Short Communication Design Analysis of Combined Gas-Vapour Micro Power Plant with 30 kw Air Turbine



Similar documents
How To Calculate The Performance Of A Refrigerator And Heat Pump

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

Development of a model for the simulation of Organic Rankine Cycles based on group contribution techniques

AE BIO SOLAR AE BIO SOLAR HYBRID PLANT SOLAR/BIOMASS ADESSO ENERGIA SRL HYBRID PLANT SOLAR/BIOMASS THE BEGINNING OF A NEW ENERGY PRESENTATION

EXPERIMENTAL RESEARCH ON FLOW IN A 5-STAGE HIGH PRESSURE ROTOR OF 1000 MW STEAM TURBINE

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7

COGENERATION. This section briefly describes the main features of the cogeneration system or a Combined Heat & Power (CHP) system. 36 Units.

THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS

A car air-conditioning system based on an absorption refrigeration cycle using energy from exhaust gas of an internal combustion engine

Last update: January 2009 Doc.: 08A05203_e

C H A P T E R T W O. Fundamentals of Steam Power

Thermodynamics - Example Problems Problems and Solutions

How To Power A Power Plant With Waste Heat

Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements

Thermodynamical aspects of the passage to hybrid nuclear power plants

Theory of turbo machinery / Turbomaskinernas teori. Chapter 4

PG Student (Heat Power Engg.), Mechanical Engineering Department Jabalpur Engineering College, India. Jabalpur Engineering College, India.

Top Technology for Industry, Agriculture, Business and Communities

Jet Propulsion. Lecture-2. Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM

Mohan Chandrasekharan #1

PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A

APPLIED THERMODYNAMICS. TUTORIAL No.3 GAS TURBINE POWER CYCLES. Revise gas expansions in turbines. Study the Joule cycle with friction.

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank

POSSIBILITY FOR MECHANICAL VAPOR RE-COMPRESSRION FOR STEAM BASED DRYING PROCESSES

DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS

The Second Law of Thermodynamics

Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla

LANDFILL GAS TO ENERGY- COMBINED ENGINE AND ORC-PROCESS

Putting a chill on global warming

B0401 Abstract 029 Oral Presentation Session B04 Innovative Applications and Designs - Tuesday, July 1, :00 h

SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALTERNATIVE REFRIGERANTS

COMPARISON CONCERNING TO THE COGENERATION SYSTEMS DEVELOPMENT

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

Design and Test Operation Performance of 1,500 C Class Gas Turbine Combined-Cycle Power Plant:

Advanced systems for power production from geothermal low-enthalpy resources

ORC TURBOGENERATOR TYPE CHP - Organic Rankine Cycle Turbogenerator fed by thermal oil, for the combined production of electric energy and heat -

Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant

CO MPa (abs) 20 C

GEOTHERMAL POWER PLANT CYCLES AND MAIN COMPONENTS

A Performance Comparison of Vapour Compression Refrigeration System Using Eco Friendly Refrigerants of Low Global Warming Potential

C H A P T E R F I V E GAS TURBINES AND JET ENGINES

GEOTHERMAL POWER GENERATION A PRIMER ON LOW-TEMPERATURE, SMALL-SCALE APPLICATIONS

Pushing the limits. Turbine simulation for next-generation turbochargers

Steam and hot water boiler systems for industrial and municipal power generation Dr.-Ing. Wolfgang Sobbe VKK Standardkessel Köthen GmbH

From solid fuels to substitute natural gas (SNG) using TREMP

SAMPLE CHAPTERS UNESCO EOLSS

Low GWP Replacements for R404A in Commercial Refrigeration Applications

Environmental and Safety Impacts of HFC Emission Reduction Options for Air Conditioning and Heat Pump Systems

Final Event - Webinar October 6, Waste Heat Recovery in Energy Intensive Industries Project Results

The Second Law of Thermodynamics

Exergy: the quality of energy N. Woudstra

Performance Analysis of Thermal Power Station: Case Study of Egbin Power Station, Nigeria

Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

Natural gas liquids recovery from gas turbine fuel

Enhanced power and heat generation from biomass and municipal waste. Torsten Strand. Siemens Power Generation Industrial Applications

