = k S k+1 + Γ k M k+1 The last equality yields the discrete time self-financing condition S k+1 ( k+1 k ) + M k+1 (Γ k+1 Γ k ) = 0 The first term is the cost of rebalancing the stock and the second term is the cost of rebalancing the money-market account

Self-Financing Trading: Discrete Time - The self-financing condition The agent arrives at time k + 1 with a portfolio of k shares of stock and Γ k shares of the money market account and then rebalances, i.e., chooses k+1 and Γ k+1 After rebalancing, the wealth of the agent is X k+1 = k+1 S k+1 + Γ k+1 M k+1 The wealth of the agent cannot be changed through rebalancing, so it must be that X k+1 = k+1 S k+1 + Γ k+1 M k+1 = k S k+1 + Γ k M k+1 The last equality yields the discrete time self-financing condition S k+1 ( k+1 k ) + M k+1 (Γ k+1 Γ k ) = 0 The first term is the cost of rebalancing the stock and the second term is the cost of rebalancing the money-market account

Self-Financing Trading: Discrete Time - The self-financing condition The agent arrives at time k + 1 with a portfolio of k shares of stock and Γ k shares of the money market account and then rebalances, i.e., chooses k+1 and Γ k+1 After rebalancing, the wealth of the agent is X k+1 = k+1 S k+1 + Γ k+1 M k+1 The wealth of the agent cannot be changed through rebalancing, so it must be that X k+1 = k+1 S k+1 + Γ k+1 M k+1 = k S k+1 + Γ k M k+1 The last equality yields the discrete time self-financing condition S k+1 ( k+1 k ) + M k+1 (Γ k+1 Γ k ) = 0 The first term is the cost of rebalancing the stock and the second term is the cost of rebalancing the money-market account

Self-Financing Trading: Discrete Time - The self-financing condition The agent arrives at time k + 1 with a portfolio of k shares of stock and Γ k shares of the money market account and then rebalances, i.e., chooses k+1 and Γ k+1 After rebalancing, the wealth of the agent is X k+1 = k+1 S k+1 + Γ k+1 M k+1 The wealth of the agent cannot be changed through rebalancing, so it must be that X k+1 = k+1 S k+1 + Γ k+1 M k+1 = k S k+1 + Γ k M k+1 The last equality yields the discrete time self-financing condition S k+1 ( k+1 k ) + M k+1 (Γ k+1 Γ k ) = 0 The first term is the cost of rebalancing the stock and the second term is the cost of rebalancing the money-market account

Self-Financing Trading: Discrete Time - The self-financing condition The agent arrives at time k + 1 with a portfolio of k shares of stock and Γ k shares of the money market account and then rebalances, i.e., chooses k+1 and Γ k+1 After rebalancing, the wealth of the agent is X k+1 = k+1 S k+1 + Γ k+1 M k+1 The wealth of the agent cannot be changed through rebalancing, so it must be that X k+1 = k+1 S k+1 + Γ k+1 M k+1 = k S k+1 + Γ k M k+1 The last equality yields the discrete time self-financing condition S k+1 ( k+1 k ) + M k+1 (Γ k+1 Γ k ) = 0 The first term is the cost of rebalancing the stock and the second term is the cost of rebalancing the money-market account

Self-Financing Trading: Segue into the continuous time The discrete-time self-financing condition can be rewritten as S k ( k+1 k ) + (S k+1 S k )( k+1 k ) + M k (Γ k+1 Γ k ) + (M k+1 M k )(Γ k+1 Γ k ) = 0 This suggests the continuous-time self-financing condition S t d t + ds t d t + M t dγ t + dm t dγ t = 0 This claim can be proved using stochastic calculus...

Self-Financing Trading: Segue into the continuous time The discrete-time self-financing condition can be rewritten as S k ( k+1 k ) + (S k+1 S k )( k+1 k ) + M k (Γ k+1 Γ k ) + (M k+1 M k )(Γ k+1 Γ k ) = 0 This suggests the continuous-time self-financing condition S t d t + ds t d t + M t dγ t + dm t dγ t = 0 This claim can be proved using stochastic calculus...

Self-Financing Trading: Segue into the continuous time The discrete-time self-financing condition can be rewritten as S k ( k+1 k ) + (S k+1 S k )( k+1 k ) + M k (Γ k+1 Γ k ) + (M k+1 M k )(Γ k+1 Γ k ) = 0 This suggests the continuous-time self-financing condition S t d t + ds t d t + M t dγ t + dm t dγ t = 0 This claim can be proved using stochastic calculus...

