Similar documents
Machine Learning. Chapter 18, 21. Some material adopted from notes by Chuck Dyer

Machine Learning Final Project Spam Filtering

Machine Learning in Spam Filtering

Maximizing Return and Minimizing Cost with the Decision Management Systems

Introduction to nonparametric regression: Least squares vs. Nearest neighbors

Predicting Student Persistence Using Data Mining and Statistical Analysis Methods

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining

King Saud University

Knowledge Discovery and Data Mining

UNDERSTANDING THE EFFECTIVENESS OF BANK DIRECT MARKETING Tarun Gupta, Tong Xia and Diana Lee

Local classification and local likelihoods

An Approach to Detect Spam s by Using Majority Voting

Classification Techniques (1)

Content-Based Recommendation

OUTLIER ANALYSIS. Data Mining 1

Mining a Corpus of Job Ads

Data Mining. Nonlinear Classification

Data Mining Techniques for Prognosis in Pancreatic Cancer

Big Data: a new era for Statistics

Combining Global and Personal Anti-Spam Filtering

KATE GLEASON COLLEGE OF ENGINEERING. John D. Hromi Center for Quality and Applied Statistics

Histogram-based Outlier Score (HBOS): A fast Unsupervised Anomaly Detection Algorithm

Spam Detection on Twitter Using Traditional Classifiers M. McCord CSE Dept Lehigh University 19 Memorial Drive West Bethlehem, PA 18015, USA

CS Data Science and Visualization Spring 2016

Bayes Theorem & Diagnostic Tests Screening Tests

T : Classification as Spam or Ham using Naive Bayes Classifier. Santosh Tirunagari :

Data Mining in Weka Bringing It All together

Search Taxonomy. Web Search. Search Engine Optimization. Information Retrieval

Predicting Student Performance by Using Data Mining Methods for Classification

Anti-Spam Filter Based on Naïve Bayes, SVM, and KNN model

Using Dalvik opcodes for Malware Detection on Android

Math. Rounding Decimals. Answers. 1) Round to the nearest tenth ) Round to the nearest whole number

Identifying Peer-to-Peer Traffic Based on Traffic Characteristics

Data Mining for Network Intrusion Detection

Social Media Mining. Data Mining Essentials

Data Mining - Evaluation of Classifiers

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

Machine Learning with MATLAB David Willingham Application Engineer

WEKA. Machine Learning Algorithms in Java

Is a Data Scientist the New Quant? Stuart Kozola MathWorks

A Two-Pass Statistical Approach for Automatic Personalized Spam Filtering

Role of Neural network in data mining

Chapter 6. The stacking ensemble approach

Predictive Data modeling for health care: Comparative performance study of different prediction models

Homework 4 Statistics W4240: Data Mining Columbia University Due Tuesday, October 29 in Class

A semi-supervised Spam mail detector

Using Artificial Intelligence to Manage Big Data for Litigation

Course Description This course will change the way you think about data and its role in business.

On the Relative Value of Cross-Company and Within-Company Data for Defect Prediction

Data Mining Yelp Data - Predicting rating stars from review text

MACHINE LEARNING IN HIGH ENERGY PHYSICS

: Introduction to Machine Learning Dr. Rita Osadchy

Sentiment analysis using emoticons

Applying Classifier Algorithms to Organizational Memory to Build an Attrition Predictor Model

Recommender Systems: Content-based, Knowledge-based, Hybrid. Radek Pelánek

Lecture: Mon 13:30 14:50 Fri 9:00-10:20 ( LTH, Lift 27-28) Lab: Fri 12:00-12:50 (Rm. 4116)

Network Intrusion Detection Using a HNB Binary Classifier

How To Prevent Network Attacks

Data Mining Classification: Decision Trees

A Content based Spam Filtering Using Optical Back Propagation Technique

2.0. Specification of HSN 2.0 JavaScript Static Analyzer

Introduction to Big Data Analytics p. 1 Big Data Overview p. 2 Data Structures p. 5 Analyst Perspective on Data Repositories p.

Keywords: Data Warehouse, Data Warehouse testing, Lifecycle based testing, performance testing.

E-commerce Transaction Anomaly Classification

Application of Data Mining based Malicious Code Detection Techniques for Detecting new Spyware

A Study Of Bagging And Boosting Approaches To Develop Meta-Classifier

Monday Morning Data Mining

SOPS: Stock Prediction using Web Sentiment

Model Selection. Introduction. Model Selection

B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions.

Statistical Validation and Data Analytics in ediscovery. Jesse Kornblum

Linear Classification. Volker Tresp Summer 2015

Scaling Up the Accuracy of Naive-Bayes Classiers: a Decision-Tree Hybrid. Ron Kohavi. Silicon Graphics, Inc N. Shoreline Blvd. ronnyk@sgi.

Predicting Flight Delays

CSCI567 Machine Learning (Fall 2014)

Predicting the Risk of Heart Attacks using Neural Network and Decision Tree

Date : July 28, 2015

Automatic Text Processing: Cross-Lingual. Text Categorization

Diploma Of Computing

Detecting Internet Worms Using Data Mining Techniques

On the Role of Data Mining Techniques in Uncertainty Quantification

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification

Chapter 4. Probability and Probability Distributions

Transcription:

ImprovingRooftopDetectioninAerialImages MarcusA.Maloofy(maloof@apres.stanford.edu) ThroughMachineLearning PatLangleyy(langley@newatlantis.isle.org) ThomasBinfordz(binford@cs.stanford.edu) yinstituteforthestudyoflearningandexpertise StephanieSagey(sage@icaria.isle.org) zroboticslaboratory,departmentofcomputerscience 2164StauntonCourt,PaloAlto,CA94306 StanfordUniversity,Stanford,CA94305 theproblemofanalyzingaerialimagesanddescribeanexistingvisionsystemthatautomatesthe whichisonestepinavisionsystemthatrecognizesbuildingsinoverheadimagery.wereview Inthispaper,weexaminetheuseofmachinelearningtoimprovearooftopdetectionprocess, Abstract recognitionofbuildingsinsuchimages.afterthis,webrieyreviewtwowell-knownlearning algorithms,representingdierentinductivebiases,thatweselectedtoimproverooftopdetection. Animportantaspectofthisproblemisthatthedatasetsarehighlyskewedandthecostofmistakes bothtrainingandtestingdataarederivedfromthesameimage.anotheraddressesbetween-image learningtotheimageanalysistask.onesetofstudiesfocusesonwithin-imagelearning,inwhich ROCanalysis.Wereportthreesetsofexperimentsdesignedtoilluminatefacetsofapplyingmachine diersforthetwoclasses,soweevaluatethealgorithmsundervaryingmisclassicationcostsusing learning,inwhichtrainingandtestingsetscomefromdierentimages.analsetinvestigates learningusingallavailableimagedatainaneorttodeterminethebestperformingmethod. Experimentalresultsdemonstratethatusefulgeneralizationoccurswhentrainingandtestingon ahandcraftedlinearclassier,thesolutioncurrentlybeingusedinthebuildingdetectionsystem. classierexceeded,byasmuchasafactoroftwo,thepredictiveaccuracyofnearestneighborand that,undermostconditionsandacrossarangeofmisclassicationcosts,atrainednaivebayesian dataderivedfromimagesthatdierinlocationandinaspect.furthermore,theydemonstrate theavailabletrainingdata. AnalysisoflearningcurvesrevealsthatnaiveBayesachievedsuperiorityusingaslittleas6%of

RooftopDetectionThroughMachineLearning 1 abilitytoprocessthem.computationalaidswillberequiredtolterthisoodofimagesand Thenumberofimagesavailabletoimageanalystsisgrowingrapidly,andwillsoonoutpacetheir 1.Introduction focustheanalyst'sattentiononinterestingevents,butcurrentimageunderstandingsystemsare operationscangiveacceptableresultsonsomeimagesbutnotothers. consequentlyremainfragile.handcraftedknowledgeaboutwhenandhowtouseparticularvision notyetrobustenoughtosupportthisprocess.successfulimageunderstandingreliesonknowledge, anddespitetheoreticalprogress,implementedvisionsystemsstillrelyonheuristicmethodsand inthevisionprocess,andthusforproducingmorerobustsoftware.recentapplicationsofmachine learninginbusinessandindustry(langley&simon1995)holdusefullessonsforapplicationsin imageanalysis.akeyideainappliedmachinelearninginvolvesbuildinganadvisorysystemthat Inthispaper,weexploretheuseofmachinelearningasameansforimprovingknowledgeused systemanalysesacceptableandothersuninterestingorinerror.theaimofourresearchprogram recommendsactionsbutgivesnalcontroltoahumanuser,witheachdecisiongeneratingatraining issimilartothescenarioinwhichanimageanalystinteractswithavisionsystem,ndingsome istoembedmachinelearningintothisinteractiveprocessofimageanalysis. case,gatheredinanunobtrusiveway,foruseinlearning.thissettingforknowledgeacquisition individualsinresponsetofeedbackfromthoseusers.theoveralleectshouldbeanewclass thatimageanalystsmustmakeperpicture,thusimprovingtheirabilitytodealwithahighow ofimages.moreover,theresultingsystemsshouldadapttheirknowledgetothepreferencesof Thisadaptiveapproachtocomputervisionpromisestogreatlyreducethenumberofdecisions ofsystemsforimageanalysisthatreducestheworkloadonhumananalystsandgivethemmore reliableresults,thusspeedingtheimageanalysisprocess. domain identifyingbuildingsinaerialphotographs andthendescribethevisionsystemdesigned makingatonestageinanexistingimageunderstandingsystem.webeginbyexplainingthetask forthistask.next,wereviewtwowell-knownalgorithmsforsupervisedlearningthatholdpotential Inthesectionsthatfollow,wereportprogressonusingmachinelearningtoimprovedecision forimprovingthereliabilityofimageanalysisinthisdomain.afterthis,wereportthedesignof experimentstoevaluatethesemethodsandtheresultsofthosestudies.inclosing,wediscuss relatedandfuturework. 2.NatureoftheImageAnalysisTask otherinterestingbehavior.theimagesunderscrutinyareusuallycomplex,involvingmanyobjects Theimageanalystinterpretsaerialimagesofgroundsiteswithaneyetounusualactivityor inarangeofsizesandshapes,majorandminorroadways,sidewalks,parkinglots,vehicles,and vegetation.acommontaskfacedbytheimageanalystistodetectchangeatasiteasreectedin arrangedinavarietyofpatterns.overheadimagesofforthood,texas,collectedaspartofthe dierencesbetweentwoimages,asinthenumberofbuildings,roads,andvehicles.thisinturn RADIUSproject(Firschein&Strat1997),aretypicalofamilitarybaseandincludebuildings requirestheabilitytorecognizeexamplesfromeachclassofinterest.inthispaper,wefocuson theperformancetaskofidentifyingbuildingsinsatellitephotographs.

