Analysis of intelligent road network, paradigm shift and new applications

Similar documents
APPLICATION OF CHAOS THEORY TO ANALYSIS OF COMPUTER NETWORK TRAFFIC Liudvikas Kaklauskas, Leonidas Sakalauskas

How To Calculate Backup From A Backup From An Oal To A Daa

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

The Prediction Algorithm Based on Fuzzy Logic Using Time Series Data Mining Method

Spline. Computer Graphics. B-splines. B-Splines (for basis splines) Generating a curve. Basis Functions. Lecture 14 Curves and Surfaces II

A Hybrid AANN-KPCA Approach to Sensor Data Validation

Proceedings of the 2008 Winter Simulation Conference S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Capacity Planning. Operations Planning

MULTI-WORKDAY ERGONOMIC WORKFORCE SCHEDULING WITH DAYS OFF

The Definition and Measurement of Productivity* Mark Rogers

Cooperative Distributed Scheduling for Storage Devices in Microgrids using Dynamic KKT Multipliers and Consensus Networks

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS. Exponential Smoothing for Inventory Control: Means and Variances of Lead-Time Demand

Anomaly Detection in Network Traffic Using Selected Methods of Time Series Analysis

SPC-based Inventory Control Policy to Improve Supply Chain Dynamics

The Virtual Machine Resource Allocation based on Service Features in Cloud Computing Environment

MODEL-BASED APPROACH TO CHARACTERIZATION OF DIFFUSION PROCESSES VIA DISTRIBUTED CONTROL OF ACTUATED SENSOR NETWORKS

MODELLING DISTURBANCES IN SYSTEM TRACK RAIL VEHICLE

Genetic Algorithm with Range Selection Mechanism for Dynamic Multiservice Load Balancing in Cloud-Based Multimedia System

PerfCenter: A Methodology and Tool for Performance Analysis of Application Hosting Centers

IMPROVING THE RESISTANCE OF A SERIES 60 VESSEL WITH A CFD CODE

An Architecture to Support Distributed Data Mining Services in E-Commerce Environments

A robust optimisation approach to project scheduling and resource allocation. Elodie Adida* and Pradnya Joshi

Pavel V. Shevchenko Quantitative Risk Management. CSIRO Mathematical & Information Sciences. Bridging to Finance

SHIPPING ECONOMIC ANALYSIS FOR ULTRA LARGE CONTAINERSHIP

An Optimisation-based Approach for Integrated Water Resources Management

Towards a Trustworthy and Controllable Peer- Server-Peer Media Streaming: An Analytical Study and An Industrial Perspective

A Hybrid Wind-Solar Energy System: A New Rectifier Stage Topology

An Ensemble Data Mining and FLANN Combining Short-term Load Forecasting System for Abnormal Days

A New Approach to Linear Filtering and Prediction Problems 1

Time Series. A thesis. Submitted to the. Edith Cowan University. Perth, Western Australia. David Sheung Chi Fung. In Fulfillment of the Requirements

12/7/2011. Procedures to be Covered. Time Series Analysis Using Statgraphics Centurion. Time Series Analysis. Example #1 U.S.

Distribution Channel Strategy and Efficiency Performance of the Life insurance. Industry in Taiwan. Abstract

A Hybrid Method for Forecasting Stock Market Trend Using Soft-Thresholding De-noise Model and SVM

Analyzing Energy Use with Decomposition Methods

Linear Extension Cube Attack on Stream Ciphers Abstract: Keywords: 1. Introduction

Omar Shatnawi. Eks p l o a t a c j a i Ni e z a w o d n o s c Ma in t e n a n c e a n d Reliability Vo l.16, No. 4,

Kalman filtering as a performance monitoring technique for a propensity scorecard

Sensor Nework proposeations

Evaluation of the Stochastic Modelling on Options

Auxiliary Module for Unbalanced Three Phase Loads with a Neutral Connection

PARTICLE FILTER BASED VEHICLE TRACKING APPROACH WITH IMPROVED RESAMPLING STAGE

Inventory Management MILP Modeling for Tank Farm Systems

TECNICHE DI DIAGNOSI AUTOMATICA DEI GUASTI. Silvio Simani References

Finite Difference Method Applied for the Beams on Elastic Foundation Theory. Metoda konečných diferencí použitá pro nosníky na pružném podkladu teorie