Recall the meaning of Delta An option written on an undelying asset S is most sensitive to the changes in the value of S The largest part of the risk comes from the price movements of asset S - which is reflected in the delta of the option, i.e., if C is the price of a call the most pronounced effect comes from C := C S The replicating protfolio will always contain C shares of the underlying stock The portfolio which contains the option, along with C shares of stock will have the value of its Delta equal to zero - we say it is delta neutral

Recall the meaning of Delta An option written on an undelying asset S is most sensitive to the changes in the value of S The largest part of the risk comes from the price movements of asset S - which is reflected in the delta of the option, i.e., if C is the price of a call the most pronounced effect comes from C := C S The replicating protfolio will always contain C shares of the underlying stock The portfolio which contains the option, along with C shares of stock will have the value of its Delta equal to zero - we say it is delta neutral

Recall the meaning of Delta An option written on an undelying asset S is most sensitive to the changes in the value of S The largest part of the risk comes from the price movements of asset S - which is reflected in the delta of the option, i.e., if C is the price of a call the most pronounced effect comes from C := C S The replicating protfolio will always contain C shares of the underlying stock The portfolio which contains the option, along with C shares of stock will have the value of its Delta equal to zero - we say it is delta neutral

Recall the meaning of Delta An option written on an undelying asset S is most sensitive to the changes in the value of S The largest part of the risk comes from the price movements of asset S - which is reflected in the delta of the option, i.e., if C is the price of a call the most pronounced effect comes from C := C S The replicating protfolio will always contain C shares of the underlying stock The portfolio which contains the option, along with C shares of stock will have the value of its Delta equal to zero - we say it is delta neutral

Recall the other Greeks If X denotes the price of a portfolio, we define Theta: Gamma: Vega: rho: Θ := X t Γ := 2 X S 2 V := X σ ρ := X r

Recall the other Greeks If X denotes the price of a portfolio, we define Theta: Gamma: Vega: rho: Θ := X t Γ := 2 X S 2 V := X σ ρ := X r

Recall the other Greeks If X denotes the price of a portfolio, we define Theta: Gamma: Vega: rho: Θ := X t Γ := 2 X S 2 V := X σ ρ := X r

Recall the other Greeks If X denotes the price of a portfolio, we define Theta: Gamma: Vega: rho: Θ := X t Γ := 2 X S 2 V := X σ ρ := X r

Recall the other Greeks If X denotes the price of a portfolio, we define Theta: Gamma: Vega: rho: Θ := X t Γ := 2 X S 2 V := X σ ρ := X r

The Delta-Gamma-Theta Approximation In this model X depends only on the values of S and t (σ and r are assumed constant) The Taylor expansion of X gives us X (t + t, S + S) = X (t, s) X (t, S) X (t, S) + S + t + 1 S t 2 + higher order terms 2 X (t, S) S 2 ( S) 2 where S = S(t + t) S(t) Ignoring the higher order terms (as one would in establishing the Ito s Lemma), we get X (t + t, S + S) X (t, s) + S + Θ t + 1 2 Γ ( S)2 So, we can aim to reduce the variability of the portfolio by making and Γ small - we cannot do much about Θ

The Delta-Gamma-Theta Approximation In this model X depends only on the values of S and t (σ and r are assumed constant) The Taylor expansion of X gives us X (t + t, S + S) = X (t, s) X (t, S) X (t, S) + S + t + 1 S t 2 + higher order terms 2 X (t, S) S 2 ( S) 2 where S = S(t + t) S(t) Ignoring the higher order terms (as one would in establishing the Ito s Lemma), we get X (t + t, S + S) X (t, s) + S + Θ t + 1 2 Γ ( S)2 So, we can aim to reduce the variability of the portfolio by making and Γ small - we cannot do much about Θ

The Delta-Gamma-Theta Approximation In this model X depends only on the values of S and t (σ and r are assumed constant) The Taylor expansion of X gives us X (t + t, S + S) = X (t, s) X (t, S) X (t, S) + S + t + 1 S t 2 + higher order terms 2 X (t, S) S 2 ( S) 2 where S = S(t + t) S(t) Ignoring the higher order terms (as one would in establishing the Ito s Lemma), we get X (t + t, S + S) X (t, s) + S + Θ t + 1 2 Γ ( S)2 So, we can aim to reduce the variability of the portfolio by making and Γ small - we cannot do much about Θ