RooftopDetectionThroughMachineLearning 2 theimage,includingthetimeofday(whichaectscontrastandshadows),thetimeofyear(which parameters,suchasdistancefromthesite(whichaectssizeandresolution)andviewingangle (whichaectsperspectiveandvisiblesurfaces).butothervariablesalsoinuencethenatureof Aerialimagescanvaryacrossanumberofdimensions.Themostobviousfactorsconcernviewing aectsfoliage),andthesiteitself(whichdeterminestheshapesofviewedobjects).takentogether, thesefactorsintroduceconsiderablevariabilityintotheimagesthatconfronttheanalyst. thoughabuildingorvehiclewillappeardierentfromalternativeperspectivesanddistances,the eectsofsuchtransformationsarereasonablywellunderstood.butvariationsduetotimeofday, theseason,andthesitearemoreserious.shadowsandfoliagecanhideedgesandobscuresurfaces, Inturn,thisvariabilitycansignicantlycomplicatethetaskofrecognizingobjectclasses.Al- andbuildingsatdistinctsitesmayhavequitedierentstructuresandlayouts.suchvariationsserve computervisionsystems. asmeredistractionstothehumanimageanalyst,yettheyprovideseriouschallengestoexisting particularvisionsoftware.inthenexttwosections,webrieyreviewonesuchsystemforimage studythistaskintheabstract.wemustexploretheeectofspecicinductionalgorithmson knowledgethatimprovesthereliabilityofsuchanimageanalysissystem.however,wecannot Thissuggestsanaturaltaskformachinelearning:givenaerialimagesastrainingdata,acquire analysisandtwolearningmethodsthatmightgiveitmorerobustbehavior. 3.AnArchitectureforImageAnalysis LinandNevatia(1996)reportacomputervisionpackage,calledtheBuildingsDetectionand DescriptionSystem(Budds),fortheanalysisofgroundsitesinaerialimages.Likemanyprograms forimageunderstanding,theirsystemoperatesinaseriesofprocessingstages.eachstepinvolves aggregatinglowerlevelfeaturesintohigherlevelones,eventuallyreachinghypothesesaboutthe locationsanddescriptionsofbuildings.wewillconsiderthesestagesintheorderthattheyoccur. invokesalinendertogroupedgelsintolines.junctionsandparallellinesareidentiedand combinedtoformthree-sidedstructuresor\us".thealgorithmthengroupsselectedusand junctionstoformparallelograms.eachsuchparallelogramconstitutesahypothesisaboutthe Startingatthepixellevel,Buddsusesanedgedetectortogrouppixelsintoedgels,andthen positionandorientationoftheroofforsomebuilding,sowemaycallthissteprooftopgeneration. eachrooftopcandidatetodeterminewhetherithassucientevidencetoberetained.theaim ofthisprocessistoremovecandidatesthatdonotcorrespondtoactualbuildings.ideally,the systemwillrejectmostspuriouscandidatesatthispoint,althoughanalvericationstepmaystill Afterthesystemhascompletedtheaboveaggregationprocess,arooftopselectionstageevaluates collapseduplicateoroverlappingrooftops.thisstagemayalsoexcludecandidatesifthereisno evidenceofthree-dimensionalstructure,suchasshadowsandwalls. candidates.thisprocesstakesintoaccountbothlocalandglobalcriteria.localsupportcomes improvementthroughmachinelearning,becausethisstagemustdealwithmanyspuriousrooftop fromfeaturessuchaslinesandcornersthatareclosetoagivenparallelogram.sincethesesuggest Analysisofthesystem'soperationsuggestedthatrooftopselectionheldthemostpromisefor wallsandshadows,theyprovideevidencethatthecandidatecorrespondstoanactualbuilding.

RooftopDetectionThroughMachineLearning 3 constraintsappliedinthisprocesshaveasolidfoundationinboththeoryandpractice. tioncriteria,thesetofrooftopcandidatesisreducedtoamoremanageablesize.theindividual Globalcriteriaconsidercontainment,overlap,andduplicationofcandidates.Usingtheseevalua- thatvaryintheirglobalcharacteristics,suchascontrastandamountofshadow.however,methods Moreover,suchrulesofthumbarecurrentlycraftedbyhand,andtheydonotfarewellonimages frommachinelearning,towhichwenowturn,maybeabletoinducebetterconditionsforselecting Theproblemisthatwehaveonlyheuristicknowledgeabouthowtocombinetheseconstraints. orrejectingcandidaterooftops.iftheseacquiredheuristicsaremoreaccuratethantheexisting handcraftedsolutions,theywillimprovethereliabilityoftherooftopselectionprocess. 4.AReviewofThreeLearningTechniques Wecanformulatethetaskofacquiringrooftopselectionheuristicsintermsofsupervisedlearning. Inthisprocess,trainingcasesofsomeconceptarelabeledastotheirclass.Inrooftopselection, associatedvalues,alongwithaclasslabel.theselabeledinstancesconstitutetrainingdatathatare examplesoftheconcept\rooftop".eachinstanceconsistsofanumberofattributesandtheir onlytwoclassesexist rooftopandnon-rooftop whichwewillrefertoaspositiveandnegative providedasinputtoaninductivelearningroutine,whichgeneratesconceptdescriptionsdesigned todistinguishthepositiveexamplesfromthenegativeones.theseknowledgestructuresstatethe conditionsunderwhichtheconcept,inthiscase\rooftop",issatised. fortherooftopdetectiontaskandselectedthetwothatshowedpromiseofachievingabalancebetweenthetruepositiveandfalsepositiverates:nearestneighbor,andnaivebayes.thesemethods Inapreviousstudy(Maloofetal.1997),weevaluatedavarietyofmachinelearningmethods usedierentrepresentations,performanceschemes,andlearningmechanismsforsupervisedconceptlearning,andexhibitdierentinductivebiases,meaningthateachalgorithmacquirescertaisentationofknowledgethatsimplyretainstrainingcasesinmemory.thisapproachclassiesnew instancesbyndingthe\nearest"storedcase,asmeasuredbysomedistancemetric,thenpredictingtheclassassociatedwiththatcase.fornumericattributes,acommonmetric(whichweusein Thenearest-neighbormethod(e.g.,Aha,Kibler,&Albert1991),usesaninstance-basedrepre- conceptsmoreeasilythanothers. eachtraininginstance,alongwithitsassociatedclass.althoughthismethodisquitesimpleand hasknownsensitivitytoirrelevantattributes,inpracticeitperformswellinmanydomains.some ourstudies)iseuclideandistance.inthisframework,learninginvolvesnothingmorethanstoring versionsselectthekclosestcasesandpredictthemajorityclass;herewewillfocusonthe\simple" estimatedconditionalprobabilitiesofeachattributevaluegiventheclass.themethodclassies nearestneighborscheme,whichusesonlythenearestcaseforprediction. newinstancesbycomputingtheposteriorprobabilityofeachclassusingbayes'rule,combiningthe descriptionforeachclass.thisdescriptionincludesanestimateoftheclassprobabilityandthe ThenaiveBayesianclassier(e.g.,Langley,Iba,&Thompson1992)storesaprobabilisticconcept storedprobabilitiesbyassumingthattheattributesareindependentgiventheclassandpredicting

RooftopDetectionThroughMachineLearning 4 Figure1.Visualizationinterfaceforlabelingrooftopcandidates.Thesystempresentscandidatestoauser wholabelsthembyclickingeitherthe`roof'or`non-roof'button.italsoincorporatesasimple basedonpreviouslylabeledexamples. learningalgorithmtoprovidefeedbacktotheuseraboutthestatisticalpropertiesofacandidate itations,suchassensitivitytoattributecorrelationsandaninabilitytorepresentmultipledecision theclasswiththehighestposteriorprobability.likenearestneighbor,naivebayeshasknownlim- regions,butinpracticeitbehaveswellonmanynaturaldomains. whichisequivalenttoaperceptronclassier(e.g.,zurada1992).althoughwedidnottrainthis thepurposeofcomparison.thismethodrepresentsconceptsusingacollectionofweightswand methodaswedidnaivebayesandnearestneighbor,weincludedthismethodinourevaluationfor Currently,Buddsusesahandcraftedlinearclassierforrooftopdetection(Lin&Nevatia1996), athreshold.toclassifyaninstance,whichwerepresentasavectorofnnumbersx,wecompute theoutputooftheclassierusingtheformula: Forourapplication,theclassierpredictsthepositiveclassiftheoutputis+1andpredictsthe o=(+1ifpni=1wixi> negativeclassotherwise.thereareanumberofestablishedmethodsfortrainingperceptrons,but?1otherwise usedinbuddsasthe\buddsclassier". notusethelearnedperceptronshere.henceforth,wewillrefertothehandcraftedlinearclassier ourpreliminarystudiessuggestedthattheyfaredworsethanthemanuallysetweights,sowedid