A multi-item production lot size inventory model with cycle dependent parameters

Lecture 40 Induction. Review Inductors Self-induction RL circuits Energy stored in a Magnetic Field

The Feedback from Stock Prices to Credit Spreads

INTERNATIONAL JOURNAL OF STRATEGIC MANAGEMENT

A Heuristic Solution Method to a Stochastic Vehicle Routing Problem

TURBULENCE MODELING FOR BEGINNERS

The Transport Equation

Modèles financiers en temps continu

Network Effects on Standard Software Markets: A Simulation Model to examine Pricing Strategies

A Real-time Adaptive Traffic Monitoring Approach for Multimedia Content Delivery in Wireless Environment *

This research paper analyzes the impact of information technology (IT) in a healthcare

Load Balancing in Internet Using Adaptive Packet Scheduling and Bursty Traffic Splitting

Market-Clearing Electricity Prices and Energy Uplift

Methodology of the CBOE S&P 500 PutWrite Index (PUT SM ) (with supplemental information regarding the CBOE S&P 500 PutWrite T-W Index (PWT SM ))

Selected Financial Formulae. Basic Time Value Formulae PV A FV A. FV Ad

How To Understand The Theory Of The Power Of The Market

The Incentive Effects of Organizational Forms: Evidence from Florida s Non-Emergency Medicaid Transportation Programs

Tecnológico de Monterrey, Campus Ciudad de México, Mexico D.C., Mexico **

Estimating intrinsic currency values

HAND: Highly Available Dynamic Deployment Infrastructure for Globus Toolkit 4

A Reverse Logistics Model for the Distribution of Waste/By-products. Hamid Pourmohammadi, Maged Dessouky*, and Mansour Rahimi

DOCUMENTOS DE ECONOMIA Y FINANZAS INTERNACIONALES

A Background Layer Model for Object Tracking through Occlusion

A Common Neural Network Model for Unsupervised Exploratory Data Analysis and Independent Component Analysis

CLoud computing has recently emerged as a new

Applying the Theta Model to Short-Term Forecasts in Monthly Time Series

Efficiency of General Insurance in Malaysia Using Stochastic Frontier Analysis (SFA)

Optimal Testing Resource Allocation, and Sensitivity Analysis in Software Development

International Journal of Mathematical Archive-7(5), 2016, Available online through ISSN

Cost- and Energy-Aware Load Distribution Across Data Centers

Optimization of Nurse Scheduling Problem with a Two-Stage Mathematical Programming Model

An Anti-spam Filter Combination Framework for Text-and-Image s through Incremental Learning

Information-based trading, price impact of trades, and trade autocorrelation

PHYSICS 161 EXAM III: Thursday December 04, :00 a.m.

Transcription:

CONFERENCE ABOUT THE STATUS AND FUTURE OF THE EDUCATIONAL AND R&D SERVICES FOR THE VEHICLE INDUSTRY Analyss of nellgen road nework, paradgm shf and new applcaons Péer Tamás "Smarer Transpor" - IT for co-operave ranspor sysem secon Hungaran Academy of Scence Budapes, 31 January 2014

Macroscopc analyss 2

Macroscopc analyss 3

Conens of Presenaon Macroscopc processes Paradgm shf The Classcal Paradgms New Paradgms New Defnons New modelng echnque New Sysems New sofware & 3D emulaon Transporaon nework analyss Conrol MPC & Lyapunov Győr: road raffc model Moor Vehcle Analyss Vehcle dynamc analyss Applcaons New model famles New Possbles 4

The Classcal Paradgms Euler's mehod,y,z, and, Euler varables, y,z,; v v, y,z,; dv v 0 Leonhard Euler 1707-1783 v v, y,z,; v y v y, y,z,; v z v z, y,z,; v y v y z v z 0 5

The Classcal Paradgms Greenshelds 1935, Greenberg 1959 Traffc flow: Lghhll and Whham 1955 and Ashon 1966. fundamenal equaon: q,, v, Papageorgou model Segmen lenghs: 500 m, [kt, k+1t] me nervals k=0,1,,n;t= 10 s, vehcle densy s consan Papageorgou Fg. 1. 6