Chapter 3.4: HVAC & Refrigeration System

Transient Analysis of Integrated Shiraz Hybrid Solar Thermal Power Plant Iman Niknia 1, Mahmood Yaghoubi 1, 2

Marek Dzida Gdansk University of Technology Poland. 1. Introduction

CHP: Technology Update The Organic Rankine Cycle (ORC)

Assessment of Solar-Coal Hybrid Electricity Power Generating Systems 13

GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS

Energy savings in commercial refrigeration. Low pressure control

Energy Procedia Energy 00 Procedia (2011) (2012) 56 65

DE-TOP User s Manual. Version 2.0 Beta

UNIT 2 REFRIGERATION CYCLE

Boiler efficiency measurement. Department of Energy Engineering

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2

IEA Workshop Copenhagen Small scale biomass co-generation with modern steam engines

Unit 96: Marine Propulsion Power Plant

ALONE. small scale solar cooling device Project No TREN FP7EN Project No TREN/FP7EN/ ALONE. small scale solar cooling device

Testing methods applicable to refrigeration components and systems

THEORETICAL AND EXPERIMENTAL EVALUATION OF AUTOMOBILE AIR-CONDITIONING SYSTEM USING R134A

Design Exercises and Projects in Energy Engineering Course

Analysis of Ammonia Water (NH3-H2O) Vapor Absorption Refrigeration System based on First Law of Thermodynamics

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties

The Development of Heat Pump Water Heaters Using CO 2 Refrigerant

Low Global Warming Fluids for Replacement of HFC-245fa and HFC-134a in ORC Applications

Keywords: CFD, heat turbomachinery, Compound Lean Nozzle, Controlled Flow Nozzle, efficiency.

Research Article Performance Evaluation of a Small Scale Modular Solar Trigeneration System

A knowledge-based system for Waste Heat Recovery. Richard Law

AIR POWERED ENGINE INTRODUCTION. Pramod Kumar.J Mechanical Engineer, Bangalore, INDIAs

A Review on Power Generation in Thermal Power Plant for Maximum Efficiency

Business Model of Micro-Chp Efficiency and Energy Requirements

ENEL research activities on low enthalpy geothermal resources

Basics of Steam Generation

Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines

Optimal operation of simple refrigeration cycles Part I: Degrees of freedom and optimality of sub-cooling

Air-sourced 90 Hot Water Supplying Heat Pump "HEM-90A"

ENERGY SAVING WORT BOILING SISTEM IN BREWING FACTORY

Diesel Cycle Analysis

POLYCITY. Technical measures and experiences at a 6 MW cogeneration plant with wood chip furnace POLYCITY

GLOBACON 05 HVAC Systems for Cogen

Transcription:

Pol. J. Environ. Stud. Vol. 23, No. 4 (2014), 1397-1401 Short Communication Design Analysis of Combined Gas-Vapour Micro Power Plant with 30 kw Air Turbine Marian Piwowarski*, Krzysztof Kosowski** Faculty of Ocean Engineering and Ship Technology, Gdansk University of Technology, Poland Received: 20 June 2013 Accepted: 29 January 2014 Abstract This article presents basic results of the design analysis of a combined gas-vapour micro power plant with a waste-heat boiler without exhaust reheat, working in the vapour section in the organic rankine cycle (ORC) system. The analysis concerned working media most frequently used in those types of power plants and that plan to be used in the future. The object of the analysis was a micro power plant with a 30 kw gas (air) turbine for which the low-boiling medium was selected in such a way as to obtain maximum possible power output of the vapour turbine and, consequently, the highest efficiency of the combined cycle. The analysis also included vapour micro power plants with heat regeneration for so-called dry media and cycles without heat regeneration for so-called wet media. The amount of thermal energy available for utilization in the cogeneration micro power plant at the assumed condenser temperatures equalling 95ºC, 55ºC, and 30ºC, respectively, was assessed. The most favourable medium in terms of the obtained power output and efficiency of the combined cycle was selected and the effect of the low-boiling medium on design parameters of the vapour micro turbine was assessed. Keywords: combined gas-vapour cycles, organic rankine cycle (ORC), vapour turbines, turbine design, cogeneration Introduction In classical highly efficient combined large power systems working in the electric power generation system the use of water is profitable both in economic and thermodynamic terms. Gas turbines used in those systems generate exhaust gas of high temperature and are frequently designed to work in combined cycles. The time of full load operation of those power plants can reach as much as 8,000 hours per year, which economically justifies the use of technologically complicated and expensive three-pressure waste-heat boilers. For micro turbine systems with low temperature exhaust gas, a solution that will provide opportunities for effective utilization of the waste heat can be a *e-mail: piwom@pg.gda.pl **e-mail: kosowski@pg.gda.pl combined cycle in which the steam-water section is replaced by a power plant with a low-boiling medium (ORC). Gas Turbine Set A basic criterion taken into account when evaluating the results of the design analysis was the efficiency level obtained for the assumed values of: the power output of the gas turbine set, the caloric value of the fuel, and the temperature of the working medium at gas turbine inlet. An important factor which was also taken into account was the scale of cycle complication (number of heat exchangers), which, generally, affects the total cost of the power plant investment project. Of certain importance was also the compressor pressure ratio, as it is easier to design a compressor and remaining turbine set components for lower