RooftopDetectionThroughMachineLearning 5 Table1.Characteristicsoftheimagesanddatasets.Webeganwithanadirandanobliqueimageofan areaofforthood,texas,andderivedthreesubimagesfromeachthatcontainedconcentrationsof buildings.wethenusedbuddstoextractrooftopcandidatesandlabeledeachaseitherapositive ornegativeexampleoftheconcept\rooftop". Number Image 21 Original Image LocationAspectExamplesExamples Positive 197 Negative 34 1 2 238 71 74 1955 2645 3349 982 56 FHOV1027 FHOV625 3 Oblique Nadir 114 87 3722 4395 candidatesinaerialimages.thisrequiredthreethings:asetofimagesthatcontainbuildings, 5.Generating,Representing,andLabelingRooftopCandidates Wewereinterestedinhowwellthevariousinductionalgorithmscouldlearntoclassifyrooftop somemeanstogenerateandrepresentplausiblerooftops,andlabelsforeachsuchcandidate. werecollectedaspartoftheradiusprogram(firschein&strat1997).theseimagescoverthe sameareabutweretakenfromdierentviewpoints,onefromanadirangleandtheotherfroman obliqueangle.wesubdividedeachimageintothreesubimages,focusingonlocationsthatcontained Asourrststep,weselectedtwoimages,FHOV1027andFHOV625,ofFortHood,Texas,which image,producingsixdatasets.followinglinandnevatia(1996),thedatasetsdescribedeach concentrationsofbuildings,tomaximizethenumberofpositiverooftopcandidates.thisgaveus rooftopcandidateintermsofninecontinuousfeaturesthatsummarizetheevidencegatheredfrom threepairsofimages,eachpaircoveringthesameareabutviewedfromdierentaspects. thevariouslevelsofanalysis.forexample,positiveindicationsfortheexistenceofarooftop OuraimwastoimproveBuddssoweusedthissystemtogeneratecandidaterooftopsforeach junctionsadjacenttothecandidate,similarlyadjacentt-junctions,gapsinthecandidate'sedges, ofthecandidate.negativeevidenceincludedtheexistenceoflinesthatcrossthecandidate,l- includedevidenceforedgesandcorners,thedegreetowhichacandidate'sopposinglinesare andthedegreetowhichenclosinglinesfailedtoformaparallelogram. parallel,supportfortheexistenceoforthogonaltrihedralvertices,andshadowsnearthecorners thedata,andwemakenoclaimsthatthesenineattributesarethebestonesforrecognizingrooftops inaerialimages.however,becauseouraimwastoimprovetherobustnessofbudds,weneededto usethesamefeaturesaslinandnevatia'shandcraftedclassier.moreover,itseemedunlikelythat Weshouldnotethatinductionalgorithmsareoftensensitivetothefeaturesoneusestodescribe wecoulddevisebetterfeaturesthanthesystem'sauthorshaddevelopedduringyearsofresearch. themostinteresting.buddsitselfclassieseachcandidate,butsinceweweretryingtoimprove onitsability,wecouldnotusethoselabels.thus,wetriedanapproachinwhichanexpert Thethirdproblem,labelingthegeneratedrooftopcandidates,provedthemostchallengingand

RooftopDetectionThroughMachineLearning 6 aregionsurroundingtheactualrooftop.unfortunately,uponinspectionneitherapproachgaveus positiveornegativedependingonthedistanceoftheirverticesfromthenearestactualrooftop's corners.wealsotriedasecondschemethatusedthenumberofcandidateverticesthatfellwithin speciedtheverticesofactualrooftopsintheimage,thenweautomaticallylabeledcandidatesas satisfactorylabelingresults. process.oneisthattheyignoreinformationaboutthecandidate'sshape;agoodrooftopshould beaparallelogram,yetnearnessofverticesisneithersucientornecessaryforthisform.a seconddrawbackisthattheyignoreotherinformationcontainedintheninebuddsattributes, Analysisrevealedthedicultieswithusingsuchrelationstoactualrooftopsinthelabeling two-dimensionalspacethatdescribeslocationwithintheimage,ratherthanthenine-dimensional suchasshadowsandcrossinglines.thebasicproblemisthatsuchmethodsdealonlywiththe daunting,aseachimageproducedthousandsofcandidaterooftops.tosupporttheprocess,we spacethatwewantthevisionsystemtouseinclassifyingacandidate. eachextractedrooftoptotheuser.thesystemdrawseachcandidateovertheportionoftheimage implementedaninteractivelabelingsysteminjava,showninfigure1,thatsuccessivelydisplays Reluctantly,weconcludedthatmanuallabelingbyahumanwasnecessary,butthistaskwas fromwhichitwasextracted,thenletstheuserclickbuttonsfor`roof'or`non-roof'tolabelthe example. rooftops,andunknown.theinterfacedisplayslikelyrooftopsusinggreenrectangles,unlikely toimprovethelabelingprocess.asthesystemobtainsfeedbackfromtheuseraboutpositive andnegativeexamples,itdividesunlabeledcandidatesintothreeclasses:likelyrooftops,unlikely Thevisualinterfaceitselfincorporatesasimplelearningmechanism nearestneighbor designed sensitivityparameter1thataectshowcertainthesystemmustbebeforeitproposesalabel.after eitherthe`roof'or`non-roof'button.thesimplelearningmechanismthenusesthisinformation rooftopsasredrectangles,andunknowncandidatesasbluerectangles.thesystemincludesa toimprovesubsequentpredictionsofcandidatelabels. displayingarooftop,theusereitherconrmsorcontradictsthesystem'spredictionbyclicking fewerandfewercandidatesaboutwhichitwasuncertain,andthusspeedupthelaterstagesof session,theusertypicallyconrmsnearlyalloftheinterface'srecommendations.however,because interaction.informalstudiessuggestedthatthesystemachievesthisaim:bytheendofthelabeling Ourintentwasthat,astheinterfacegainedexperiencewiththeuser'slabels,itwoulddisplay manner,theinterfacerequiredonlyaboutvehourstolabelthe17,829roofcandidatesextracted wewereconcernedthatouruseofnearestneighbormightbiasthelabelingprocessinfavorofthis fromthesiximages.thiscomestounderonesecondpercandidate,whichstillseemsquiteecient. algorithmduringlaterstudies,wegeneratedthedatausedinsection7bythesettingsensitivity parametersothatthesystempresentedallcandidatesasuncertain.evenhandicappedinthis fascinatingissuesinourwork.toincorporatesupervisedconceptlearningintovisionsystems, whichcangeneratethousandsofcandidatesperimage,wemustdevelopmethodstoreducethe burdenoflabelingthesedata.infuturework,weintendtomeasuremorecarefullytheabilityof Insummary,whatbeganasthesimpletaskoflabelingvisualdataledustosomeofthemore learnedclassiertoordercandidaterooftops(showingtheleastcertainonesrst)andeventolter ouradaptivelabelingsystemtospeedthisprocess.wealsoplantoexploreextensionsthatusethe 1.TheusercansetthisparameterusingthesliderbarandnumbereldinthebottomrightcornerofFigure1.

RooftopDetectionThroughMachineLearning 7 candidatesbeforetheyarepassedontotheuser(automaticallylabelingthemostcondentones). Techniquessuchasselectivesampling(e.g.,Freundetal.1997)anduncertaintysampling(Lewis 6.Cost-SensitiveLearningandSkewedData &Catlett1994)shouldproveusefultowardtheseends. Twoaspectsoftherooftopselectiontaskinuencedourapproachtoimplementationandevaluation. First,Buddsworksinabottom-upmanner,soifthesystemdiscardsarooftop,itcannotretrieveit later.consequently,errorsontherooftopclass(falsenegatives)aremoreexpensivethanerrorson whenitcandrawuponaccumulatedevidence,suchastheexistenceofwallsandshadows.however, negative.thesystemhasthepotentialfordiscardingfalsepositivesinlaterstagesofprocessing sincefalsenegativescannotberecovered,weneedtominimizeerrorsontherooftopclass. thenon-rooftopclass(falsepositives),soitisbettertoretainafalsepositivethantodiscardafalse errorsonourminorityclass(rooftops)aremostexpensive,andtheextremeskewonlyincreases acrossclasses(781rooftopsvs.17,048non-rooftops).givensuchskeweddata,mostinduction algorithmshavedicultylearningtopredicttheminorityclass.moreover,wehaveestablishedthat Second,wehaveaseverelyskeweddataset,withtrainingexamplesdistributednon-uniformly sucherrors.thisinteractionbetweenskewedclassdistributionandunequalerrorcostsoccursin manycomputervisionapplications,inwhichavisionsystemgeneratesthousandsofcandidates butonlyahandfulcorrespondtoobjectsofinterest.italsoholdsmanyotherapplicationsof machinelearning,suchasfrauddetection(fawcett&provost1997),discourseanalysis(soderland &Lehnert1994),andtelecommunicationsriskmanagement(Ezawa,Singh,&Norton1996). thatcanachievehighaccuracyontheminorityclass.second,theyrequireanexperimentalmethodologythatletsuscomparedierentmethodsondomainslikerooftopdetection,inwhichtheclasses areskewedanderrorshavedierentcosts.intheremainderofthissection,wefurtherclarifythenatureoftheproblem,afterwhichweproposesomecost-sensitivelearningmethodsandanapproach 6.1FavoritismTowardtheMajorityClass toexperimentalevaluation. Theseissuesraisetwochallenges.First,theysuggesttheneedformodiedlearningalgorithms Inapreviousstudy(Maloofetal.1997),weevaluatedseveralalgorithmswithouttakinginto accountthecostofclassicationerrorsandgotconfusingexperimentalresults.somemethods,like thestandarderror-drivenalgorithmforrevisingperceptronweights(e.g.,zurada1992),learnedto alwayspredictthemajorityclass.thenaivebayesianclassierfoundamorecomfortabletrade-o setsthatareskewed,aninductivemethodthatlearnstopredictthemajorityclasswilloftenhavea higheroverallaccuracythanamethodthatndsabalancebetweentruepositiveandfalsepositive betweenthetruepositiveandfalsepositiverates,butstillfavoredthemajorityclass.2fordata whichmakesitamisleadingmeasureofperformance. rates.indeed,alwayspredictingthemajorityclassforourproblemyieldsahitrateof95percent, minorityclass.fortherooftopdomain,iftheerrorcostsforthetwoclasseswerethesame,thenwe 2.Coveringalgorithms,likeAQ15(Michalskietal.1986)orCN2(Clark&Niblett1989),maybelesssusceptible Thisbiastowardthemajorityclassonlycausesdicultywhenwecaremoreabouterrorsonthe toskeweddatasets,butthisishighlydependentontheirruleselectioncriteria.