The Classcal Paradgms 1. Applcaon Secors: Very posve! Paral Dfferenal Equaons are no necessary 2. Researchers are famlar wh he classcal mehods 3. Vehcle un/ Passenger Car Equvalen, s no an eac mahemacal defnon Passenger Car Equvalen PCE, s a merc used n Transporaon Engneerng. For eample, ypcal values of PCE or PCU are: prvae car ncludng as or pck-up 1 moorcycle 0.5 bcycle 0.2 bus, racor, ruck 3.5 Hghway capacy s measured n PCE/hour daly 7

The Classcal Paradgms 4. Mahemacal models are no general 5. The raffc flow flu s no an eac sae parameer Blase Pascal 1623-1662 Traffc flow q=s vs s 1 vehcle densy, s s 2 Fg. 2. 8

The Classcal Paradgms 6. Inpu - Oupu: "Gaes" problem Fg. 3. 7. Concepual problem: he nework s a sac conac graph 8. I mss he co-operaon of parallel lanes 9. Car Parks problem: "foregn elemens 9

New Paradgms & New Defnons 1. Sae parameer : vehcle densy eac. [0,1]. n k 1 l h k 1 Fg. 4. Parkng also secors: l Ma N h k k 1 2 10

New Paradgms & New Defnons 2. A dynamc graph consruc Fg. 5. new pulse graph 3. Vrual closed curve applcaon G Fg. 6. Doman and vrual closed curve 11

New Paradgms & New Defnons 4. Dynamc relaonshps and conac hyper-mar H B Inernal & H K Eernal Neworks K 12 K 11 K 22 H B H K K 21 K11 K12 K21 K22 Fg. 7. 12

New Sysems 5. Jon Analyss: Inernal and Eernal Nework Operaon 10. ábra: -k belső szekor kapcsolaa máros formában Fg. 8. h Secors: Inernal and Eernal Relaons 12. ábra: -k külső szekor kapcsolaa máros formában 13

14 New model famles 6. Unversal model 7. Reduced model =<L> -1 [K 11,s + K 12,s s] n,, s m, L = dag{l1,...,ln},, l>0, =1,2,,n, K 11 nn, K 12 nm. 8. Global model s 1 = n+1,, s m = n+m s s K s K s K s K P L s,,,, 22 21 12 11 1 1,,,,,, u E e e V S v j j j j j j j j m w w n r r r v v v 1 1; K L 11 1 3 4 5 6

New model famles K K 11 21 K K 12 22 => K 11 K K 11 21 K K 12 22 => K 22 => => Járműgyárak folyamaos rászállíása örénk, elvben bármely szekorra a eljes Föld-felszín hálózaon Felszín Surface nework hálóza Amorzácó és karambolos járművek folyamaos kszállíása, elvben bármely szekorról a eljes Föld-felszín hálózaon L K 11 Fg. 9. No Euleran producon model 1 n v, v rn1 v, A r1; r 7 15

New model famles, new possbles and new dmensons The oal lengh of he nework, measured n boh drecons appromaely he Earh-Sun dsance! The oal vehcle lengh s 9 Earh-Moon dsance! 16

New sofware & 3D emulaon PannonTraffc PannonTraffc Modelng Modellezés Makroszkopkus szmulácó Macroscopc smulaon 3D raffc 3D vsualzaon forgalomvzualzácó mkroszkopkus mcroscopc PannonTraffc PannonTraffc Modelng Modellezés Makroszkopkus szmulácó Macroscopc smulaon Sand-alone Egyed fejleszésű developmen for vzualzácó vsualzaon Unque Egyed measuremens, mérések, számíások calculaons 17

3D vsualzaon vdeo 18

Transporaon nework analyss Varable nework model: Üllő sree n Budapes Corvn-negyed Mornng peak desgn Afernoon developmen, curren sae Fg.10. Two raffc flow drecons and he connecon mar 19

Conrol MPC Nodes: MPC-based managemen Performance: u k n 1; k E N k=1,2,,n k N E = 1 f > 0 and E = 0 f 0, Fg.11. 20

Conrol Lyapunov V 1, 2,, n = l 1 * 1 + l 2 * 2 + + l n * n =L*; 0,V=0 =0, >0ÞV>0 Lyapunov funcon: The oal lengh of he vehcles The dervaon of he Lyapunov funcon: V 1 L L [K11 K12,ss] V 1 L L [K11 K12,ss] 8 9 Conrol: F npu F oupu Fg.12. 21

Conrol opmal rajecores Calculus of varaons problem: J: T Trajecores beween A and B Fg.13. 0 V, d 10 Equvalen non-lnear dfferenal equaon 0 = 0 : ábra: V, V, 11 22

