CAPITAL STRUCTURE [Chapter 15 and Chapter 16]



Similar documents
Chapter 17 Corporate Capital Structure Foundations (Sections 17.1 and Skim section 17.3.)

Chapter 1: The Modigliani-Miller Propositions, Taxes and Bankruptcy Costs

Leverage. FINANCE 350 Global Financial Management. Professor Alon Brav Fuqua School of Business Duke University. Overview

Chapter 17 Does Debt Policy Matter?

EMBA in Management & Finance. Corporate Finance. Eric Jondeau

t = Calculate the implied interest rates and graph the term structure of interest rates. t = X t = t = 1 2 3

CHAPTER 16. Financial Distress, Managerial Incentives, and Information. Chapter Synopsis

CHAPTER 15 Capital Structure: Basic Concepts

Ch. 18: Taxes + Bankruptcy cost

DUKE UNIVERSITY Fuqua School of Business. FINANCE CORPORATE FINANCE Problem Set #7 Prof. Simon Gervais Fall 2011 Term 2.

Chapter 17 Capital Structure Limits to the Use of Debt

TPPE17 Corporate Finance 1(5) SOLUTIONS RE-EXAMS 2014 II + III

Financial Markets and Valuation - Tutorial 6: SOLUTIONS. Capital Structure and Cost of Funds

Chapter 15: Debt Policy

1. What is a recapitalization? Why is this considered a pure capital structure change?

THE FINANCING DECISIONS BY FIRMS: IMPACT OF CAPITAL STRUCTURE CHOICE ON VALUE

MM1 - The value of the firm is independent of its capital structure (the proportion of debt and equity used to finance the firm s operations).

Test3. Pessimistic Most Likely Optimistic Total Revenues Total Costs

Chapter component of the convertible can be estimated as =

SOLUTIONS. Practice questions. Multiple Choice

CHAPTER 13 Capital Structure and Leverage

1 Pricing options using the Black Scholes formula

Chapter 14 Assessing Long-Term Debt, Equity, and Capital Structure

Chapter 14 Capital Structure in a Perfect Market

Use the table for the questions 18 and 19 below.

Chapter 7: Capital Structure: An Overview of the Financing Decision

Swaps: Debt-equity swap

MBA (3rd Sem) MBA/29/FM-302/T/ODD/13-14

Leverage and Capital Structure

EMBA in Management & Finance. Corporate Finance. Eric Jondeau

CHAPTER 17 Does Debt Policy Matter?

Discount rates for project appraisal

On the Applicability of WACC for Investment Decisions

FIN 413 Corporate Finance. Capital Structure, Taxes, and Bankruptcy

Cost of Capital, Valuation and Strategic Financial Decision Making

Capital Structure II

optimum capital Is it possible to increase shareholder wealth by changing the capital structure?

The Assumptions and Math Behind WACC and APV Calculations

UNIVERSITY OF WAH Department of Management Sciences

Cost of Capital and Project Valuation

Problem 1 Problem 2 Problem 3

Source of Finance and their Relative Costs F. COST OF CAPITAL

If you ignore taxes in this problem and there is no debt outstanding: EPS = EBIT/shares outstanding = $14,000/2,500 = $5.60

Capital Structure. Itay Goldstein. Wharton School, University of Pennsylvania

MGT201 Solved MCQs(500) By

1. CFI Holdings is a conglomerate listed on the Zimbabwe Stock Exchange (ZSE) and has three operating divisions as follows:

Click Here to Buy the Tutorial

The value of tax shields is NOT equal to the present value of tax shields

WACC and a Generalized Tax Code

How To Decide If A Firm Should Borrow Money Or Not

Midterm Exam:Answer Sheet

Discount Rates and Tax

Capital Structure: Informational and Agency Considerations

Equity Analysis and Capital Structure. A New Venture s Perspective

1. What are the three types of business organizations? Define them

Value-Based Management

The Debt-Equity Trade Off: The Capital Structure Decision

Corporate Finance: Final Exam

DUKE UNIVERSITY Fuqua School of Business. FINANCE CORPORATE FINANCE Problem Set #4 Prof. Simon Gervais Fall 2011 Term 2.