1398 Piwowarski M., Kosowski K. compression. Moreover, the compressor designed for the latter case is smaller and its manufacturing is cheaper. A solution frequently used in technical applications of gas turbines is a gas turbine set with a regenerator, the structure of which is simple at relatively high efficiency. In the case of small power gas turbines with low temperatures behind the combustion chamber (especially those used for burning different kinds of fuel), an attractive solution can be a system with an external combustion chamber (Fig. 1a), although its efficiency is lower by a few percentage points [1-4] as a result of lower temperatures at the turbine inlet (max. 850ºC-900ºC, the limit forced by constructional materials of heat exchangers). This system provides opportunities for much easier burning of different types of fuels and reveals lower levels of optimal compression. Another favorable feature of this system is the possibility to burn fuel at atmospheric pressure, without preliminary compression of the gas fuel, which is necessary in classical systems with the combustion chamber in front of the turbine. The analysis took into account changes of the average specific heat as a function of variation of both air and exhaust gas temperatures. The cycle calculations were performed after adopting the following assumptions: the power output at generator terminals is 30 kw, the air temperature at compressor inlet is 20ºC, the pressure at compressor inlet is 0.1 MPa, compressor efficiency is 82%, internal efficiency of the air turbine is 82%, efficiency of the external combustion chamber is 97%, efficiency of the generator is 88%, mechanical efficiency is 96%, temperature of the exhaust gas at turbine inlet is 850ºC, and the caloric value of the fuel is 16 MJ/kg. The pressure losses were assumed equal to: 0.5% at compressor inlet, 0.5% at turbine set outlet, 2% in the external combustion chamber, and 2% in the high-temperature heat exchanger. The maximal efficiency of the electric energy generation obtained in the performed calculations was equal to 22.3% for the optimal compression equal to 2.7. The exhaust gas which left the high temperature heat exchanger had a mass flow rate equal to 0.3581kg/s and temperature equal to 215ºC. This exhaust gas can be used in the wasteheat boiler for producing the vapour of the working medium in the ORC system. Low-Boiling Media Used in ORC Systems Working media used in ORC micro power plants should meet certain requirements. First, they should not be toxic and should be environment friendly. They should also be relatively cheap and easily available, and they must not react with turbine flow system components. In practice, not Fig. 1. Scheme of cycle with combustion chamber at the air turbine outlet (a) scheme of combined gas-vapour cycle with external combustion chamber at the air turbine outlet for wet (b) and dry (c) fluids. Pow air intake, F filter, Tpow air turbine, Wc1 heat exchanger, ZKS external combustion chamber, G electric generator, Pal fuel, Tł silencer, Spal exhaust outlet, Wc2 boiler heat exchanger, TP vapour turbine, R regenerator, S condenser, PG main pump.