Győr: road raffc model Ths 175 km 2 szed nework s eecued n only some mnues, whch would be possble whou our developmen n weeks. Ths nework consss 4600 road secons hs s only he skeleon nework approachng 500 km of oal lengh. Ths basc nework has o be epanded by several lanes, bcycle roads abou 36 km and parkng places. Fg. 14. Modelled nework of Győr n our sofware 20 000 vehcles on appromaely 650 spos Fg. 15. Parkng places and raffc lghs n he eample model Fg. 16. A wo-level doman conrol for he cy of Győr 23

Győr: road raffc model Győr: Szen Isván Sree represens he runk of he nework PannonTraffc sofware was used for modelng and smulaon. The nroduced model s an mporan sub-doman of he raffc nework of Győr ncludng Szen Isván Sree. The valdaon of he model s carred ou wh he measured cross-seconal raffc daa and he resul of velocy measuremens by GPS equpped cars. The characerscs of he nework 228 roads 9 nersecons conrolled by raffc lghs 38 oher nersecons 18 npu secons 15 oupu secons Inpus:13 pons 18 lanes 1. Benczur u., 2. 821. u. 2 db. sáv 3. Béke híd, 4. Újlak u., 5. Munkács M. u. 6. Jóka u. 2. db. sáv 7. Baross Gábor Híd, 8. Telek László u. 3 db. sáv 9. Gárdony G., 10. Thany Árpád u., 11. Mészáros Lőrnc u., 12. Körforgalomból bevezeő ú. 13. Bssnger József Híd 2 db. sáv Fg.17. Inpus & Oupus Oupus:13 pons 15 lanes 1. Benczur u., 2. 821. u., 3. Béke híd, 4. Újlak u., 5. Munkács M u., 6. Arad Véranuk u., 7. Baross Gábor Híd, 8. Telek László u., 9. Gárdony G. 10. Thany Árpád u., 11. Mészáros Lőrnc u., 12. Kvezeő jobbra 2 db. sáv 13. Bssnger József Híd 2 db. sáv 24

Győr: road raffc model Afer he evaluaon, he correlaon coeffcen s: r,y=0.9925070033 Whch can be regarded as 100% correlaon praccally. The smulaon for he gven nerval 7:15-8:15 was eecued n 6 sec. The smulaon regardng o he 24 hour me nerval was eecued n 2 mnues 14 seconds Fg. 18. Szen Isván Sree represens he runk of he nework 25

Győr: road raffc model and valdaon Fg. 19. The measured and smulaed raffc correlae very well 26

The road raffc modellng and desgn of he raffc daabase of Győr n projec Smarer Transpor Query nerface for PannonTraffc applcaon Servce facade User nerface PannonTraffc 1. Geng nework parameers & measured daa 2. Uploadng smulaon resuls Daabank Busness servces Daa access Daabase 27

Moor Vehcle Analyss and valdaon Fg.20. 28

Moor Vehcle Analyss and valdaon Non-paramerc sascal ess homogeney es Level: 95% 2 v k u k Eqv := 2 r N M N M v k1 k u k 12 Velocy dsrbuonr=11, GPS & smulaon: Engne power dsrbuon r=18, GPS & smulaon: r-12 able 2 2 14,2747 10 18, 3 2 6,0976 17 27, 6 Boh are consdered o be homogenous, level of: 95%! 2 29

30 Eamnaon of comple raffc dynamc sysems... 2 2 1 1 f n n f f f v ],, [ 12 11 s s K s K l f f a ],, [ 12 11 1 s s K s K L f d df a v Fg.21. 13 14

31 Eamnaon of comple raffc dynamc sysems 0 2 1 2 1 y sab S sab S sab K sab K S K v FA FA F F F F F F z M := FA 0 0 0 0 a M H 1 h 1 h l 1 0 a M H h 1 l 1 h := FA y 0 0 0 0 a y M H 1 l 1 l h 1 a y M H l 1 h 1 l 0 Fg.22. 15 16