CHAPTER 12 RISK, COST OF CAPITAL, AND CAPITAL BUDGETING

WACC and APV. The Big Picture: Part II - Valuation

Fundamentals Level Skills Module, Paper F9

Copyright 2009 Pearson Education Canada

- Once we have computed the costs of the individual components of the firm s financing,

University of Waterloo Midterm Examination

FNCE 301, Financial Management H Guy Williams, 2006

MCQ on Financial Management

Why banks prefer leverage?

Fundamentals Level Skills Module, Paper F9. Section A. Mean growth in earnings per share = 100 x [(35 7/30 0) 1/3 1] = 5 97% or 6%

Cost of Capital. Katharina Lewellen Finance Theory II April 9, 2003

CHAPTER 18 Dividend and Other Payouts

The Adjusted Present Value Approach to Valuing Leveraged Buyouts 1

CHAPTER 20. Hybrid Financing: Preferred Stock, Warrants, and Convertibles

The Adjusted Present Value Approach to Valuing Leveraged Buyouts 1 Introduction

cost of capital, 01 technical this measurement of a company s cost of equity THere are two ways of estimating the cost of equity (the return

Institute of Incorporated Public Accountants. Financial Management. Module 14. May Solutions

CHAPTER 8. Problems and Questions

Paper F9. Financial Management. Fundamentals Pilot Paper Skills module. The Association of Chartered Certified Accountants

Practice Exam (Solutions)

Value of Equity and Per Share Value when there are options and warrants outstanding. Aswath Damodaran

A Test Of The M&M Capital Structure Theories Richard H. Fosberg, William Paterson University, USA

Equity Valuation. Lecture Notes # 8. 3 Choice of the Appropriate Discount Rate 2. 4 Future Cash Flows: the Dividend Discount Model (DDM) 3

Tax-adjusted discount rates with investor taxes and risky debt

University of Notre Dame Mendoza College of Business MSM Corporate Finance: Preliminary Syllabus Clements Spring 2015

Actuarial Society of India

Napoli Pizza wants to determine its optimal capital structure

Corporate Finance & Options: MGT 891 Homework #6 Answers

Homework Assignment #1: Answer Key

Finance 2 for IBA (30J201) F. Feriozzi Re-sit exam June 18 th, Part One: Multiple-Choice Questions (45 points)

Corporate Finance, Fall 03 Exam #2 review questions (full solutions at end of document)

Fundamentals Level Skills Module, Paper F9

CHAPTER 14 COST OF CAPITAL

Exam (Correction) Exercise 1: Market efficiency

The cost of capital. A reading prepared by Pamela Peterson Drake. 1. Introduction

THE COST OF CAPITAL THE EFFECT OF CHANGES IN GEARING

Finding the Right Financing Mix: The Capital Structure Decision. Aswath Damodaran 1

Transcription:

Capital Structure [CHAP. 15 & 16] -1 CAPITAL STRUCTURE [Chapter 15 and Chapter 16] CONTENTS I. Introduction II. Capital Structure & Firm Value WITHOUT Taxes III. Capital Structure & Firm Value WITH Corporate Taxes IV. Personal Taxes V. Costs of Financial Distress VI. Other Theories of & Issues in Capital Structure Theory VII. Evidence on Capital Structure VIII. Question Assigned I. Introduction Capital Structure Policy involves a trade-off between risk and return 1) Using more debt raises the riskiness of the firm s earnings stream. 2) However, a higher debt ration generally leads to a higher expected rate of return. Higher risk tends to lower a stock price, but a higher expected return raises it. Therefore the optimal capital structure strikes a balance between risk and return so as to maximize a firm s stock price. We focus on impact of capital structure changes on the: 1) value of the firm 2) value of existing bonds MISCELLANEOUS : IN THIS SECTION, S=E AND D= AND USED INTERCHANGALY.