RooftopDetectionThroughMachineLearning 8 wouldnotcareonwhichclasswemadeerrors,providedweminimizedthetotalnumberofmistakes. Norwouldtherebeanyproblemifmistakesonthemajorityclassweremoreexpensive,sincemost classdistributionrunscountertotherelativecostofmistakes,asinourdomain,thenwemustdo learningmethodsarebiasedtowardminimizingsucherrorsanyway.ontheotherhand,ifthe somethingtocompensate,bothinthelearningalgorithmitselfandinmeasuringitsperformance. costoferrors.inparticular,theypointoutthatonecanmitigatethebiasagainsttheminority classbyduplicatingexamplesofthatclassinthetrainingdata.thisalsohelpsexplainwhymost inductionmethodsgivemoreweighttoaccuracyonthemajorityclass,sinceskewedtrainingdata Breimanetal.(1984)notethecloserelationbetweenthedistributionofclassesandtherelative implicitlyplacesmoreweightonerrorsforthatclass.inresponse,severalresearchershaveexplored tobiastheperformanceelement(cardie&howe1997),removingunimportantexamplesfromthe approachesthatalterthedistributionoftrainingdatainvariousways,includinguseofweights majorityclass(kubat&matwin1997),and`boosting'theexamplesintheunder-representedclass themselvestomoredirectlyrespondtoerrorcosts. (Freund&Schapire1996).However,aswewillseeshortly,onecanalsomodifythealgorithms 6.2Cost-SensitiveLearningMethods errors,possiblybecausemostlearningmethodsdonotprovidewaystotakesuchcostsintoaccount. Empiricalcomparisonsamongmachinelearningalgorithmsseldomfocusonthecostofclassication havealsodonesomepreliminaryworkalongtheselines,whichtheydescribeasaddressingthecosts Happily,someresearchershaveexploredvariationsonstandardalgorithmsthateectivelybiasthe ratiointoc4.5(quinlan1993)tobiasittowardunder-representedclasses.pazzanietal.(1994) ofdierenterrortypes.theirmethodndstheminimum-costclassierforavarietyofproblems methodinfavorofoneclassoverothers.forexample,lewisandcatlett(1994)introducedaloss usingasetofhypotheticalerrorcosts.turney(1995)presentsresultsfromanempiricalevaluation algorithmtreatsinstancesfromthemoreexpensiveclassrelativetotheotherinstances,either ofalgorithmsthattakeintoaccountboththecostofteststomeasureattributesandthecostof duringthelearningprocessoratthetimeoftesting.inessence,wewanttoincorporateacost classicationerror. heuristicintothealgorithmssowecanbiasthemtowardmakingmistakesonthelesscostlyclass Whenimplementingcost-sensitivelearningmethods,thebasicideaistochangethewaythe ratherthanonthemoreexpensiveclass. relativecostofmakingamistakeononeclassversusanother.zeroindicatesthaterrorscost nothing,whereasonemeansthaterrorsaremaximallyexpensive.toincorporateacostheuristic intothealgorithms,wechosetomodifytheperformanceelementofthealgorithms,ratherthanthe Toaccomplishthis,wedenedacostforeachclassontherange[0:0;1:0]thatindicatesthe learningelement,byusingthecostheuristictoadjustthedecisionboundaryatwhichthealgorithm selectsoneclassversustheother. usingbayes'rule,sowewantthecostheuristictobiaspredictioninfavorofthemoreexpensive class.foracostparametercj2[0:0;1:0],wecomputedtheexpectedcostjfortheclass!jusing theformula: RecallthatnaiveBayespredictstheclasswiththehighestposteriorprobabilityascomputed

RooftopDetectionThroughMachineLearning 9 cost-sensitiveversionofnaivebayespredictstheclass!jwiththeleastexpectedcostj. wherexisthequery,andp(!jjx)istheposteriorprobabilityofthejthclassgiventhequery.the j=p(!jjx)+cj(1?p(!jjx)) magnitudeofthecostparameter.therefore,wecomputedtheexpectedcostjfortheclass!j exampleofthemoreexpensiveclass.themagnitudeofthischangeshouldbeproportionaltothe Therefore,thecostheuristicshouldhavetheeectofmovingthequerypointclosertotheclosest Nearestneighbor,asnormallyused,predictstheclassoftheexamplethatisclosesttothequery. usingtheformula: expectedcost.thismodicationalsoworksforknearestneighbor,whichconsidersthekclosest distancefunction.thecost-sensitiveversionofnearestneighborpredictstheclasswiththeleast wherexjistheclosestneighborfromclass!jtothequerypoint,andde(x;y)istheeuclidean j=de(x;xj)?cjde(x;xj) neighborswhenclassifyingunknowninstances. ingalgorithms,wecanmakesimilarchangestothebuddsclassier.sincethisclassierusesa lineardiscriminantfunction,wewantthecostheuristictoadjustthethresholdsothehyperplane ofdiscriminationisfartherfromthehypotheticalregionofexamplesofthemoreexpensiveclass, Finally,becauseourmodicationsfocusedontheperformanceelementsratherthanonthelearn- thusenlargingthedecisionregionofthatclass.thedegreetowhichthealgorithmadjuststhe thresholdisagaindependentonthemagnitudeofthecostparameter.theadjustedthreshold0 iscomputedby: thepositiveclassandnegativeforthenegativeclass,andjisthemaximumvaluetheweighted whereistheoriginalthresholdforthelineardiscriminantfunction,sgn(!j)returnspositivefor 0=?2Xj=1sgn(!j)cjj sumcantakeforthejthclass.thecost-sensitiveversionofthebuddsclassierpredictsthe otherwise,itpredictsthenegativeclass. positiveclassiftheweightedsumofaninstance'sattributessurpassestheadjustedthreshold0; Oursecondchallengewastoidentifyanexperimentalmethodologythatwouldletuscompare 6.3ROCAnalysisforEvaluatingPerformance costsorskeweddistributions.rather,wemustseparatelymeasureaccuracyonbothclasses,in thatcomparisonsbasedonoverallaccuracyarenotsucientfordomainsthatinvolvenon-uniform thebehaviorofourcost-sensitivelearningmethodsontherooftopdata.wehavealreadyseen termsoffalsepositivesandfalsenegatives.giveninformationabouttherelativecostsoferrors, sayfromconversationswithdomainexpertsorfromadomainanalysis,wecouldthencompute Fawcett&Provost1997). aweightedaccuracyforeachalgorithmthattakescostintoaccount(e.g.,pazzanietal.1994; ratherthanaimingforasingleperformancemeasure,astypicallydoneinmachinelearningex- resultsoftheirinterpretationstodeterminetheactualcostsforthedomain.insuchsituations, However,inthiscase,wehadnoaccesstoimageanalystsorenoughinformationaboutthe

RooftopDetectionThroughMachineLearning 10 1 True Positive Rate periments,anaturalsolutionistoevaluateeachlearningmethodoverarangeofcostsettings. 0 ROC(ReceiverOperatingCharacteristic)analysis(Swets1988)providesaframeworkforcarryingoutsuchcomparisons.Thebasicideaistosystematicallyvarysomeaspectofthesituation, negativerateforeachsituation.althoughresearchershaveusedsuchroccurvesinsignaldetectionandpsychophysicsfordecades(e.g.,green&swets1974;egan1975),thistechniquehas Maloofetal.1997;Provost&Fawcett1997). onlyrecentlybeguntolterintomachinelearningresearch(e.g.,ezawa,singh,&norton1996; Figure2.AnidealizedReceiverOperatingCharacteristic(ROC)curve. 0 1 False Positive Rate suchasthecostratioortheclassdistribution,andtoplotthefalsepositiverateagainstthefalse onthenegativeclassaremaximallyexpensive(i.e.,c+=0:0andc?=1:0).conversely,theupper learningalgorithm.thelowerleftcornerofthegurerepresentsthesituationinwhichmistakes rightcorneroftherocgraphrepresentsthesituationinwhichmistakesonthepositiveclassare Figure2showsanidealizedROCcurvegeneratedbyvaryingthecostparameterofacost-sensitive maximallyexpensive(i.e.,c+=1:0andc?=0:0).byvaryingovertherangeofcostparameters andplottingtheclassier'struepositiveandfalsepositiverates,weproduceaseriesofpointsthat representsthealgorithm'saccuracytrade-o.thepoint(0,1)iswhereclassicationisperfect, withafalsepositiverateofzeroandatruepositiverateofone,sowewantroccurvesthat\push" withcurvesthatcoverlargerareasgenerallybeingviewedasbetter(hanley&mcneil1982;swets towardthiscorner. 1988).Giventheskewednatureoftherooftopdata,andthedierentbutimprecisecostsoferrors onthetwoclasses,wedecidedtouseareaundertheroccurveasthedependentvariableinour TraditionalROCanalysisusesareaunderthecurveasthepreferredmeasureofperformance, experimentalstudies.thismeasureraisesproblemswhentwocurveshavesimilarareasbutare dissimilarandasymmetric,andthusoccupydierentregionsoftherocspace.insuchcases, other.aswewillsee,thisrelationtypicallyholdsforourcost-sensitivealgorithmsintherooftop appearstobemostappropriatewhencurveshavesimilarshapesandwhenoneisnestedwithinthe othertypesofanalysisaremoreuseful(e.g.,provost&fawcett1997),butareaunderthecurve detectiondomain.