REFERENCES Greenberg 1959 Greenberg, H.: "An Analyss of Traffc Flow", Operaons Research, Vol.7, pp.79-85, 1959. Greenshelds 1935 Greenshelds, B.D.: A sudy of raffc capacy. Proceedngs of he hghway Research Board, Proc. Vol. 14. pp. 448-477. 1934. Lghhll, M. J. and Whham, G. B. 1955 On knec waves. I: Flood movemen n long rvers. II: A heory of raffc flow on long crowed roads. Proceedngs Royal Socey, London, A229, pp. 281-345. Luenberger 1979 Inroducon o Dynamcs Sysems, Wley, New York, 1979 Fazekas Sándor, Péer Tamás 2012.1 Daabase sysem o suppor Győr s raffc modelzaon, SECOND SCIENTIFIC WORKSHOP OF DOCTORAL SCHOOLS Faculy of Transporaon Engneerng and Vehcle Engneerng, BME Budapes, November 22, 2012 pp. 1-7. Do: KJK2012-2-K4, ISBN 978-963-313-070-4, Kadó: BME KSK Fazekas, S., Péer T. 2013 Desgn of Győr s raffc daabase, Thrd Scenfc Workshop of Faculy Docoral Schools, Budapes, Budapes, May 28, 2013 pp. 1-7. Do: KJK2013-1-K4, ISBN 978-963-313-080-3, Kadó: BME KSK Péer, T., Bokor, J. 2010. Modelng road raffc neworks for conrol. In: Annual nernaonal conference on nework echnologes & communcaons: NTC 2010. Thaland, 2010.11.30-2010.11.30. pp. 18-22. Paper 21. Péer, T., Bokor, J. 2011. New road raffc neworks models for conrol. In: GSTF Inernaonal Journal on Compung, vol. 1, Number 2. pp. 227-232. Péer, T. 2012. Modelng nonlnear road raffc neworks for conrol of juncons. In: Inernaonal Journal of Appled Mahemacs and Compuer Scence AMCS, 2012, Vol. 22, No. 3. pp. 1-9. Péer, T., Szabó, K. 2012. A new nework model for he analyss of ar raffc neworks. In: Perdoca Polyechnca- Transporaon Engneerng 40:1 pp. 1-9. 2012.1-2. Tamas Peer, Jozsef Bokor and Andras Srobl 2013 Model for he analyss of raffc neworks and raffc modellng of Győr, pp 167-172. Do: 0023, IFAC Workshop on Advances n Conrol and Auomaon Theory for Transporaon Applcaons ACATTA 2013 whch s o be held n Isanbul, Turkey, 16-17 Sepember 2013. hp://www.acaa13.u.edu.r/ Zsuzsanna Bede, Tamás Péer and Ferenc Szauer 2013 Varable nework model pp 173-177. Do: 0026, IFAC Workshop on Advances n Conrol and Auomaon Theory for Transporaon Applcaons ACATTA 2013 whch s o be held n Isanbul, Turkey, 16-17 Sepember 2013. hp://www.acaa13.u.edu.r/ 32

Furher work planned: HORIZON 2020 Győr Cy Managemen 33

The eam Thank you for your conrbuon Bede Zsuzsanna Fazekas Sándor Kalncsák Isván Sróbl András 34

CONFERENCE ABOUT THE STATUS AND FUTURE OF THE EDUCATIONAL AND RESEARCH - DEVELOPMENT SERVICES FOR THE VEHICLE INDUSTRY THANK YOU FOR YOUR ATTENTION. PÉTER, TAMÁS Szécheny Isván Unversy Research Cener of Vehcle Indusry Conac Emal: peer.amas@mal.bme.hu Tel.:+36 30 526 26 41 Web: hp://www.kj.bme.hu/

CONFERENCE ABOUT THE STATUS AND FUTURE OF THE EDUCATIONAL AND R&D SERVICES FOR THE VEHICLE INDUSTRY COOPERATION BETWEEN HIGHER EDUCATION, RESEARCH INSTITUTES AND AUTOMOTIVE INDUSTRY TÁMOP-4.1.1.C-12/1/KONV-2012-0002 BASIC RESEARCH FOR THE DEVELOPMENT OF HYBRID AND ELECTRIC VEHICLES TÁMOP-4.2.2.A-11/1/KONV-2012-0012 "SMARTER TRANSPORT" - IT FOR CO-OPERATIVE TRANSPORT SYSTEM TÁMOP-4.2.2.C-11/1/KONV-2012-0012 Nemze Fejleszés Ügynökség www.ujszechenyerv.gov.hu 06 40 638 638 Hungaran Academy of Scence Budapes, 31 January 2014