Demand Forecasting Using Bayesian Experiment with Non-homogenous Poisson Process Model



Similar documents
Analysis Method of Traffic Congestion Degree Based on Spatio-Temporal Simulation

CEO Björn Ivroth. Oslo, 29 April Q Presentation

Numerical Algorithm for the Stochastic Present Value of Aggregate Claims in the Renewal Risk Model

Term Structure of Interest Rates: The Theories

Fuzzy Task Assignment Model of Web Services Supplier

Ref No: Version 5.1 Issued: September, 2013

A Fuzzy Inventory System with Deteriorating Items under Supplier Credits Linked to Ordering Quantity

A Portfolio Risk Management Perspective of Outsourcing

A Bayesian Based Search and Classification System for Product. Information of Agricultural Logistics Information Technology

Virtual Sensors

Problem Set 6 Solutions

SIF 8035 Informasjonssystemer Våren 2001

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

Forecasting Demand of Potential Factors in Data Centers

Introduction to Statistical Analysis of Time Series Richard A. Davis Department of Statistics

Many quantities are transduced in a displacement and then in an electric signal (pressure, temperature, acceleration). Prof. B.

Decision Making in Finance: Time Value of Money, Cost of Capital and Dividend Policy

Frederikshavn kommunale skolevæsen

REVISTA INVESTIGACION OPERACIONAL VOL. 31, No.2, , 2010

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Financial Mathematics


by John Donald, Lecturer, School of Accounting, Economics and Finance, Deakin University, Australia

Estimating Powers with Base Close to Unity and Large Exponents

Approximate Counters for Flash Memory

Chad Saunders 1, Richard E Scott 2

Pricing Warrants Models: An Empirical Study of the Indonesian Market

How To Work For A Company

BEST PRACTICES IN ENGAGING SMES DURING

Beco e ready for capital!

Mechanical Vibrations Chapter 4

L a h ip e r t e n s ió n a r t e r ia l s e d e f in e c o m o u n n iv e l d e p r e s ió n a r t e r ia l s is t ó lic a ( P A S ) m a y o r o

Reliability of Price-Earnings Ratio as a Valuation Technique:A Critical View.

Physics 106 Lecture 12. Oscillations II. Recap: SHM using phasors (uniform circular motion) music structural and mechanical engineering waves

PREFERRED LIFE INSURANCE NORTH AMERICA

Magic Message Maker Amaze your customers with this Gift of Caring communication piece

Dept. of Heating, Ventilation and Air-Conditioning. Zentralschweizerisches Technikum Luzern Ingenieurschule HTL

INFLUENCE OF DEBT FINANCING ON THE EFFECTIVENESS OF THE INVESTMENT PROJECT WITHIN THE MODIGLIANIMILLER THEORY

Excel Invoice Format. SupplierWebsite - Excel Invoice Upload. Data Element Definition UCLA Supplier website (Rev. July 9, 2013)

SCO TT G LEA SO N D EM O Z G EB R E-

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

Traffic Flow Analysis (2)

FORECASTING MODEL FOR AUTOMOBILE SALES IN THAILAND

Future Trends in Airline Pricing, Yield. March 13, 2013

Bullwhip Effect Measure When Supply Chain Demand is Forecasting

Put the human back in Human Resources.

Online Appendix I: A Model of Household Bargaining with Violence. In this appendix I develop a simple model of household bargaining that

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage

Question 3: How do you find the relative extrema of a function?