RooftopDetectionThroughMachineLearning 11 1 1 True Positive Rate 0.8 0.8 True Positive Rate 0.6 0.6 Figure3.ROCcurvesforImages1and2.Weraneachmethodbytrainingandtestingusingdataderived 0.4 0.4 fromthesameimageoverarangeofmisclassicationcosts.weconductedtensuchrunsand Naive Bayes Naive Bayes 0.2 Nearest Neighbor 0.2 Nearest Neighbor Budds Classifier Budds Classifier 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 7.ExperimentalStudies butdierentaspects:image1isanadirview,whileimage2isanoblique. plottedtheaveragetruepositiveandfalsepositiverates.theseimagesareofthesamelocation False Positive Rate False Positive Rate (rooftopcandidates)separatefromthoseusedtotestthelearnedclassiers.aswewillsee,the Astypicallydoneinsuchstudies,ineachexperimentwetrainedtheinductionmethodsondata Toinvestigatetheuseofmachinelearningforthetaskofrooftopdetection,weconductedexperimentsusingthecost-sensitiveversionsofnaiveBayes,nearestneighbor,andtheBuddsclassier. experimentsdieredinwhetherthetrainingandtestcasescamefromthesameordistinctimages, whichletusexaminedierentformsofgeneralizationbeyondthetrainingdata. Ourrstexperimentalstudyexaminedhowthevariousmethodsbehavedgivenwithin-imagelearning,thatis,whengeneralizingtotestcasestakenfromthesameimageonwhichwetrainedthem. 7.1Within-ImageLearning rooftopclassierswouldhavelargerareasthanthoseofthebuddsclassier. Ourresearchhypothesiswasthatthelearnedclassierswouldbemoreaccurate,overarangeof misclassicationcosts,thanthehandcraftedlinearclassier.becauseourmeasureofperformance wasareaundertheroccurve,thistranslatesintoapredictionthattheroccurvesofthelearned andfalsepositiveratesfortenruns.sincecostsarerelative(i.e.,c+=0:0andc?=0:5isequivalent toc+=0:25andc?=0:75)andourdomaininvolvedonlytwoclasses,wevariedthecostparameter foronlyoneclassatatimeandxedtheotheratzero.eachruninvolvedpartitioningthedataset Foreachimageandmethod,wevariedtheerrorcostsandmeasuredtheresultingtruepositive set.becausethebuddsclassierwashand-congured,ithadnotrainingphase,soweappliedit inthetrainingset,andevaluatingtheresultingconceptdescriptionsusingthedatainthetest directlytotheinstancesinthetestset.foreachcostsettingandeachclassier,weplottedthe randomlyintotraining(60%)andtest(40%)sets,runningthelearningalgorithmsontheinstances similarresults,butbothfarebetterthanthebuddsclassier.ratherthanpresentthecurves averagefalsepositiverateagainsttheaveragetruepositiverateoverthetenruns. Figure3presentstheROCcurvesforImages1and2.NaiveBayesandnearestneighborgive

RooftopDetectionThroughMachineLearning 12 Table2.Resultsforwithin-imageexperiments.Foreachimage,wegeneratedROCcurvesbytrainingand testingeachmethodoverarangeofcosts.weusedtheapproximateareaunderthecurveasthe measureofperformance,whichappearwith95%condenceintervals.naivebayesperformedbest overall,withthebuddsclassieroutperformingnearestneighboronthreeofthesiximages. Image1 Image2ApproximateAreaunderROCCurve NearestNeighbor0.8230.0190.8330.0160.9110.0100.8010.0280.8190.0270.7390.017 BuddsClassier0.7170.0090.7730.0040.8990.0150.9010.0070.8330.0210.8490.010 NaiveBayes 0.8700.0080.8120.0170.9620.0130.9080.0250.8690.0160.8350.025 Image3 Image4 Image5 Image6 fortheremainingfourimages,wefollowswets(1988)andreport,intable2,theareaunder pairofadjacentpointsintheroccurve.forallimagesexceptforimage6,naivebayesproduced eachroccurve,whichweapproximatedbysummingtheareasofthetrapezoidsdenedbyeach curveswithareasgreaterthanthoseforthebuddsclassier,thusgenerallysupportingourresearch hypothesis.onimages4,5,and6,nearestneighbordidworsethanthehandcraftedmethod,which runscountertoourprediction. ourmotivatingproblemisthelargenumberofimagesthattheanalystmustprocess.inorderto 7.2Between-ImageLearning Wegearedournextsetofexperimentsmoretowardthegoalsofimageanalysis.Recallthat alleviatethisburden,wewanttoapplyknowledgelearnedfromsomeimagestomanyotherimages. dierenttimesandimagesofdierentareaspresentsimilarissues. viewpointsofthesamesiteinorientationorinanglefromtheperpendicular.imagestakenat learnedknowledgetonewimages.forexample,oneviewpointofagivensitecandierfromother Butwehavealreadynotedthatseveraldimensionsofvariationposeproblemstotransferringsuch versionofthepreviousone:classierslearnedfromonesetofimageswouldbemoreaccurateon unseenimagesthanhandcraftedclassiers.however,wealsoexpectedthatbetween-imagelearning generalizestootherimagesthatdieralongsuchdimensions.ourhypothesisherewasarened Wedesignedexperimentstoletusunderstandbetterhowtheknowledgelearnedfromoneimage wouldgiveloweraccuracythanthewithin-imagesituation,sincedierencesacrossimageswould makegeneralizationmoredicult. fromthesamelocation.asanexample,forthenadiraspect,wechoseimage1andthentested thelearningalgorithmsonanimagefromoneaspectandtestonanimagefromanotheraspectbut hadimagesfromtwoaspects(i.e.,nadirandoblique)andfromthreelocations.thisletustrain Oneexperimentfocusedonhowthemethodsgeneralizeoveraspect.RecallfromTable1thatwe plottedtheresultsasroccurves,asshowninfigure4.theareasunderthesecurvesandtheir usingtheimagesfromeachlocation,whilevaryingtheircostparametersandmeasuringtheirtrue onimage2,whichisanobliqueimageofthesamelocation.weranthealgorithmsinthismanner 95%condenceintervalsappearinTable3. positiveandfalsepositiverates.wethenaveragedthesemeasuresacrossthethreelocationsand

RooftopDetectionThroughMachineLearning 13 1 1 True Positive Rate 0.8 0.8 True Positive Rate 0.6 0.6 Figure4.ROCcurvesforexperimentsthattestedgeneralizationoveraspect.Left:Foreachlocation,we 0.4 0.4 trainedeachmethodontheobliqueimageandtestedtheresultingconceptdescriptionsonthe Naive Bayes Naive Bayes 0.2 nadirimage.weplottedtheaveragetruepositiveandfalsepositiverates.right:wefolloweda Nearest Neighbor 0.2 Nearest Neighbor similarmethodology,exceptthatwetrainedthemethodsonthenadirimagesandtestedonthe Budds Classifier Budds Classifier obliqueimages. 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 False Positive Rate False Positive Rate fortestingondatafromobliqueimages.forexample,table3showsthatnaivebayesgenerates obliqueimages,sincethecurvesfortestingonnadircandidatesaregenerallyhigherthanthose acurvewithanareaof0.878forthenadirimages,butproducesacurvewithanareaof0.842 Oneobviousconclusionisthatthenadirimagesappeartoposeaneasierproblemthanthe fortheobliqueimages.theothertwomethodsshowasimilardegradationinperformancewhen generalizingfromnadirtoobliqueimagesratherthanfromobliquetonadirimages. tion,naivebayes(withanareaundertheroccurveof0.878)performsbetterthanthebudds classier,withanareaof0.837,whichinturndidbetterthannearestneighbor(0.795).fornadir toobliquegeneralization,naivebayesperformsslightlybetterthanthebuddsclassier,which Uponcomparingthebehaviorofdierentmethods,wendthat,forobliquetonadirgeneraliza- produceareasof0.842and0.831,respectively.nearestneighbor'scurveinthissituationcoversan areaof0.785,whichisconsiderablysmaller. methodsonpairsofimagesfromoneaspectandtestedonthethirdimagefromthesameaspect. candidatesfromimages1and3,thentestingoncandidatesfromimage5.wethenraneachofthe Asanexample,forthenadirimages,oneofthethreelearningrunsinvolvedtrainingonrooftop Asecondexperimentexaminedgeneralizationoverlocation.Tothisend,wetrainedthelearning algorithmsacrossarangeofcosts,measuringthefalsepositiveandtruepositiverates.weplotted theaveragesofthesemeasuresacrossallthreelearningrunsforoneaspectinanroccurve,as showninfigure5. Comparingthebehaviorofthevariousmethods,Table3showsthat,forthenadiraspect,naive nitiontaskthanthenadiraspect,sincetheobliqueareasarelessthanthoseforthenadirimages. BayesperformsslightlybetterthantheBuddsclassier,whichgiveareasof0.901and0.837. Inthiscontext,weagainseeevidencethattheobliqueimagespresentedamoredicultrecog- curve.whengeneralizingoverlocationontheobliqueimages,naivebayesandthebuddsclassi- Asbefore,bothdidbetterthannearestneighbor,whichyieldedanareaof0.819underitsROC erproducedroccurveswithequalareasof0.831.thesewereconsiderablybetterthannearest neighbor's,whichhadanareaof0.697.