Understanding the Market-Maker s Portfolio Suppose that, at any time t T, the market-maker is long (t) shares of stock and short one call on that stock Then the cost/profit of his/her portfolio at time t equals Y (t, S t ) = (t) S t C(t, S t ) where C(t, S t ) is the price of the call at time t Suppose that the cost/profit above is invested in the money-market account Then, the change in the value of the portfolio is (t) S (C(t + t, S(t + t)) C(t, S(t))) r t Y (t, S t )

Understanding the Market-Maker s Portfolio Suppose that, at any time t T, the market-maker is long (t) shares of stock and short one call on that stock Then the cost/profit of his/her portfolio at time t equals Y (t, S t ) = (t) S t C(t, S t ) where C(t, S t ) is the price of the call at time t Suppose that the cost/profit above is invested in the money-market account Then, the change in the value of the portfolio is (t) S (C(t + t, S(t + t)) C(t, S(t))) r t Y (t, S t )

Understanding the Market-Maker s Portfolio Suppose that, at any time t T, the market-maker is long (t) shares of stock and short one call on that stock Then the cost/profit of his/her portfolio at time t equals Y (t, S t ) = (t) S t C(t, S t ) where C(t, S t ) is the price of the call at time t Suppose that the cost/profit above is invested in the money-market account Then, the change in the value of the portfolio is (t) S (C(t + t, S(t + t)) C(t, S(t))) r t Y (t, S t )

Understanding the Market-Maker s Portfolio Suppose that, at any time t T, the market-maker is long (t) shares of stock and short one call on that stock Then the cost/profit of his/her portfolio at time t equals Y (t, S t ) = (t) S t C(t, S t ) where C(t, S t ) is the price of the call at time t Suppose that the cost/profit above is invested in the money-market account Then, the change in the value of the portfolio is (t) S (C(t + t, S(t + t)) C(t, S(t))) r t Y (t, S t )

Understanding the Market-Maker s Portfolio: An Approximation The Taylor approximation similar to the one we conducted earlier yields that the change in the market-maker s portfolio is approximately ( ) 1 2 ( S)2 Γ + t Θ + r t ( S t C(t, S(t))) where the Greeks are calculated at time t

The Merton-Black-Scholes model In the Black-Scholes setting, for an option with price C = C(t, s) we have that So, we get ( S) 2 (ds) 2 = σ 2 S 2 dt Θ + 1 2 σ2 S 2 Γ + r(s C) = 0 Note that the value of Θ is fixed once we fix the values of and Γ Note that Γ is the measure of risk the hedger faces as a result of not rebalancing frequently enough so, in the absence of transaction costs, the agent should rebalance often as this reduces the variance of his/her portfolio

The Merton-Black-Scholes model In the Black-Scholes setting, for an option with price C = C(t, s) we have that So, we get ( S) 2 (ds) 2 = σ 2 S 2 dt Θ + 1 2 σ2 S 2 Γ + r(s C) = 0 Note that the value of Θ is fixed once we fix the values of and Γ Note that Γ is the measure of risk the hedger faces as a result of not rebalancing frequently enough so, in the absence of transaction costs, the agent should rebalance often as this reduces the variance of his/her portfolio

The Merton-Black-Scholes model In the Black-Scholes setting, for an option with price C = C(t, s) we have that So, we get ( S) 2 (ds) 2 = σ 2 S 2 dt Θ + 1 2 σ2 S 2 Γ + r(s C) = 0 Note that the value of Θ is fixed once we fix the values of and Γ Note that Γ is the measure of risk the hedger faces as a result of not rebalancing frequently enough so, in the absence of transaction costs, the agent should rebalance often as this reduces the variance of his/her portfolio

The Merton-Black-Scholes model In the Black-Scholes setting, for an option with price C = C(t, s) we have that So, we get ( S) 2 (ds) 2 = σ 2 S 2 dt Θ + 1 2 σ2 S 2 Γ + r(s C) = 0 Note that the value of Θ is fixed once we fix the values of and Γ Note that Γ is the measure of risk the hedger faces as a result of not rebalancing frequently enough so, in the absence of transaction costs, the agent should rebalance often as this reduces the variance of his/her portfolio