Capital Structure [CHAP. 15 & 16] -2 II. Capital Structure & Firm Value WITHOUT Taxes A. Modigliani and Miller Proposition I [without taxes] The value of the firm is unaffected by its choice of capital structure under perfect capital markets. Note: Perfect capital markets - no taxes, no transaction costs, no bankruptcy costs, investors can borrow and lend at same rate as firms, free access to all information, etc. 1. Arbitrage proof Assume two firms have identical assets that produce the same stream of operating profit and differ only in their capital structure. Firm U is unlevered (i.e., no debt): V U = E U Firm L is levered (debt) : V L = E L + D L Inv. Strategy #1 Inv. Strategy #2 uy 10% of E L uy 10% of E U & orrow 10% of D L $ Inv. $ Return $ Inv. $ Return 0.1E L 0.1(profit-interest) 0.1E U 0.1(profit) -0.1D L -0.1(interest) Total 0.1(V L -D L ) 0.1(profit-interest) 0.1(V U -D L ) 0.1(profit-interest) 2) Proof also works if two strategies are: 1] Purchase 10% of unlevered firm's equity 2] Purchase 10% of levered firm's equity & lend 10% of D L (or buy 10% of levered firm's debt)

Capital Structure [CHAP. 15 & 16] -3. Modigliani and Miller Proposition II [without taxes] The expected rate of return on the common stock of a levered firm increases in proportion to the debt equity ratio. [The expected r.of.r on stock = the cost of equity = the required return on equity] Even though leverage does not affect firm value, it does affect risk and return of equity. In other words, the firm s overall cost of capital cannot be reduced as debt is substitute for equity, even though debt appears to be cheaper than equity. The reason for this is that, as firm adds debt, the remaining equity becomes more risky. As this risk rises, the cost of equity rises as a result [why?, you knew this already]. The increase in the cost of remaining equity offsets the higher proportion of the firm financed by lowcost debt. In fact, MM prove that the two effects exactly offset each other so that both the value of the firm and the firm s overall cost of capital are invariant to leverage.

Capital Structure [CHAP. 15 & 16] -4. Modigliani and Miller Proposition II [without taxes] --- Continued 1. Leverage and required return (SML) r S = r f ) β S Substitute: (1) β = β S A + [β A - β ] (2) r A = r f ) β A (3) r = r f ) β Simplify: r S = r A + [r A - r ] Proof (for the curious only): r S = r f ) β S substituting β = β S A + [β A - β ] = r f ) [β A + [β A - β ]] using distributive property = [r f ) β A ] + [(r M - r f ) β A - (r M - r f ) β ] substitute r A = r f ) β A ; add and subtract r f = r A + [(r f ) β A ) - ( r f ) β )] substitute: r A = r f ) β and r = r A f ) β = r A + [r A - r D ] As debt () increases, required return on equity (S) increases

Capital Structure [CHAP. 15 & 16] -5 The expected return on a portfolio is equal to a weighted average of the expected returns on the individual holdings. Therefore the expected return on a portfolio consisting of debt and equity is S r A = rd + rs + S + S From this equation, we can obtain the same relationship. r S = r A + [r A - r D ] M&M Proposition II Without Corporate Taxes The company cost of capital is a weighted average of the expected returns on the debt and equity. The company cost of capital = expected return on assets. We know that changing the capital structure does not change the company cost of capital. [ but the changing the capital structure does change the required rate of return on individual securities ] As the leverage increases, the risk of debt increases. Thus, debtholders require a higher return on debt. Explain the expected return on debt. Here the firm s bonds are assumed to be risk free at lower level of debt. The expected return on equity increases linearly as debt equity ratio increases. Explain the expected return on equity

Capital Structure [CHAP. 15 & 16] -6 III. Capital Structure & Firm Value WITH Corporate Taxes A. ASIC IDEA The basic intuition can be seen from pie charts below. taxes equity Unlevered debt taxes equity Levered Assuming the two pies should be the same size, the value is maximized for the capital structure paying the least in taxes. We will show that, due to tax system, the proportion of the pie allocated to taxes is less for the levered firm than it is for the unlevered firm. Thus, managers should choose?