CLOUD COMPUTING BUSINESS MODELS

TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS

DHL EXPRESS CANADA E-BILL STANDARD SPECIFICATIONS

Assessing the cost of Outsourcing: Efficiency, Effectiveness and Risk

BASIC DEFINITIONS AND TERMINOLOGY OF SOILS

A New Hybrid Network Traffic Prediction Method

Transistor is a semiconductor device with fast respond and accuracy. There are two types

CIS CO S Y S T E M S. G u ille rm o A g u irre, Cis c o Ch ile , C is c o S y s te m s, In c. A ll rig h ts re s e rv e d.

at 10 knots to avoid the hurricane, what could be the maximum CPA? 59 miles - 54 nm STEP 1 Ship s Speed Radius (e-r) 10 k nm every 6 minutes

Project Management 101

Campus Sustainability Assessment and Related Literature

Establishing Wireless Conference Calls Under Delay Constraints

Department of Natural Resources

C e r t ifie d Se c u r e W e b

Transient Thermoelastic Behavior of Semi-infinite Cylinder by Using Marchi-Zgrablich and Fourier Transform Technique

ME 612 Metal Forming and Theory of Plasticity. 6. Strain

New Basis Functions. Section 8. Complex Fourier Series

Impact of the San Diego Serial Inebriate Program on Use of Emergency Medical Resources

Western Asset Core Plus Portfolios Select UMA Western Asset Management

Transient Analysis of First Order RC and RL circuits

Numerical and Experimental Study on Nugget Formation in Resistance Spot Welding for High Strength Steel Sheets in Automobile Bodies

DATA MINING TECHNOLOGY IN PREDICTING THE CULTIVATED LAND DEMAND

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y


A Note on Approximating. the Normal Distribution Function

Finite Dimensional Vector Spaces.

Investment Grade Fixed Income Select UMA Cincinnati Asset Management

Technological Entrepreneurship : Modeling and Forecasting the Diffusion of Innovation in LCD Monitor Industry

Investment Grade Fixed Income Fiduciary Services Cincinnati Asset Management

Allocating Redundancy to Critical Information Technology Functions for Disaster Recovery

Mathematical Modeling and Analysis of a Vehicle Crash

Category 7: Employee Commuting

[ ] These are the motor parameters that are needed: Motor voltage constant. J total (lb-in-sec^2)

Acceptance Page 2. Revision History 3. Introduction 14. Control Categories 15. Scope 15. General Requirements 15

GOAL PROGRAMMING BASED MASTER PLAN FOR CYCLICAL NURSE SCHEDULING

Applied Eq Adv-Gbl Concen Fiduciary Services Applied Equity Advisors

Brussels, February 28th, 2013 WHAT IS

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

1. Online Event Registration 2. Event Marketing 3. Automated Event Progress Reports 4. Web based Point of Sale Terminal 5. Marketing System

IT Update - August 2006

5 2 index. e e. Prime numbers. Prime factors and factor trees. Powers. worked example 10. base. power

Large Cap Equity Fiduciary Services Fayez Sarofim & Co.

DATING YOUR GUILD

Transcription:

Iraioal Joural of Opraios Rsarh Iraioal Joural of Opraios Rsarh Vol., No., 9 (5) Dad Forasig Usig Baysia Expri wih No-hoogous Poisso Pross Modl Hug-Ju Wag,, Ch-Fu Chi,*, ad Chig-Fag Liu Dpar of Idusrial Egirig ad Egirig Maag, Naioal Tsig Hua Uivrsiy, Hsihu 3, Taiwa. R.O.C. Miisry of Eoois, Taipi, Taiwa. R.O.C Absra This sudy prss a ovl ahaial odl usig Baysia odl for dad forasig wih o-hoogous Poisso pross odl. This sudy ais o osru a frawork o iiiz h ovrproduio ad udrproduio oss by usig h i-dpd uraiy of auulaiv dad urv. Spifi odls wr drivd as h fudaals of his approah. Furhror, his sudy also proposd a hod o valua dad forasig usig Baysia xpri wih o-hoogous Poisso pross odl. Kywords Dad forasig, Poisso pross, Baysia, Mahaial odl, Disio aalysis. INTRODUCTION Sussful prfora of rvu aag syss havily rlis o forasig ad opiizaio (Rajopadhy al., 999). Basd o h hisorial dad daa, rsarhrs hav applid i sris or ohr saisial aalysis hods for dad foras. For xapl, Hol-Wirs xpoial soohig odl for opial forasig is applid for shor-r forass for sris of sals daa or lvls of dad for goods (Sgura ad Vrhr, ). Rahr ha usig sigl forasig hod, Wi ad Wi (995) proposd auo-rgrssio, xpoial soohig, ad ooris for forasig ouris dad. Wih aggrga slak orol or ulisag produio orol, h asr plaig produr wih h varia of produio ad ivory lvls a avoid h ursraid growh of ivory ad h uorollabl osupio of apaiy (Barzzaghi ad Vrgai, 995, Hirakawa, 996). Alraivly, his sudy ais o osru a frawork o iiiz h ovrproduio ad udrproduio oss by usig h i-dpd uraiy of auulaiv dad urv i whih so propris of h Poisso pross ar irodud ad h rlaio bw h Poisso pross ad Bays hory is idifid. Du o h sohasi hararisis of h fuur apaiy ds by ipu ad oupu pross (Laior ad Bakr, 997), h Poisso pross ad Bays hory (Cilar, 975) ar adopd hri. This approah is diffr fro h Baysia aalysis of h Muh odl ad ixd Markov wih la lass odl.g., Urba al. (996), Goulias (999). Baus his ahaial odl is drivd fro h pas sals xpri, h hology of pr-ark forasig of w produ ay o b suiabl by lakig of h hisorial daa (Gaviri al., 998). Furhror, his sudy also proposd a hod o valua dad forasig usig Baysia xpri wih o-hoogous Poisso pross odl. Ths idis of valuaio ar ssial i rvu aag. Th rs of his papr is orgaizd as follows. Sio sablishs h horial foudaio ad dsribs h proposd ahaial odls. Sio 3 irodus h valuaio pross ha osidrs ovrproduio ad udrproduio oss o assss h auulaiv dad urv ad is uraiy. Coludig rarks ar fially ad i sio 4, iludig h ris ad liiaios of h proposd produr.. MATHEMATICAL MODEL Th followig riology ad oaios ar grally usd i his sudy. (, ): h v ra for ah v ours i priod. : h avrag of rado v ra. h (): h auulaiv dad fuio of i. ( ) : osa of v ra. k( ): volu of produ k a i. : i priod or i irval. P (, (, )): a Poisso pross prss h probabiliy of produ s dad a giv i ad v ra (, ). f(, (,)) : a odiioal probabiliy fuio of gaa disribuio for i irval giv ad (, ). Hri, h Poisso pross is adopd for dad forasig. Espially, h likag bw dad forasig ad ivory aag a b applid i a odl wih odsd ad opoudd Poisso ixd ovr i (Boyla ad Johso, 996). I h gral odl of Poisso pross, rsarhrs usually us h * Corrspodig auhor s ail: fhi@x.hu.du.w 83-73X Copyrigh 5 ORSTW