Delta-Hedging of American Options The recipe for Delta-hedging is the same as for the European option, but restricted to the continuation region, i.e., the region prior to early exercise (if it is to happen) We do not have closed form expressions for the boundaries of the continuation region for the finite-expiration American options in general, but we have numerical recipes

Delta-Hedging of American Options The recipe for Delta-hedging is the same as for the European option, but restricted to the continuation region, i.e., the region prior to early exercise (if it is to happen) We do not have closed form expressions for the boundaries of the continuation region for the finite-expiration American options in general, but we have numerical recipes

Delta-Hedging in Practice As we have seen thus far, the market-maker may adopt a Delta-neutral position to try to make her portfolio less sensitive to uncertainty, i.e., the changes in S Alternatively, one may adopt a Gamma-neutral position by using options to hedge - it is necessary to use other types of options for this strategy Augment the portfolio by by buying deep-out-of-the-money options as insurance - this is probably not a viable strategy Use static option replication according to put-call parity to form a both Delta- and Gamma-neutral hedge A relatively novel approach involves trading the hedging error as another financial product

Delta-Hedging in Practice As we have seen thus far, the market-maker may adopt a Delta-neutral position to try to make her portfolio less sensitive to uncertainty, i.e., the changes in S Alternatively, one may adopt a Gamma-neutral position by using options to hedge - it is necessary to use other types of options for this strategy Augment the portfolio by by buying deep-out-of-the-money options as insurance - this is probably not a viable strategy Use static option replication according to put-call parity to form a both Delta- and Gamma-neutral hedge A relatively novel approach involves trading the hedging error as another financial product

Delta-Hedging in Practice As we have seen thus far, the market-maker may adopt a Delta-neutral position to try to make her portfolio less sensitive to uncertainty, i.e., the changes in S Alternatively, one may adopt a Gamma-neutral position by using options to hedge - it is necessary to use other types of options for this strategy Augment the portfolio by by buying deep-out-of-the-money options as insurance - this is probably not a viable strategy Use static option replication according to put-call parity to form a both Delta- and Gamma-neutral hedge A relatively novel approach involves trading the hedging error as another financial product

Delta-Hedging in Practice As we have seen thus far, the market-maker may adopt a Delta-neutral position to try to make her portfolio less sensitive to uncertainty, i.e., the changes in S Alternatively, one may adopt a Gamma-neutral position by using options to hedge - it is necessary to use other types of options for this strategy Augment the portfolio by by buying deep-out-of-the-money options as insurance - this is probably not a viable strategy Use static option replication according to put-call parity to form a both Delta- and Gamma-neutral hedge A relatively novel approach involves trading the hedging error as another financial product

Delta-Hedging in Practice As we have seen thus far, the market-maker may adopt a Delta-neutral position to try to make her portfolio less sensitive to uncertainty, i.e., the changes in S Alternatively, one may adopt a Gamma-neutral position by using options to hedge - it is necessary to use other types of options for this strategy Augment the portfolio by by buying deep-out-of-the-money options as insurance - this is probably not a viable strategy Use static option replication according to put-call parity to form a both Delta- and Gamma-neutral hedge A relatively novel approach involves trading the hedging error as another financial product

Gamma-Neutrality Denote by Γ the gamma of a certain portfolio X and by Γ C the gamma of a certain contingent claim C. In addition to having X, we want to buy/sell n contracts of C in order to make the entire portfolio gamma-neutral, i.e., we want to have Γ + nγ C = 0 So, the correct number of contingent claims C to buy/sell is n = Γ Γ C However, this addition to our position changes the delta of the entire portfolio To rectify this, we trade a certain (appropriate) number of the shares of the underlying asset to make the entire portfolio delta-neutral, as well Note that the last step does not alter the gamma of the entire portfolio, as the gamma of the underlying stock is always equal to zero

Gamma-Neutrality Denote by Γ the gamma of a certain portfolio X and by Γ C the gamma of a certain contingent claim C. In addition to having X, we want to buy/sell n contracts of C in order to make the entire portfolio gamma-neutral, i.e., we want to have Γ + nγ C = 0 So, the correct number of contingent claims C to buy/sell is n = Γ Γ C However, this addition to our position changes the delta of the entire portfolio To rectify this, we trade a certain (appropriate) number of the shares of the underlying asset to make the entire portfolio delta-neutral, as well Note that the last step does not alter the gamma of the entire portfolio, as the gamma of the underlying stock is always equal to zero