Capital Structure [CHAP. 15 & 16] -7. M&M PROPOSITION I (WITH CORPORATE TAXES) 1. After-tax CF of firms (Assume perpetuity equal to EIT) a. Pure equity firm [i.e., Unlevered] ATCF = CF to S/H = EIT(1-T c ) b. Firm with debt and equity in capital structure [i.e., Levered] ATCF = CF paid to S/H + CF paid to /H = EIT(1-T c ) + r T c Note: As long as the firm expects to be in a positive tax bracket, we can assume that r T c has the same risk as the interest on debt. Thus, its value can be determined by discounting at r. Assuming that CF are perpetual, the present value of the tax shield is T c 2. After-tax value of firms V U = EIT ( 1 T c ) ru where r U = after-tax risk adjusted discount rate for all equity firm V L = EIT ( 1 T ) r u c + T c =V U + T c M&M Proposition I With Corporate Taxes EXAMPLE The UH company is evaluating two financing plans under the following conditions. The expected EIT is $1 Million. The cost of debt is 10% for both plans The corporate tax rate, T c is 34%. Unlevered firms in the same industry have a cost of capital of 20% Question ) What is the difference of total CFs under two financing plans? [$ 136,000] Where does this difference come from? What is the value of the firm under each of the financing plan?

Capital Structure [CHAP. 15 & 16] -8 C. M&M PROPOSITION II (WITH CORPORATE TAXES) - M&M Proposition II under no taxes posits a positive relationship between the expected return on equity and leverage. This result occurs because the risk of equity increases with leverage. The same intuition also holds in a world of corporate taxes. The exact formula is r S = r A + [r A - r D ] [1-T c ] M&M Proposition II With Corporate Taxes THE DERIVATION OF MM II WITH CORPORATE TAXES. [OPTIONAL] Given MM Proposition I under taxes, a levered firm s market value of balance sheet can be seen as V U = Value of Unlevered Firm T c = Tax Shield = Debt S = Equity The value of the unlevered firm is simply the value of the assets without benefit of leverage. The balance sheet indicates that the firm s value increases by T c when debt is added. The expected cash flow from left hand side of balance sheet can be seen as V U r A + T c r The expected cash flow to Stockholders and ondholders can be seen as S r S + r The equation above reflects the fact that stock earns an expected return r S and debt earns the interest rate r ecause all CFs are paid out as dividends in our no growth perpetuity model, the CFs going into the firm are equal to those going to stockholders and bondholders. y equating two equations above, we obtain r S = r A + [r A -r D ] [1-T c ]

Capital Structure [CHAP. 15 & 16] -9 IV. Personal Taxes Key So far, we have considered corporate taxes only. What if we include the personal taxes? A. MILLER'S MODEL V L = V U + 1 - (1 - T C )(1 - T S) (1 - T ) where: Proof T C = Corporate tax rate T S = Personal tax rate on equity income T = Personal tax rate on regular income (including interest) CF to S/H = (EIT - r )(1 - T C )(1 - T S ) CF to /H = r (1 - T ) CF to S/H and /H = (EIT - r )(1 - T C )(1 - T S )+ r (1 - T (1 - T C)(1 - T S) = EIT (1 - T C )(1 - T S ) + r (1-T ) 1 - (1 - T ) CF A (1 - T C )(1 - T S) Since V U = r U (AT) and = r (1 - T ) r (AT) V L = V U + 1 - (1 - T C )(1 - T S) (1 - T )