Wag, Chi, ad Liu: Dad Forasig Usig Baysia Expri wih No-hoogous Poisso Pross Modl IJOR Vol., No., 9 (5) osa v ra as h parar of (Hogg ad Tais, 983). So gaps xis bw h Poisso pross ad Bays hory i rs of h v ra updad. Tha as h ould b variabl isad of osa parar. Thor : If a spifi v i a sys ours as a Poisso xpri, h drivd Baysia odl o h v ra will hav h liklihood fuio as a Poisso disribuio. Tha is, (, ) d (, ) d P (, (, ))!! Proof: s Wag ad Chi (). ( ) h( τ ) I Thor, h Poisso pross ad Bays hory ar rlad i rs of h radoss of v ra. Th iuiio of his ovrsio os fro h odl i Drikig War Copay of Liburg (WML) who hags h osa produio flow io opiizaio of h quaiaiv orol Bakr al. (998). Fro h abov hor, w a ifr ha h posrior disribuio of v ra is gaa disribuio. For h radoss of v ra, w assu hr is a dad urv wih i dpd fuio h () ha affs h a of ha v ra. Th o-hoogous Poisso pross odl a b applid o dal wih h radoss of a v ra a obi h Poisso pross ad Bays hory o solv h probl of i dpdy o h v ra. Thor : If a spifi v i a sys ours as a Poisso xpri wih h i dpd v ra, h drivd Baysia odl will hav h liklihood fuio as a Poisso disribuio. Tha is, h d! ( τ) τ f(,, (, )) Proof: s appdix. H, Thor liks h o-hoogous Poisso pross ad h Bays hory. Th, h dad urv h () is h auulaiv ad h v ra (, ) is qual o wih h radoss of o whih i quaio (9). Fro h propris of Poisso pross, w kow ha h probabiliy disribuio of h rado variabl i, () (9) rprsig h ubr of produs dad i a giv i irval dod by. Thor 3: If ourr spifi vs (), (),, () i a sys or opo our as is Poisso xpri rspivly o h sa v ra, h drivd Baysia odl wih axiu liklihood siaor (Cilar, 975) will saisfy E [ ] k k h ( τ ) d τ Proof: s appdix. () Thor 3 spifis h rlaioship bw h radoss v ra ad h auulaiv dad h () is of rlva or. Thor 4: If ourr spifi vs (), (),, () i a sys our as is Poisso xpri rspivly o h sa v ra (, ), h drivd Baysia odl wih axiu liklihood siaor will saisfy + E[, ] (3) h( τ ) + ad Var(, ) (5) h( τ ) Proof: s appdix 3. Baus h auulaiv dad urv is a o-drasig fuio as i gos by, h largr dad rquir iplis a sallr uraiy of v ra. Thor 5: Miod abou avrag i as of hr is a saddl poi i warig produiviy sragy wih irasig h () If f ''(), h() h () Proof: s appdix 4. 3. EVALUATION PROCESS (7) Th abov hors ad propris i h o-hoogous Poisso pross a b applid o dvlop a valuaio pross of dad forasig as

Wag, Chi, ad Liu: Dad Forasig Usig Baysia Expri wih No-hoogous Poisso Pross Modl IJOR Vol., No., 9 (5) 3 show i Figur. I his valuaio pross, o oll dad urv basd o hisorial daa of siilar produs is h ai prossig of daa aalysis i h proposd frawork (Lrpalagsui ad Cha, 998). As illusrad i Figur, h valuaio pross osiss of six sps. Firsly, h hisorial dad daa of a spifi produ or siilar produs wih (), (),, () a so rai i ar olld. Followig h aur of a lupy dad (Barzzaghi al., 999), if his produ is a w o, so siilar produs a b usd o rpla h avrag dad daa (), (),, (). If h dad daa a o b olld, h auulaiv sals daa a also b usd o subsiu h avrag dad daa, hough h udrproduio os (Fishr ad Raa, 996) ay b udrsiad. Sodly, h ubiasd iiu varia siaor is usd as h avrag dad daa. Thr ar so spifi i pois for ollig h avrag dad daa. Th ubiasd iiu varia siaor uss h a valu of hs daa as h prdiio of h auulaiv urv a h sld i pois. Tha is, h d () k k is a poi siaor of h avrag dad a i. Thirdly, h ubi spli hiqu i urial aalysis (Burd al., 985) is ployd o sooh h avrag dad urv. Si oly h daa a so spifi i pois ar drivd i h sod sp, h oiuous dad ra h () a b drivd, whih is asir o driv h avrag dad urv by igraio. Fourhly, Thor 4 is ployd o obai h a ad varia valu of v ra for asurig h dad uraiy. I pariular, + Var(, ) h( τ ) iplis a larg uraiy a h bgiig of sals, if hr is a idl i passd. Th produ sragy sigifialy affs h profi ouo a h bgiig of sals ad hus aks h produ sals or urai of h bgiig ha so sals priods lar afr so sals priod. Fifhly, Thor is ployd o valua h radoss of v ra afr so sals priods. Aordig o quaio (7), h varia of h radoss i v ra is ovrg wih a iras of h auulaiv dad. Fially, rdud os of dad uraiy hology (Fishr ad Raa, 996) a b applid o iiiz h ovrproduio ad udrproduio oss. Wh sals ra of h () is irasig ad bfor rahig h saddl poi of h d, w a xpad our produiviy by h avrag dad urv ad is radoss o driv h probabiliis of ovrproduio ad udrproduio. Th xpd valu of ovrproduio os a b drivd fro h produ of disou os i ah produ ad is ovrprodud probabiliy. Siilariy, h xpd valu of udrproduio os a b drivd fro h produ of shorag os i ah produ ad is udrproduiv probabiliy. Morovr, h produio pla ad shdul a b valuad by h oal ovrproduio os ad udrproduio os durig h sals priods. Thr is a sigifia diffr bw his odl ad origi-dsiaio (OD) dad prdiio (Caus al., 997). Rahr ha usig h i sli i OD dad aris, his odl provids a igral siaio a ay i. Idd, h produ of h () is siilar o h siplifid forula i xpoial soohig odls (Wir, 96, Sal ad Jaqus, 999). Th fdbak loop of valuaio pross is h rsuls rfi ad validaio i ha frawork. k k C h d ( τ ) τ h( τ ) Figur. Evaluaio pross of dad forasig. 4. CONCLUDING REMARKS This sudy drivs ahaial odls i dad forasig ad proposs a orrspodig pross for valuaig dad foras. Th proposd odl a provid usful iforaio suh as variaio of produ dad a diffr is. Wih h uraiy of auulaiv dad urv big siad, his hod a b usd o iiiz h ovrproduio ad