Gamma-Neutrality Denote by Γ the gamma of a certain portfolio X and by Γ C the gamma of a certain contingent claim C. In addition to having X, we want to buy/sell n contracts of C in order to make the entire portfolio gamma-neutral, i.e., we want to have Γ + nγ C = 0 So, the correct number of contingent claims C to buy/sell is n = Γ Γ C However, this addition to our position changes the delta of the entire portfolio To rectify this, we trade a certain (appropriate) number of the shares of the underlying asset to make the entire portfolio delta-neutral, as well Note that the last step does not alter the gamma of the entire portfolio, as the gamma of the underlying stock is always equal to zero

Gamma-Neutrality Denote by Γ the gamma of a certain portfolio X and by Γ C the gamma of a certain contingent claim C. In addition to having X, we want to buy/sell n contracts of C in order to make the entire portfolio gamma-neutral, i.e., we want to have Γ + nγ C = 0 So, the correct number of contingent claims C to buy/sell is n = Γ Γ C However, this addition to our position changes the delta of the entire portfolio To rectify this, we trade a certain (appropriate) number of the shares of the underlying asset to make the entire portfolio delta-neutral, as well Note that the last step does not alter the gamma of the entire portfolio, as the gamma of the underlying stock is always equal to zero

Gamma-Neutrality Denote by Γ the gamma of a certain portfolio X and by Γ C the gamma of a certain contingent claim C. In addition to having X, we want to buy/sell n contracts of C in order to make the entire portfolio gamma-neutral, i.e., we want to have Γ + nγ C = 0 So, the correct number of contingent claims C to buy/sell is n = Γ Γ C However, this addition to our position changes the delta of the entire portfolio To rectify this, we trade a certain (appropriate) number of the shares of the underlying asset to make the entire portfolio delta-neutral, as well Note that the last step does not alter the gamma of the entire portfolio, as the gamma of the underlying stock is always equal to zero

Gamma-Neutrality Denote by Γ the gamma of a certain portfolio X and by Γ C the gamma of a certain contingent claim C. In addition to having X, we want to buy/sell n contracts of C in order to make the entire portfolio gamma-neutral, i.e., we want to have Γ + nγ C = 0 So, the correct number of contingent claims C to buy/sell is n = Γ Γ C However, this addition to our position changes the delta of the entire portfolio To rectify this, we trade a certain (appropriate) number of the shares of the underlying asset to make the entire portfolio delta-neutral, as well Note that the last step does not alter the gamma of the entire portfolio, as the gamma of the underlying stock is always equal to zero

Gamma-Neutrality: An Example Consider a Delta-neutral portfolio X that has Γ = 5, 000 Assume that the traded option has C = 0.4 and Γ C = 2 We offset the negative gamma of the portfolio X by purchasing n = 5, 000/2 2, 500 option contracts The resulting portfolio is gamma-neutral, but has the delta equal to new = 2, 500 C = 2, 500 0.4 = 1, 000 To rectify this, we should sell 1, 000 shares of the underlying asset Similarly, one should be able to make one s portfolio neutral with respect to the other Greeks if there is nontrivial dependence of the portfolio on the relevant parameter (r or σ, e.g.)

Gamma-Neutrality: An Example Consider a Delta-neutral portfolio X that has Γ = 5, 000 Assume that the traded option has C = 0.4 and Γ C = 2 We offset the negative gamma of the portfolio X by purchasing n = 5, 000/2 2, 500 option contracts The resulting portfolio is gamma-neutral, but has the delta equal to new = 2, 500 C = 2, 500 0.4 = 1, 000 To rectify this, we should sell 1, 000 shares of the underlying asset Similarly, one should be able to make one s portfolio neutral with respect to the other Greeks if there is nontrivial dependence of the portfolio on the relevant parameter (r or σ, e.g.)

Gamma-Neutrality: An Example Consider a Delta-neutral portfolio X that has Γ = 5, 000 Assume that the traded option has C = 0.4 and Γ C = 2 We offset the negative gamma of the portfolio X by purchasing n = 5, 000/2 2, 500 option contracts The resulting portfolio is gamma-neutral, but has the delta equal to new = 2, 500 C = 2, 500 0.4 = 1, 000 To rectify this, we should sell 1, 000 shares of the underlying asset Similarly, one should be able to make one s portfolio neutral with respect to the other Greeks if there is nontrivial dependence of the portfolio on the relevant parameter (r or σ, e.g.)