RooftopDetectionThroughMachineLearning 14 1 1 True Positive Rate 0.8 0.8 True Positive Rate 0.6 0.6 Figure5.ROCcurvesforexperimentthattestedgeneralizationoverlocation.Left:Foreachpairofimages 0.4 0.4 forthenadiraspect,wetrainedthemethodsonthatpairandtestedtheresultingconceptdescriptionsonthethirdimage.wethenplottedtheaveragetruepositiveandfalsepositiverates.right: Weappliedthesamemethodologyusingtheimagesfortheobliqueaspect. Naive Bayes Naive Bayes 0.2 Nearest Neighbor 0.2 Nearest Neighbor Budds Classifier Budds Classifier 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Thus,theresultswiththenaiveBayesianclassiersupportourmainhypothesis.InallexperimentalconditionsthismethodfaredbetterthanorequaltotheBuddslinearclassier.Onthe False Positive Rate False Positive Rate otherhand,thebehaviorofnearestneighbortypicallygaveworseresultsthanthehandcrafted rooftopdetector,whichwentagainstouroriginalexpectations. forthewithin-imagecondition(table2),naivebayesproducedanaveragerocareaof0.9forthe generalizingwithinimages.totestthishypothesis,wemustcomparetheresultsfromtheseexperimentswiththosefromthewithin-imageexperiments(seetable3).simplecalculationshowsthat, Recallthatwealsoanticipatedthatgeneralizingacrossimageswouldgiveloweraccuraciesthan nadirimagesand0.851fortheobliqueimages.similarly,nearestneighboraveraged0.851forthe nadirimagesand0.791fortheobliqueimages.mostofthesetheseareasaresubstantiallyhigher thenadirimage,buttheresultsgenerallysupportourprediction. thantheanalogousareasthatresultedwhenthesemethodsgeneralizedacrosslocationandaspect. TheoneexceptionisthatnaiveBayesactuallydidequallywellwhengeneralizingoverlocationfor performanceinthewithin-imageconditionandinthebetween-imageconditions.forexample, naivebayes'averagedegradationinperformanceoverallexperimentalconditionswas0.013,while eralizingtounseenimages.thiscanbeseenbycomparingthedierencesbetweeneachmethod's AlsonotethatnaiveBayes'performancedegradedlessthanthatofnearestneighborwhengen- nearestneighbor'swas0.47.thisconstitutesfurtherevidencethatnaivebayesisbettersuitedfor 7.3LearningfromAllAvailableImages thisdomain,atleastwhenoperatingovertheninefeaturesusedinourexperiments. OurnextstudyusedalloftherooftopcandidatesgeneratedfromthesixFortHoodimages,since wewantedtoreplicateourpreviousresultsinasituationsimilartothatweenvisionbeingusedin practice,whichwoulddrawontrainingcasesfromallimages.basedontheearlierexperiments,we anticipatedthatthenaivebayesianclassierwouldyieldanroccurveofgreaterareathanthose oftheothermethods.

RooftopDetectionThroughMachineLearning 15 Table3.Resultsforbetween-imageexperiments.WeagainusedtheapproximateareaundertheROC and`oblique'indicatethetestingcondition.wederivedanalogousresultsforthewithin-image thebest,whilethebuddsclassiergenerallyoutperformednearestneighbor.thelabels`nadir' experimentsbyaveragingtheresultsforeachcondition.approximateareasappearwith95% curveasthemeasureofperformance,alongwith95%condenceintervals.naivebayesperformed condenceintervals. Nadir AspectExperiment Oblique LocationExperiment Nadir Oblique Nadir WithinImage NearestNeighbor0.7950.0350.7850.0530.8190.0580.6970.0270.8510.0190.7910.020 BuddsClassier0.8370.0850.8310.0680.8370.0850.8310.0680.8370.0850.8310.068 NaiveBayes 0.8780.0420.8420.0630.9010.0790.8310.0670.9000.0120.8510.022 Oblique positiveand17,048labelednegative.weraneachalgorithmtentimesoverarangeofcosts.for (40%)sets,thenaveragedtheresultsforeachcostleveloveritstenruns. eachrunandsetofcostparameters,werandomlysplitthedataintotraining(60%)andtesting Combiningtherooftopcandidatesfromallsiximagesgaveus17,829instances,781labeled performedthebestoverall,producingacurvewitharea0.85.nearestneighborfaredslightly betterthanthebuddsclassier,yieldinganareaof0.801,comparedto0.787forthelatter. whereastable4givestheapproximateareaunderthesecurves.asanticipated,naivebayes Figure6showstheresultingROCcurves,whichplotthetruepositiveandfalsepositiverates, curvebut,rather,willhavespecicerrorcostsinmind,eveniftheycannotstatethemformally. WehaveusedROCcurvesbecausewedonotknowthesecostsinadvance,butwecaninspect behaviorofthevariousclassiersatdierentpointsonthesecurvestogivefurtherinsightintohow Inpractice,imageanalystswillnotevaluateaclassiersperformanceusingareaundertheROC muchthelearnedclassiersarelikelytoaidanalystsduringactualuse. rateof0.84andafalsepositiverateof0.27,thethirddiamondfromtherightinfigure6.toobtain thesametruepositiverate,thebuddsclassierproduceda0.62falsepositiverate.thismeans that,foragiventruepositiverate,naivebayesreducedthefalsepositiveratebymorethanhalf Forexample,considerthebehaviorofthenaiveBayesianclassierwhenitachievesatruepositive naivebayesimprovedthetruepositiverateby0.12overthebuddsclassier.inthiscase,the wouldhaverejected5,969morenon-rooftopsthanbudds_similarly,byxingthefalsepositiverate, Bayesianclassierwouldhavefound86morerooftopsthanBuddswouldhavedetected. overthehandcraftedclassier.hence,fortheimagesweconsidered,thenaivebayesianclassier 7.4RatesofLearning Wewerealsointerestedinthebehaviorofthelearningmethodsastheyprocessedincreasing amountsoftrainingdata.ourlong-termgoalistoembedthelearnedclassierinaninteractive systemthatsupportsanimageanalyst.forthisreason,wewouldpreferalearningalgorithmthat achieveshighaccuracyfromrelativelyfewtrainingcases,sincethisshouldreducetheloadonthe humananalyst.

RooftopDetectionThroughMachineLearning 16 1 True Positive Rate 0.8 0.6 0.4 Figure6.ROCcurvefortheexperimentusingallavailableimagedata.Weraneachmethodoverarangeof Naive Bayes costsusingatrainingset(60%)andatestingset(40%)andaveragedthetruepositiveandfalse 0.2 Nearest Neighbor Budds Classifier 0 0 0.2 0.4 0.6 0.8 1 Tothisend,wecarriedoutanalexperimentinwhichwesystematicallyvariedthenumber positiveratesovertenruns.naivebayesproducedthecurvewiththelargestarea,butnearest neighboralsoyieldedacurvelargerinareathanthatforthebuddsclassier. False Positive Rate candidates,splittingthedataintotraining(60%)andtest(40%)sets,butfurtherdividingthe trainingsetrandomlyintotensubsets(10%,20%,:::,100%).weranthelearningalgorithmson oftrainingcasesavailabletothelearningmethod.weagainusedalloftheavailablerooftop eachofthetrainingsubsetsandevaluatedtheacquiredconceptdescriptionsonthereservedtesting thethebuddsclassierisat,sinceitinvolvesnotrainingandwesimplyappliedittothesame data,averagingourresultsover25separatetraining/testsplits. undertheroccurvesforagivennumberoftrainingcases.asexpected,thelearningcurvefor testsetforeachnumberoftrainingcases.however,nearestneighborproducesacurvethatstarts Figure7showstheresultinglearningcurves,eachpointofwhichcorrespondstotheaveragearea belowthatofthebuddsclassierandthensurpassesitafterseeing70%ofthetrainingdata.naive oneimage.notonlywasnaivebayesthebestperformingmethod,butalsoitwasabletoachieve Bayesshowssimilarimprovementwithincreasingamountsoftrainingdata,butitsperformance Thisequatestoroughly6%oftheavailabledataandislessthantheamountofdataderivedfrom wasbetterthanthebuddsclassierfromthestart,afterobservingonly10%ofthetrainingdata. thisperformanceusingverylittleoftheavailabletrainingdata. 7.5Summary naivebayes,showedpromiseofimprovingtherooftopdetectiontaskoverthehandcraftedlinear dataderivedfromthesameimage,itwasapparentthatatleastonemachinelearningmethod, Fromthewithin-learningexperiments,inwhichwetrainedandtestedthelearningmethodsusing classier.theresultsfromthisexperimentalsoestablishedbaselineperformanceconditionsforthe couldbebecausebuddswasinitiallydevelopedusingnadirimagesandthenextendedtohandle thatrooftopdetectionforobliqueimagesposedamoredicultproblemthanfornadirimages.this methodsbecausetheycontrolledfordierencesinaspectandlocation. Inaneorttotestthelearningmethodsfortheirabilitytogeneralizetounseenimages,wefound

RooftopDetectionThroughMachineLearning 17 Table4.Resultsfortheexperimentusingalloftheimagedata.Wesplitthedataintotraining(60%)and test(40%)setsandraneachmethodoverarangeofcosts.wethencomputedtheaveragearea undertheroccurveand95%condenceintervalsovertenruns. Classier NaiveBayes NearestNeighbor BuddsClassier ApproximateArea 0.8500.008 0.8010.008 obliqueimages.thus,thefeaturesmaybebiasedtowardnadir-viewrooftops.amorelikely 0.7870.008 explanationisthatobliqueimagesaresimplyharderthannadirimages.nevertheless,underall nearestneighbor. generalizingtounseenimages,butthattheperformanceofnaivebayesdegradedlessthanthatof linearclassier.finally,wealsodiscoveredthattheperformanceofthemethodsdegradedwhen circumstances,theperformanceofnaivebayeswasequaltoorbetterthanthatofthehandcrafted thehandcraftedsolutionbymorethanafactoroftwofortruepositiveratesof0.84andhigher. naivebayesandnearestneighboroutperformedthebuddsclassier.furtheranalysisofspecic pointsontheroccurvesrevealedthatnaivebayesimproveduponthefalsepositiverateof Ournalexperimentusedalloftheavailableimagedataforlearninganddemonstratedthat theavailabletrainingdata. LearningcurvesdemonstratedthatnaiveBayesachievedsuperiorperformanceusingverylittleof workinvisuallearningtakesanimage-basedapproach(e.g.,beymer&poggio1996),inwhichthe Researchonlearningincomputervisionhasbecomeincreasinglycommoninrecentyears.Some 8.RelatedWork thepixelsintoadecisionorclassication.researchershaveusedthisapproachextensivelyforface andgesturerecognition(e.g.,chan,nasrabadi,&mirelli1996;guttaetal.1996;osuna,freund,& process,whichisresponsibleforformingtheintermediaterepresentationsnecessarytotransform imagesthemselves,usuallynormalizedortransformedinsomeway,areusedasinputtoalearning Girosi1997;Segen1994),althoughithasseenotherapplicationsaswell(e.g.,Nayar&Poggio1996; Pomerleau1996;Viola1993). features,basedonintensityorshapeproperties,thenlearnstorecognizedesiredobjectsusing thesemachine-producedclassiers.shepherd(1983)useddecision-treeinductiontoclassifyshapes ofchocolatesforanindustrialvisionapplication.cromwellandkak(1991)tookasimilarapproach Aslightlydierentapproachreliesonhandcraftedvisionroutinestoextractrelevantimage forrecognizingelectricalcomponents,suchastransistors,resistors,andcapacitors.maloofand Michalski(1997)examinedvariousmethodsoflearningshapecharacteristicsfordetectingblasting capsinx-rayimages,whereasadditionalwork(maloofetal.1996)discussedlearninginamultistepvisionsystemforthesamedetectionproblem. byconklin(1993),connellandbrady(1987),cooketal.(1993),provan,langley,andbinford Severalresearchershavealsoinvestigatedlearningforthree-dimensionalvisionsystems.Papers