Wag, Chi, ad Liu: Dad Forasig Usig Baysia Expri wih No-hoogous Poisso Pross Modl IJOR Vol., No., 9 (5) 4 udrproduio oss. Thrfor, h proposd odl a b usd o valua h produio pla ad shdul basd o h oal produio oss iludig ovrproduio ad udrproduio oss. Th rsuls for dad forasig drivd i his approah a b igrad wih rvu aag o axiiz h rvu i ligh of h fixd disou os, shorag os, ad sohasi avrag dad urv durig a sals priod. Furhr sudy is dd o us pirial daa for validaig h praial viabiliy of h proposd odl. ACKNOWLEDGEMENTS This rsarh is sposord by Naioal Si Couil, Taiwa, R.O.C. (NSC 93-3-E-7-8). APPENDIX Cosidr ha hr is a fuioal rado variabl (, ) i a Poisso pross suh ha (, ) wih () is a rado v ra ad h() is a fuio of i. Hr, w us h avrag of rado v ra o rprs h parar (). Th, for ah v ours i priod, w a g (, τ ) d τ ( ) (, τ) h( τ ) P (, (, ))!! () I addiio, l f(, (,)) b a odiioal probabiliy fuio of gaa disribuio for i irval giv ad (, ), whr i is a oiuous variabl Thus, (, τ ) d τ ( ) (, τ ) h( τ ) f(, (,))!! () O o had, P (, (, )) k f(,, (, )) f( k,, (, )) f(,, (, )) P(, (, )) f( k,, (, )) f(,, (, ))! ( ) f k k k (,, (, )) (3) O h ohr had, f(, (,)) f(,, (, )) f(,, (, )) d f(,, (, )) f(, (, )) f(,, (, )) d by (), ( ) (,, (, )) (,, ) f f d! (4)

Wag, Chi, ad Liu: Dad Forasig Usig Baysia Expri wih No-hoogous Poisso Pross Modl IJOR Vol., No., 9 (5) 5 Fro quaio (4), w driv: f(,, (, ))! + ( ) h( τ ) f(,, (, )) d h +! ( ) f(,, (, )) d + h! + + + ( ) h( τ ) f(,, (, )) d + + ( ) f(,, (, )) d! h() h () + f(,, (,)) h( τ ) (5) Th, l h( τ ) l [ f(,, (, )) ] [ l ] (6) Thus, f(,, (, )) ( ) h( τ ) (7) Copar h rsul of quaio (7) ad quaio (3), w obai: ( ) (,, (, )) (,, (, )) f f k k! k! ( ) h( τ ) f( k,, ( k, )) (8) k So, For h as,, h osrai of quaio (8) is saisfid.