Design Analysis of Combined Gas-Vapour... 1399 Table 1. Comparison of the results of calculations of the combined cycle variants. Condenser 95ºC Condenser 55ºC Condenser 30ºC Temperature Temperature Temperature Parameter/Fluid N ORC η Kombi Q Kogen N ORC η Kombi Q Kogen N ORC η Kombi [kw] [%] [kw] [kw] [%] [kw] [kw] [%] Water 2.74 24.33 25.56 5.34 26.27 34.4 7.53 27.90 Acetone 2.95 24.18 30.57 6.00 26.12 40.9 8.60 27.78 Ethanol 2.92 24.16 29.01 5.82 26.01 38.3 8.16 27.50 Methanol 2.81 24.39 27.54 5.57 26.44 35.1 7.69 28.02 Toluene 2.45 24.12 15.82 6.04 26.79 36.3 8.49 28.61 Pentane 3.13 24.62 31.30 6.65 27.24 40.2 9.59 29.43 Decane 3.08 24.59 25.89 6.27 26.96 36.0 8.93 28.94 Propylcyclohexane 3.02 24.54 23.42 6.19 26.90 35.9 8.81 28.85 R245fa 2.17 23.92 42.62 6.25 26.94 51.4 9.82 29.60 Octamethylcyclotetrasiloxane 3.16 24.65 27.50 6.49 27.12 38.1 8.96 28.96 Decamethylcyclopentasiloxane 3.13 24.62 26.29 6.41 27.06 37.2 8.89 28.91 Dodecamethylcyclohexasiloxane 3.13 24.62 26.36 6.37 27.04 33.1 8.76 28.81 Hexamethyldisiloxane 3.18 24.67 28.11 6.55 27.17 40.6 6.61 27.21 Octamethyltrisiloxane 3.16 24.65 28.10 6.49 27.12 39.5 8.94 28.95 Decamethyltetrasiloxane 3.13 24.63 25.98 6.44 27.08 35.5 8.93 28.94 Dodecamethylpentasiloxane 3.14 24.63 27.21 6.45 27.09 34.7 8.72 28.78 Ammonia 1.96 23.55 46.07 5.90 26.06 48.2 8.61 27.78 Dimethylether 1.62 23.33 44.22 5.56 25.84 49.2 8.23 27.54 Cyclopropane 1.84 23.47 45.40 5.45 25.77 51.1 8.88 27.96 Trifluoroiodomethane 2.45 23.86 46.06 5.37 25.72 52.5 8.92 27.99 R141B 2.93 24.47 30.87 6.22 26.92 41.0 8.92 28.93 R365mfc 3.53 24.92 34.00 6.82 27.37 40.6 9.85 29.62 Heptane 3.10 24.60 28.40 6.38 27.04 37.4 8.95 28.96 N ORC effective power of the vapour cycle, η Kombi combined cycle efficiency, Q Kogen thermal power all of these conditions can be met if we want to have a medium revealing good thermodynamic characteristics. In the literature we can find various media that can be used in ORC systems [5-10]. The list of these media includes saturated, non-saturated, cyclic, heterocyclic, and aromatic hydrocarbons, along with various types of refrigerants, alcohols, siloxanes, etc. A well selected organic medium should allow the system to operate with maximum efficiency, and should provide opportunities for maximum possible utilization of the available source of heat. It is extremely important for the working medium to create a minimal possible threat to human beings and the environment. It should not interfere with the environment. The emission of refrigerants to the atmosphere is the source of very unfavorable changes in the environment [11]. The documented negative effect of commonly used halogen derivatives on degradation of the ecosystem was the motivation for introducing comparative indices, use of which affects a given medium on environment degradation described in a qualitative and quantitative way. Basic ecological indices include the ozone depletion potential (OZP) and the global warming potential (GWP). Analysis of the Results of Combined Cycle Calculations The object of the analysis was a combined cycle in which the exit air from the earlier analyzed air turbine cycle was delivered to the waste-heat boiler (Figs. 1b and 1c), producing the vapour of the low-boiling medium. The following assumptions were adopted in the calculations: the temperature and mass flow rate of the exhaust gas at the