Capital Structure [CHAP. 15 & 16] -10 V L = V U + 1 - (1 - T C )(1 - T S) (1 - T ) Cases 1. T S = T V L =? Hence, the introduction of personal taxes does not affect our valuation formula as long as the equity income are taxed identically to interest at the personal lever. Case 2. (1 - T C )(1 - T S ) = 1 - T V L =? Hence, there is no gain from leverage at all. In other words, the value of the levered firm is equal to the value of the unlevered firm. This lack of gain occurs because the lower corporate taxes for a levered firm are exactly offet by higher personal taxes. Case 3. (1 - T C )(1 - T S ) > 1 - T V L =? In this case, V L < V U. This happens because the personal tax rate on interest is much higher than the personal tax rate on equity income. In other words, the reduction in corporate taxes from leverage is more than offset by the increase in taxes from leverage at the personal level. Ex) T = 50%, TS = 18%, Tc = 34% Reasons that taxes on equity income might be less than debt income [T S < T ] 1) The personal tax rules favored equity because the low tax rate on capital gains. 2) The taxes on the capital gains can be deferred until shares are sold. Case 4. (1 - T C )(1 - T S ) > 1 - T V L =? In this case, V L > V U. value of firm V L > V U when? V U V L = V U when? V L < V U when? 0 Debt

Capital Structure [CHAP. 15 & 16] -11 V. Costs of Financial Distress Key Financial distress occurs when promises to creditors are broken or honored with difficulty. Result Investors know that levered firms may fall into financial distress, and they worry about it. That worry is reflected in the current market value of the levered firm s security. Thus, the value of the firm can be broken down into three parts. Value of the firm = Value if unlevered + PV (tax shield) - PV (costs of financial distress) The firm s debt-equity decision can be thought as a trade-off between interest tax shields and the cost of financial distress. A. Direct Costs of Financial Distress Legal and administrative costs. 1. ankruptcy - legal mechanism by which creditors take control of firm 2. ankruptcy costs - costs stemming from bankruptcy proceedings 3. Impact on firm value Since bankrupcy eats up the asset value, it has negative impact on firm value.. Indirect Costs of Financial Distress 1. Impaired ability to run business ankruptcy hampers conduct with customers and suppliers. Sales are frequently lost because of both fear of impaired service and loss of trust. 2. Costs from S/H - /H Conflict a. Examples of conflict: risk shifting, underinvestment in positive NPV projects, dividends, increasing debt [EXAMPLE : Underinvestment in positive NPV projects] If there is a significant probability of bankruptcy, the stock holders will not invest in positive projects if the increase in value cannot prevent bankruptcy. b. Response of bondholders: covenants, monitoring, convertible debt, higher interest rates

Capital Structure [CHAP. 15 & 16] -12 C. Costs of Financial Distress & Firm Value Key As increase debt, chance of financial distress increases value of firm falls

Capital Structure [CHAP. 15 & 16] -13 VI. Other Theories of & Issues in Capital Structure Theory A. Pecking Order Theory 1. asic Idea : Asymmetric information affects the choice between internal and external financing and between new issues of debt and equity financing. This leads to a pecking order. 2. Investment is financed with a certain order. Internal funds. New issues of debt. New issues of equity. 3. Implications of Pecking Order [Read the contents on page 419] VII. Empirical Evidence on Capital Structure No exact formula is available for evaluating the optimal debt-equity [i.e., leverage] ratio. Thus, we need to turn to evidence from the real world. 1. Most firms have low debt-equity ratio It is clear that firms do not issue debt up to the point that tax shields are used up. There must be limits to the amount of debt firms can issue. 2. Most indentures include restrictive covenants and provisions for monitoring Increasing debt to use the proceeds as a dividend is not possible. 3. Increases or decreases in financial leverage have an effect on stock returns. 4. There are differences in the capital structures of different industries. Firms that have high proportions of intangible assets and growth opportunities tend to use less debt. 5. Firms with less-certain operating income will have a greater chance of experiencing financial distress and will issue less debt. [counter example : utility firms.] 6. The costs of financial distress depend on the types of assets that the firm has. [firm with large investment in fixed assets VS. firm with large investment in R&D] VIII. Questions Assigned Chapter 15 : Q1 Q5 and Q14 Q21 Chapter 16 : Q1 Q6, Q11 Q14 and Q16 Q17