Wag, Chi, ad Liu: Dad Forasig Usig Baysia Expri wih No-hoogous Poisso Pross Modl IJOR Vol., No., 9 (5) h d ( τ) τ f(,, (, ))! 6 (9) H, f( (, ), ) ( ) ( ) h( τ ) h( τ ) ( τ ) τ h d d () APPENDIX Suppos hr ar ourr Poisso pross, h vs our a (), (),, () durig i priod wih h sa v ra (, ). Fro Thor, w a g f( (, ), ) ( ) ( ) h( τ ) h( τ ) d k k h τ h τ k h τ h τ f( ( k, ) k, ) k k k k h( τ ) f( (, ), ) k k k d d k k ( ) ( ) k k ( ) k d ' k k k ( ) ' k h( τ ) k ( τ) τ ( τ) τ k k k h( τ ) d h( τ ) h d h d k ( ) d k For h purpos of opial,

Wag, Chi, ad Liu: Dad Forasig Usig Baysia Expri wih No-hoogous Poisso Pross Modl IJOR Vol., No., 9 (5) 7 k f( ( k, ) k, ) ' ' Th, k () k H, C k k h ( τ ) d τ () Thrfor, E [ ] E [ ] E [ ] k ( ) () k APPENDIX 3 Suppos hr ar ourr Poisso prosss, (), (),, () ar vs ourr durig i priod wih (). Fro quaio (9), h sa v ra f( (, ), ) ( ) ( ) ( ) h( τ ) h( τ ) h( τ ) d + ( ) h( τ ) ( ) ( ) d E[ (, ), ] f( (, ) d, ) d ( + )! +! (3) + ( ) ( ) h( τ ) d E[ (, ), ] f( (, ) d, ) d ( ) ( + )! ( + )( + )! h( τ ) (4)

Wag, Chi, ad Liu: Dad Forasig Usig Baysia Expri wih No-hoogous Poisso Pross Modl IJOR Vol., No., 9 (5) 8 Thus, Var( (, ), ) E[ (, ), ] E[ (, ), ] ( + )( + ) + + h τ (5) APPENDIX 4 L f() h ( τ ) d τ ' h ( τ) d τ h () f () + h d h h f " + ( τ) τ () ' () 3 If If f ', h (6) ' f ''(), h() h () (7) Tha as if w build a oior wih h d h warig of saddl poi o war h drasig ra of h() (i.. h'( ) < ) i h ar fuur. ( τ) τ ad h irasig ra of h() (i.. h'( ) > ), hr is a REFERENCES. Babok, M.W., Lu, X., ad Noro, J. (999). Ti sris forasig of quarrly railroad grai arloadig. Trasporaio Rsarh, Par E: 43-57.. Bakr, M., Vrb, A.J.P., ad va Shag, K.M. (998). Th bfis of dad forasig ad odlig. War Qualiy Iraioal, 5-6: -. 3. Barzzaghi, E., ad Vrgai, R. (995). Maagig dad uraiy hrough ordr ovrplaig. Iraioal Joural of Produio Eoois, 4: 7-. 4. Barzzaghi, E., Vrgai, R., ad Zori, G. (999). A siulaio frawork for forasig urai lupy dad. Iraioal Joural of Produio Eoois, 59: 499-5. 5. Boyla, J.E., ad Johso, F.R. (996). Varia laws for ivory aag. Iraioal Joural of Produio Eoois, 45: 343-35. 6. Burd, R.L., ad Fairs, J.D. (985). Nurial Aalysis. PWS Publishrs, 3 rd Ediio. 7. Caus, R., Caarlla, G.E., ad Iaudi, D. (997). Ral-i siaio ad prdiio of origi-dsiaio aris pr i sli. Iraioal Joural of Forasig, 3: 3-9. 8. Cha, C.K., Kigsa, B.G., ad Wog, H. (999). Th valu of obiig forass i ivory aag-a as sudy i bakig. Europa Joural of Opraioal Rsarh, 7: 99-. 9. Chi, C.F., Ch, S. ad Li, Y. (). Usig baysia work for faul loaio o disribuio fdr of lrial powr dlivry syss. IEEE Trasaios o Powr Dlivry, 7(3): 785-793.. Cilar E. (975). Iroduio o Sohasi Prosss. Pri-Hall I.. Daio, S.J., ad Lair, J.A. (997). Modlig hologial hag i rgy dad forasig: A gral approah. Thologial Forasig ad Soial Chag, 55: 49-63.. Faulkr, B., ad Valrio, P. (995). A igraiv approah o ouris dad forasig. Touris Maag, 6(): 9-37. 3. Fishr, M., ad Raa, A. (996). Rduig h os of dad uraiy hrough aura rspos o arly sals. Opraio Rsarh, 44(): 87-99. 4. Gaviri, S., Bollapragada, S., ad Moro, T.E. (998). Priodi rviw sohasi ivory probl wih forasig updas: Wors-as bouds for h yopi soluio. Europa Joural of Opraioal Rsarh, : 38-39. 5. Goulias, K.G. (999). Logiudial aalysis of aiviy ad ravl par dyais usig gralizd ixd Markov la lass odl. Trasporaio Rsarh, Par B, 33: 535-557. 6. Hirakawa, Y. (996). Prfora of a ulisag hybrid push/pull produio orol syss. Iraioal Joural of Produio Eoois, 44: 9-35. 7. Hogg, R.V., ad Tais, E.A. (983). Probabiliy ad Saisial Ifr. Maillia Publishig Co., I., d Ediio.