Gamma-Neutrality: An Example Consider a Delta-neutral portfolio X that has Γ = 5, 000 Assume that the traded option has C = 0.4 and Γ C = 2 We offset the negative gamma of the portfolio X by purchasing n = 5, 000/2 2, 500 option contracts The resulting portfolio is gamma-neutral, but has the delta equal to new = 2, 500 C = 2, 500 0.4 = 1, 000 To rectify this, we should sell 1, 000 shares of the underlying asset Similarly, one should be able to make one s portfolio neutral with respect to the other Greeks if there is nontrivial dependence of the portfolio on the relevant parameter (r or σ, e.g.)

Gamma-Neutrality: An Example Consider a Delta-neutral portfolio X that has Γ = 5, 000 Assume that the traded option has C = 0.4 and Γ C = 2 We offset the negative gamma of the portfolio X by purchasing n = 5, 000/2 2, 500 option contracts The resulting portfolio is gamma-neutral, but has the delta equal to new = 2, 500 C = 2, 500 0.4 = 1, 000 To rectify this, we should sell 1, 000 shares of the underlying asset Similarly, one should be able to make one s portfolio neutral with respect to the other Greeks if there is nontrivial dependence of the portfolio on the relevant parameter (r or σ, e.g.)

Gamma-Neutrality: An Example Consider a Delta-neutral portfolio X that has Γ = 5, 000 Assume that the traded option has C = 0.4 and Γ C = 2 We offset the negative gamma of the portfolio X by purchasing n = 5, 000/2 2, 500 option contracts The resulting portfolio is gamma-neutral, but has the delta equal to new = 2, 500 C = 2, 500 0.4 = 1, 000 To rectify this, we should sell 1, 000 shares of the underlying asset Similarly, one should be able to make one s portfolio neutral with respect to the other Greeks if there is nontrivial dependence of the portfolio on the relevant parameter (r or σ, e.g.)

Market-Making As Insurance Insurance companies have two ways of dealing with unexpectedly large loss claims: 1. Hold capital reserves 2. Diversify risk by buying reinsurance Market-makers also have two analogous ways to deal with excessive losses: 1. Hold capital to cushion against less-diversifiable risks - When risks are not fully diversifiable, holding capital is inevitable 2. Reinsure by trading in out-of-the-money options

Market-Making As Insurance Insurance companies have two ways of dealing with unexpectedly large loss claims: 1. Hold capital reserves 2. Diversify risk by buying reinsurance Market-makers also have two analogous ways to deal with excessive losses: 1. Hold capital to cushion against less-diversifiable risks - When risks are not fully diversifiable, holding capital is inevitable 2. Reinsure by trading in out-of-the-money options

Market-Making As Insurance Insurance companies have two ways of dealing with unexpectedly large loss claims: 1. Hold capital reserves 2. Diversify risk by buying reinsurance Market-makers also have two analogous ways to deal with excessive losses: 1. Hold capital to cushion against less-diversifiable risks - When risks are not fully diversifiable, holding capital is inevitable 2. Reinsure by trading in out-of-the-money options

Market-Making As Insurance Insurance companies have two ways of dealing with unexpectedly large loss claims: 1. Hold capital reserves 2. Diversify risk by buying reinsurance Market-makers also have two analogous ways to deal with excessive losses: 1. Hold capital to cushion against less-diversifiable risks - When risks are not fully diversifiable, holding capital is inevitable 2. Reinsure by trading in out-of-the-money options

Market-Making As Insurance Insurance companies have two ways of dealing with unexpectedly large loss claims: 1. Hold capital reserves 2. Diversify risk by buying reinsurance Market-makers also have two analogous ways to deal with excessive losses: 1. Hold capital to cushion against less-diversifiable risks - When risks are not fully diversifiable, holding capital is inevitable 2. Reinsure by trading in out-of-the-money options

Market-Making As Insurance Insurance companies have two ways of dealing with unexpectedly large loss claims: 1. Hold capital reserves 2. Diversify risk by buying reinsurance Market-makers also have two analogous ways to deal with excessive losses: 1. Hold capital to cushion against less-diversifiable risks - When risks are not fully diversifiable, holding capital is inevitable 2. Reinsure by trading in out-of-the-money options