RooftopDetectionThroughMachineLearning 18 0.9 Average Area under Curve 0.85 0.8 Figure7.LearningcurvesforareaundertheROCcurveusingallavailableimagedata.Weraneachmethod 0.75 Naive Bayes Nearest Neighbor Budds Classifier 0.7 (1996),andSenguptaandBoyer(1993)alldescribeinductiveapproachesaimedatimprovingobject onincreasingamountsoftrainingdataandevaluatedtheresultingconceptdescriptionsonreserved testingdata.eachpointisanaverageoftenruns. 10 20 30 40 50 60 70 80 90 100 Percentage of Training Data recognition.theaimhereistolearnthethree-dimensionalstructurethatcharacterizesanobjector objectclass,ratherthanitsappearance.anotherlineofresearch,whichfallsmidwaybetweenthis approachandimage-basedschemes,insteadattemptstolearnasmallsetofcharacteristicviews, Pope&Lowe1996). eachofwhichcanbeusedtorecognizeanobjectfromadierentperspective(e.g.,gros1993; costoferrorsintotheiralgorithmforconstructingandpruningmultivariatedecisiontrees.they theselineshassomeprecedents.inparticular,draper,brodley,andutgo(1994)incorporatethe testedthisapproachonthetaskoflabelingpixelsfromoutdoorimagesforusebyaroad-following Mostworkonvisuallearningignorestheimportanceofmisclassicationcosts,butourworkalong testpixels.woods,bowyer,andkegelmeyer(1996),aswellasrowley,baluja,andkanade(1996), reportsimilarworkthattakesintoaccountthecostoferrors. thanthereverse,andshowedexperimentallythattheirmethodcouldreducesucherrorsonnovel vehicle.theydeterminedthat,inthiscontext,labelingaroadpixelasnon-roadwasmorecostly intosemanticnetworksthatitthengeneralizedbycomparingtodescriptionsofotherinstances. Draper1997;Teller&Veloso1997).OneexceptionisConnellandBrady's(1987)workonlearning structuraldescriptionsofairplanesfromaerialviews.theirmethodconvertedtrainingimages Muchoftheresearchonvisuallearningusesimagesofscenesorobjectsviewedateyelevel(e.g., However,theauthorsdonotappeartohavetestedexperimentallytheiralgorithm'sabilityto 1996),whichcatalogscelestialobjects,suchasgalaxiesandstars,usingimagesfromtheSecond accuratelyclassifyobjectsinnewimages.anotherexampleistheskicatsystem(fayyadetal. PalomarObservatorySkySurvey. UsingROCcurves,theydemonstratethattheensembleachievedbetterperformancethaneither detectvenusianvolcanos,usingsyntheticapertureradaronthemagellanspacecraft.askerand Maclin(1997)extendJARToolbyusinganensembleof48neuralnetworkstoimproveperformance. Arelatedsystem,JARTool(Fayyadetal.1996),alsoanalyzesaerialimages,inthiscaseto theindividuallearnedclassiersortheoneusedoriginallyinjartool.theyalsodocumentsome

RooftopDetectionThroughMachineLearning 19 ofthedicultiesassociatedwithapplyingmachinelearningtechniquestoreal-worldproblems,such asfeatureselectionandinstancelabeling,whichweresimilartoproblemsweencountered. neuralnetworks)tolearnconditionsonoperatorselection.hepresentsinitialresultsonaradius procedure(forsoftwaresimilartobudds),thenusesaninductionmethod(backpropagationin Hisapproachadaptsmethodsforreinforcementlearningtoassigncreditinmulti-stagerecognition Finally,Draper(1996)reportsacarefulstudyoflearninginthecontextofanalyzingaerialimages. taskthatalsoinvolvesthedetectionofroofs.ourframeworksharessomefeatureswithdraper's approach,butassumesthatlearningisdirectedbyfeedbackfromahumanexpert.wepredict thatoursupervisedmethodwillbemorecomputationallytractablethanhisuseofreinforcement learning,whichiswellknownforitshighcomplexity.ourapproachdoesrequiremoreinteraction withusers,butwebelievethisinteractionwillbeunobtrusiveifcastwithinthecontextofan advisorysystemforimageanalysis. Althoughthisstudyhasprovidedsomeinsightintotheroleofmachinelearninginimageanalysis, 9.ConcludingRemarks muchstillremainstobedone.forexample,wemaywanttoconsiderothermeasuresofperformance thattakeintoaccountthepresenceofmultiplevalidcandidatesforagivenrooftop.classifying methods,weintendtoworkatbothearlierandlaterlevelsofthebuildingdetectionprocess.the goalhereisnotonlytoincreaseclassicationaccuracy,whichcouldbehandledentirelybycandidate oneofthesecandidatescorrectlyissucientforthepurposeofimageanalysis. selection,butalsotoreducethecomplexityofprocessingbyremovingpoorcandidatesbeforethey Inaddition,althoughtherooftopselectionstagewasanaturalplacetostartinapplyingour areaggregatedintolargerstructures.withthisaiminmind,weplantoextendourworktoall andtakingthisintoaccountinourmodiedinductionalgorithms.anotherconcernswhetherwe shouldusethesameinductionalgorithmateachlevelorusedierentmethodsateachstage. levelsoftheimageunderstandingprocess.wemustaddressanumberofissuesbeforewecanmake progressontheseotherstages.oneinvolvesidentifyingthecostofdierenterrorsateachlevel, madebytheimageunderstandingsystem,generatingtrainingdataintheprocess.atintervals hopetointegratelearningroutinesintobudds.thissystemwasnotdesignedinitiallytobeinteractive,butweintendtomodifyitsothattheimageanalystcanacceptorrejectrecommendations Aswementionedearlier,inordertoautomatethecollectionoftrainingdataforlearning,wealso thesystemwouldinvokeitslearningalgorithms,producingrevisedknowledgethatwouldalterthe interactivelabelingsystemdescribedinsection5couldserveasaninitialmodelforthisinterface. system'sbehaviorinthefutureand,hopefully,reducetheuser'sneedtomakecorrections.the ingtheaccuracy,andthustherobustness,ofimageanalysissystems.however,weneedadditional experimentstogivebetterunderstandingofthefactorsaectingbetween-imagegeneralizationand weneedtoextendlearningtoadditionallevelsoftheimageunderstandingprocess.also,beforewe Inconclusion,ourstudiessuggestthatmachinelearninghasanimportantroletoplayinimprov- canbuildasystemthattrulyaidsthehumanimageanalyst,wemustfurtherdevelopunobtrusive waystocollecttrainingdatatosupportlearning.

RooftopDetectionThroughMachineLearning 20 TheauthorsthankRamNevatia,AndresHuertas,andAndyLinfortheirassistanceinobtaining Acknowledgements theimagesanddatausedforexperimentationandprovidingvaluablecommentsandadvice.we wouldalsoliketothankdanshapirofordiscussionsaboutdecisiontheoryandwayneibaforhis assistancewithnaivebayes.thisworkwasconductedattheinstituteforthestudyoflearning andexpertiseandinthecomputationallearninglaboratory,centerforthestudyoflanguage andinformation,atstanforduniversity.theresearchwassupportedbythedefenseadvanced ResearchProjectsAgency,undergrantN00014-94-1-0746,administeredbytheOceofNaval Research,andbySunMicrosystemsthroughagenerousequipmentgrant. References Aha,D.;Kibler,D.;andAlbert,M.1991.Instance-basedlearningalgorithms.MachineLearning Asker,L.,andMaclin,R.1997.Featureengineeringandclassierselection:acasestudyinVenusianvolcanodetection.InProceedingsoftheFourteenthInternationalConferenceonMachine 6:37{66. Beymer,D.,andPoggio,T.1996.Imagerepresentationsforvisuallearning.Science272:1905{1909. Learning,3{11.SanFrancisco,CA:MorganKaufmann. Bradley,A.1997.TheuseoftheareaundertheROCcurveintheevaluationofmachinelearning Breiman,L.;Friedman,J.;Olshen,R.;andStone,C.1984.Classicationandregressiontrees. algorithms.patternrecognition30:1145{1159. Cardie,C.,andHowe,N.1997.Improvingminorityclasspredictionusingcase-specicfeature Belmont,CA:Wadsworth. Chan,L.;Nasrabadi,N.;andMirelli,V.1996.Multi-stagetargetrecognitionusingmodularvector 65.SanFrancisco,CA:MorganKaufmann. weights.inproceedingsofthefourteenthinternationalconferenceonmachinelearning,57{ Clark,P.,andNiblett,T.1989.TheCN2inductionalgorithm.MachineLearning3:261{284. VisionandPatternRecognition,114{119.LosAlamitos,CA:IEEEPress. quantizersandmultilayerperceptrons.inproceedingsoftheieeeconferenceoncomputer Conklin,D.1993.Transformation-invariantindexingandmachinediscoveryforcomputervision.In Connell,J.,andBrady,M.1987.Generatingandgeneralizingmodelsofvisualobjects.Articial WorkingNotesoftheAAAIFallSymposiumonMachineLearninginComputerVision,10{14. Intelligence31:159{183. MenloPark,CA:AAAIPress. Cook,D.;Hall,L.;Stark,L.;andBowyer,K.1993.Learningcombinationofevidencefunctions Cromwell,R.,andKak,A.1991.Automaticgenerationofobjectclassdescriptionsusingsymbolic inobjectrecognition.inworkingnotesoftheaaaifallsymposiumonmachinelearningin ComputerVision,139{143.MenloPark,CA:AAAIPress. learningtechniques.inproceedingsoftheninthnationalconferenceonarticialintelligence, 710{717.