1400 Piwowarski M., Kosowski K. Table 2. The main design parameters for multi-stage turbine for condenser temperatures of 95 C, 55 C, and 30 C (fluid R365mfc). Temperature in Condenser 95ºC (fluid R365mfc) Turbine stage [-] 1 2 3 4 H s [kj/kg] 7.348 7.348 7.348 7.348 v [-] 0.5 0.5 0.5 0.5 ρ [-] 0.35 0.35 0.35 0.35 ε [-] 0.089 0.165 0.270 0.415 Ma c1 [-] 0.93 0.80 0.73 0.69 l k [m] 0.008 0.008 0.008 0.008 D/l [-] 6.0 6.0 6.0 6.0 D sr [m] 0.05 0.05 0.05 0.05 n [rotation/min] 24,000 24,000 24,000 24,000 Ma w2 [-] 0.70 0.61 0.57 0.55 N u [kw] 0.97 1.19 1.27 1.32 N ut [kw] 4.73 Temperature in Condenser 55ºC (fluid R365mfc) Turbine stage [-] 1 2 3 4 H s [kj/kg] 10.761 10.761 10.761 10.761 v [-] 0.5 0.5 0.5 0.5 ρ [-] 0.28 0.28 0.28 0.28 ε [-] 0.100 0.189 0.335 0.580 Ma c1 [-] 0.94 0.88 0.81 0.80 l k [m] 0.010 0.010 0.010 0.010 D/l [-] 7.1 7.1 7.1 7.1 D sr [m] 0.07 0.07 0.07 0.07 n [rotation/min] 20,000 20,000 20,000 20,000 Ma w2 [-] 0.66 0.63 0.65 0.64 N u [kw] 1.56 1.86 1.97 2.05 N ut [kw] 7.44 Temperature in Condenser 30ºC (fluid R365mfc) Turbine stage [-] 1 2 3 4 5 H s [kj/kg] 12.099 12.099 12.099 12.099 12.099 v [-] 0.5 0.5 0.5 0.5 0.5 ρ [-] 0.32 0.32 0.32 0.32 0.32 ε [-] 0.112 0.225 0.425 0.780 1.000 Ma c1 [-] 0.97 0.91 0.88 0.87 0.87 l k [m] 0.010 0.010 0.010 0.010 0.010 D/l [-] 6.17 6.17 6.17 6.17 6.21 D sr [m] 0.062 0.062 0.062 0.062 0.062 n [rotation/min] 24,000 24,000 24,000 24,000 24,000 Ma w2 [-] 0.72 0.68 0.67 0.66 0.67 N u [kw] 1.81 2.14 2.27 2.33 2.29 N ut [kw] 10.84 H s isentropic enthalpy drop in the turbine, ν velocity coefficient, ρ stage reaction, ε partial admission arc, Ma c1 Mach number at stage stator exit, l k stator blade (nozzle) length, D/l mean diameter-to-blade length ratio, D sr mean stage diameter, n rotational speed, Ma w2 Mach number at stage rotor exit, N u power output of the turbine stage, N ut power output of the multi-stage turbine