Wag, Chi, ad Liu: Dad Forasig Usig Baysia Expri wih No-hoogous Poisso Pross Modl IJOR Vol., No., 9 (5) 9 8. Jio, J.F. (99). Th rlaiv ipora of aggrga ad sor-spifi shoks a xplaiig aggrga ad soral fluuaios. Eoois Lrs, 39: 38-385. 9. Laior, P.K., ad Bakr, J.R. (997). Dad siaio wih failur ad apaiy osrais: A appliaio o prisos. Europa Joural of Opraioal Rsarh, : 48-43.. Lrpalagsui, N., ad Cha, C.W. (998). A arhiural frawork for h osruio of hybrid illig forasig syss: Appliaio for lriiy dad prdiio. Egirig Appliaio of Arifiial Illig, : 549-565.. Moo, M.A., Mzr, J.T., ad Thoas, D.E. Jr. (). Cusor dad plaig a lu hologis. Idusrial Markig Maag, 9: 9-6.. Rajopadhy, M., Ghalia, M.B., ad Wag, P.P. (999). Forasig urai hol roo dad. Prodig of h Aria Corol Cofr, Ju. 3. Sal, M.B., ad Jaqus, J.F. (999). Coribuio of aggrga ad soral shoks o h dyais of ivoris: A pirial sudy wih frh ad Aria daa. Iraioal Joural of Produio Eoois, 59: 33-4. 4. Sgura, J.V. ad Vrhr, E. (). A spradsh odlig approah o h Hol-Wirs opial forasig. Europa Joural of Opraioal Rsarh, 3: 375-388. 5. Slywozky, A.J., Chriss, C.M., Tdlow, R.S., ad Carr, N. G. (). Th fuur of or. Harvard Busiss Rviw, Jauary-Fbruary. 6. Urba, G.L., Wibrg, B.D., ad Hausr, J.R. (996). Prark forasig of rally w produs. Joural of Markig, 47-6. 7. Wag, H. ad Chi, C.F. (). A proposd baysia ifr frawork ad h propry of h liklihood fuio. Joural of Maag ad Syss, 7(3): 35-36. 8. Wir, P.R. (96). Forasig sals by xpoially wighd ovig avrags. Maag Si, 6: 34-34. 9. Wi, S.F., ad Wi, C.A. (995). Forasig ouris dad: A rviw of pirial rsarh. Iraioal Joural of Forasig, : 447-475.