RooftopDetectionThroughMachineLearning 21 Draper,B.;Brodley,C.;andUtgo,P.1994.Goal-directedclassicationusinglinearmachine Draper,B.1996.Learninggroupingstrategiesfor2Dand3Dobjectrecognition.InProceedingsof decisiontrees.ieeetransactionsonpatternanalysisandmachineintelligence16(9):888{893. Draper,B.1997.Learningcontrolstrategiesforobjectrecognition.InIkeuchi,K.,andVeloso,M., eds.,symbolicvisuallearning.newyork,ny:oxforduniversitypress.49{76. theimageunderstandingworkshop,1447{1454.sanfrancisco,ca:morgankaufmann. Egan,J.1975.SignaldetectiontheoryandROCanalysis.NewYork,NY:AcademicPress. Fawcett,T.,andProvost,F.1997.Adaptivefrauddetection.DataMiningandKnowledgeDiscovery Ezawa,K.;Singh,M.;andNorton,S.1996.Learninggoal-orientedBayesiannetworksfortelecommunicationsriskmanagement.InProceedingsoftheThirteenthInternationalConferenceon 1:291{316. MachineLearning,139{147.SanFrancisco,CA:MorganKaufmann. Firschein,O.,andStrat,T.,eds.1997.RADIUS:imageunderstandingforimageryintelligence. Fayyad,U.;Smyth,P.;Burl,M.;andPerona,P.1996.Learningtocatalogscienceimages.In 237{268. Nayar,S.,andPoggio,T.,eds.,Earlyvisuallearning.NewYork,NY:OxfordUniversityPress. Freund,Y.,andSchapire,R.1996.Experimentswithanewboostingalgorithm.InProceedings SanFrancisco,CA:MorganKaufmann. Freund,Y.;Seung,H.;Shamir,E.;andTishby,N.1997.SelectivesamplingusingtheQueryby ofthethirteenthinternationalconferenceonmachinelearning,148{156.sanfrancisco,ca: MorganKaufmann. Green,D.,andSwets,J.1974.Signaldetectiontheoryandpsychophysics.NewYork,NY:Robert Committeealgorithm.MachineLearning28:133{168. Gros,P.1993.Matchingandclustering:Twostepstowardsautomaticobjectmodelgeneration E.KriegerPublishing. Gutta,S.;Huang,J.;Imam,I.;andWeschler,H.1996.Faceandhandgesturerecognitionusing incomputervision.inworkingnotesoftheaaaifallsymposiumonmachinelearningin ComputerVision,40{44.MenloPark,CA:AAAIPress. Hanley,J.,andMcNeil,B.1982.ThemeaninganduseoftheareaunderaReceiverOperating hybridclassiers.inproceedingsofthesecondinternationalconferenceonautomaticfaceand Characteristic(ROC)curve.Radiology143:29{36. GestureRecognition,164{169.LosAlamitos,CA:IEEEPress. Kubat,M.,andMatwin,S.1997.Addressingthecurseofimbalancedtrainingsets:one-sided Langley,P.,andSimon,H.1995.Applicationsofmachinelearningandruleinduction.CommunicationsoftheACM38:55{64. selection.inproceedingsofthefourteenthinternationalconferenceonmachinelearning,179{ 186.SanFrancisco,CA:MorganKaufmann. Langley,P.;Iba,W.;andThompson,K.1992.AnanalysisofBayesianclassiers.InProceedings Press. ofthetenthnationalconferenceonarticialintelligence,223{228.menlopark,ca:aaai

RooftopDetectionThroughMachineLearning 22 Lin,C.,andNevatia,R.1996.Buildingdetectionanddescriptionfrommonocularaerialimages. Lewis,D.,andCatlett,J.1994.Heterogeneousuncertaintysamplingforsupervisedlearning.In cisco,ca:morgankaufmann. ProceedingsoftheEleventhInternationalConferenceonMachineLearning,148{156.SanFran- Maloof,M.,andMichalski,R.1997.Learningsymbolicdescriptionsofshapeforobjectrecognition InProceedingsoftheImageUnderstandingWorkshop,461{468.SanFrancisco,CA:Morgan inx-rayimages.expertsystemswithapplications12:11{20. Kaufmann. Maloof,M.;Langley,P.;Sage,S.;andBinford,T.1997.Learningtodetectrooftopsinaerial Maloof,M.;Duric,Z.;Michalski,R.;andRosenfeld,A.1996.RecognizingblastingcapsinX-ray MorganKaufmann. images.inproceedingsoftheimageunderstandingworkshop,835{845.sanfrancisco,ca: images.inproceedingsoftheimageunderstandingworkshop,1257{1261.sanfrancisco,ca: Michalski,R.;Mozetic,I.;Hong,J.;andLavrac,H.1986.Themulti-purposeincrementallearning MorganKaufmann. Nayar,S.,andPoggio,T.,eds.1996.Earlyvisuallearning.NewYork,NY:OxfordUniversityPress. systemaq15anditstestingapplicationtothreemedicaldomains.inproceedingsofthefifth Osuna,E.;Freund,R.;andGirosi,F.1997.TrainingSupportVectorMachines:anapplication NationalConferenceonArticialIntelligence,1041{1045.MenloPark,CA:AAAIPress. Pazzani,M.;Merz,C.;Murphy,P.;Ali,K.;Hume,T.;andBrunk,C.1994.Reducingmisclassi- tofacedetection.inproceedingsoftheieeeconferenceoncomputervisionandpattern cationcosts.inproceedingsoftheeleventhinternationalconferenceonmachinelearning, Recognition,130{136.LosAlamitos,CA:IEEEPress. Pomerleau,D.1996.Neuralnetworkvisionforrobotdriving.InNayar,S.,andPoggio,T.,eds., Earlyvisuallearning.NewYork,NY:OxfordUniversityPress.161{181. 217{225.SanFrancisco,CA:MorganKaufmann. Pope,A.,andLowe,D.1996.Learningprobabilisticappearancemodelsforobjectrecognition.In Provan,G.;Langley,P.;andBinford,T.1996.Probabilisticlearningofthree-dimensionalobject models.inproceedingsoftheimageunderstandingworkshop,1403{1413.sanfrancisco,ca: 67{97. Nayar,S.,andPoggio,T.,eds.,Earlyvisuallearning.NewYork,NY:OxfordUniversityPress. Provost,F.,andFawcett,T.1997.Analysisandvisualizationofclassierperformance:comparison MorganKaufmann. Quinlan,J.1993.C4.5:Programsformachinelearning.SanFrancisco,CA:MorganKaufmann. underimpreciseclassandcostdistributions.inproceedingsofthethirdinternationalconferenceonknowledgediscoveryanddatamining,43{48.menlopark,ca:aaaipress. Rowley,H.;Baluja,S.;andKanade,T.1996.Neuralnetwork-basedfacedetection.InProceedings oftheieeeconferenceoncomputervisionandpatternrecognition,203{208.losalamitos, CA:IEEEPress.

RooftopDetectionThroughMachineLearning 23 Segen,J.1994.GEST:alearningcomputervisionsystemthatrecognizeshandgestures.InMichalski,R.,andTecuci,G.,eds.,MachineLearning:AMultistrategyApproach,volume4.San Francisco,CA:MorganKaufmann.621{634. Sengupta,K.,andBoyer,K.1993.Incrementalmodelbaseupdating:learningnewmodelsites.In Shepherd,B.1983.Anappraisalofadecisiontreeapproachtoimageclassication.InIJCAI-83, 473{475. MenloPark,CA:AAAIPress. WorkingNotesoftheAAAIFallSymposiumonMachineLearninginComputerVision,1{5. Soderland,S.,andLehnert,W.1994.Corpus-drivenknowledgeacquisitionfordiscourseanalysis. Teller,A.,andVeloso,M.1997.PADO:anewlearningarchitectureforobjectrecognition.In Swets,J.1988.Measuringtheaccuracyofdiagnosticsystems.Science240:1285{1293. InProceedingsoftheTwelfthNationalConferenceonArticialIntelligence,827{832. Turney,P.1995.Cost-sensitiveclassication:empiricalevaluationofahybridgeneticdecisiontree Ikeuchi,K.,andVeloso,M.,eds.,Symbolicvisuallearning.NewYork,NY:OxfordUniversity Press.77{112. Viola,P.1993.Feature-basedrecognitionofobjects.InWorkingNotesoftheAAAIFallSymposium inductionalgorithm.journalofarticialintelligenceresearch2:369{409. Woods,K.;Bowyer,K.;andKegelmeyer,W.1996.Combinationofmultipleclassiersusinglocal onmachinelearningincomputervision,60{64.menlopark,ca:aaaipress. Zurada,J.1992.Introductiontoarticialneuralsystems.St.Paul,MN:WestPublishing. accuracyestimates.inproceedingsoftheieeeconferenceoncomputervisionandpattern Recognition,391{396.LosAlamitos,CA:IEEEPress.