Design Analysis of Combined Gas-Vapour... 1401 inlet to the heat exchanger Wc2 (waste-heat boiler) were equal to 215ºC and 0.3581kg/s, respectively (from gas cycle calculations). The temperature threshold in the heat exchanger Wc2 was assumed equal to 5ºC. The condenser temperature was assumed in variants as 95ºC, 55ºC, and 30ºC. The internal efficiency of the medium vapour turbine and pump efficiency were assumed equal to 0.8 and 0.4, respectively. The pressure of the organic medium was determined in such a way that the maximal possible power output was obtained at vapour turbine shaft. It was also assumed that the waste-heat boiler produced dry saturated vapour (without superheating). The analysis took into account over 20 media most commonly used in ORC systems [5, 7, 9, 10]. The performed calculations have proved that obtaining 30 kw of electric power from the gas turbine and additionally 3.5 kw of electric power from the vapour turbine, along with 34kW of thermal power (for R365mfc, Table 1) at 95ºC, or, alternatively, 6.8kW of electric power and over 46kW of thermal power (also for R365mfc, Table 1) at a condenser temperature of 55ºC is possible. This result increases the efficiency of the analyzed gas cycle from 22.3% up to 24.9% and 27.4%, respectively (Table 1). When the condenser temperature is 30ºC, nearly 10kW of electric power can be additionally obtained, which increases the efficiency of the combined cycle to about 30% (Table 1). However, in this case we assumed that the heat in the condenser at temperature 30ºC is not used for heating and technological purposes. The performed cycle calculations have also proved that from the thermodynamic point of view, R365mfc works best as a medium in the vapour system for condenser temperatures equal to 55ºC and 95ºC, while comparable results can also be obtained using R245fa and pentane when this temperature drops down to 30ºC. That is why further part of the analysis, consisting in design calculations of micro turbines, will be performed for these media. Since in a single-stage turbine of this type large enthalpy drops result in the Mach numbers frequently exceeding 2, the analysis was performed for multi-stage turbines (four- and five-stage constructions) with subsonic flows. Low mass flow rates determine large rotational speeds exceeding 20,000 rpm, along with partial admission in practically all turbine stages. In construction of this type short blades (of about 10 mm in length) are mounted on small diameters, which results in slightly lower efficiency than that observed in large power steam turbines. At the same time the velocity coefficient, the reaction, and the ratio of disc diameter to blade length (D:L ratio) take values from the ranges typical for classical steam turbines. A collection of basic design parameters of multi-stage micro turbines for select parameters is given in Table 2 [12-14]. Conclusions The performed analysis of the combined cycle with the air turbine having the external combustion chamber at the turbine outlet brought promising results. The gas turbine set of this type reveals numerous advantages. It works with pure air, as a result of which it is more durable and does not require as frequent inspections and overhauls as in case of other working media. It provides opportunities for burning, practically, an arbitrary fuel (even without additional overpressure). Due to high air temperature (of about 600ºC) at air turbine outlet it is possible to combine the combustion chamber with the gasification process. The next advantage of the presented system is its possible cooperation with the ORC system, which can improve the total efficiency to even as much as 30%. It was proved that designing an efficient multi-stage ORC micro turbine for the assumed thermodynamic parameters is possible. References 1. BARSALI S., LUDOVICI G. Externally fired micro gas turbine (75kWe) for combined heat and power generation from solid biomass: Concept, efficiency, cost, and experiences from pilot and commercial plants in Italy, 11. Holzenergie- Symposium Potenzial und Technik zur Holzenergie- Nutzung, 17. September 2010. 2. BO-TAU L., KUO-HSIANG C., CHI-CHUAN W. Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy, 2004. 3. BRONICKI L. Y. Externally fired combined cycle gas turbine, Patent US6167706 B1, 2001. 4. KLENVEN O. B. Gas turbine with external combustion, applying a rotating regenerating heat exchanger. US20110227346 A1, 2011. 5. BADYDA K., MILEWSKI J. Analysis of the applicability of Organic Rankine Cycle. Warszawa, 2006 [In Polish]. 6. BONCA Z., BUTRYMOWICZ D., TARGAŃSKI W., HAJ- DUK T. The new refrigerants and heat media. IPPU MASTA, Gdańsk, 2004 [In Polish]. 7. BORSUKIEWICZ-GOZDUR A., NOWAK W. Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius-Rankine cycle. Energy 32, 2007. 8. GRZEBIELEC A., PLUTA Z., RUCIŃSKI A., RUSOWICZ A. Refrigerants and heat media. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2011 [In Polish]. 9. KAMIŃSKI B., PIWOWARSKI M. Analysis of gas-vapour combined cycles on low-temperature fluids, Collective work edited by J. Taler, Systems, technology and energy equipment. Cracow Univ. of Technology Publishing House, Kraków 2010 [In Polish]. 10. MIKIELEWICZ J., PIWOWARSKI M., KOSOWSKI K. Design analysis of turbines for co-generating micro-power plant working in accordance with organic Rankine s cycle. Polish Maritime Research, S1, 2009. 11. RUBIK M. A heat pump. Guide, Resort information, Information Technology in Construction. Warszawa, 2006 [In Polish]. 12. REFPROP Reference Fluid Thermodynamic and Transport Properties, 8, 2007. 13. Engineering Equation Solver, 8.936-3D, 2011. 14. KOSOWSKI K. Steam and gas turbines. Principles of operation and design. Ed. K. Kosowski. France, Swiss, Great Britain, Poland, ALSTOM, 2007.