Singlet fission for solar energy conversion A theoretical insight. David Casanova

Similar documents
Exciton Fission & Solar energy conversion beyond the limit. Xiaoyang Zhu, Columbia University 1

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008

Exciton dissociation in solar cells:

An organic semiconductor is an organic compound that possesses similar

13.4 UV/VIS Spectroscopy

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Section 5 Molecular Electronic Spectroscopy (lecture 9 ish)

PCV Project: Excitons in Molecular Spectroscopy

UV-Vis Vis spectroscopy. Electronic absorption spectroscopy

Aspects of an introduction to photochemistry

Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria

Hard Condensed Matter WZI

Solid State Detectors = Semi-Conductor based Detectors

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

ENERGY TRANSFER IN THE WEAK AND STRONG COUPLING REGIME

Free Electron Fermi Gas (Kittel Ch. 6)

The Application of Density Functional Theory in Materials Science

Excited state interaction in P-OLEDS implications for efficiency and lifetime

Covalent Bonding & Molecular Orbital Theory

Organic semiconductors

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Orbital Dynamics coupled with Jahn-Teller phonons in Strongly Correlated Electron System

Workshop on Nanoscience for Solar Energy Conversion October 2008

5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM

Basic Concepts in Nuclear Physics

Lecture 1: Basic Concepts on Absorption and Fluorescence

Ultraviolet Spectroscopy

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy

SPECTROSCOPY. Light interacting with matter as an analytical tool

Fluorescence for high school students

HUMBOLDT-UNIVERSITÄT ZU BERLIN MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I

Organic Spectroscopy. UV - Ultraviolet-Visible Spectroscopy. !! nm. Methods for structure determination of organic compounds:

NMR - Basic principles

CHAPTER 6 Chemical Bonding

4. Molecular spectroscopy. Basel, 2008

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

Molecular Spectroscopy

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

Time out states and transitions

Molecular-Orbital Theory

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

AAHS-CHEMISTRY FINAL EXAM PREP-REVIEW GUIDE MAY-JUNE 2014 DR. GRAY CLASS OF 2016

Ph.D Brochure Department of Physics

Chemistry Workbook 2: Problems For Exam 2

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds

Organic Spectroscopy

NMR SPECTROSCOPY A N I N T R O D U C T I O N T O... Self-study booklet NUCLEAR MAGNETIC RESONANCE δ PUBLISHING

Name period AP chemistry Unit 2 worksheet Practice problems

Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds.

Prerequisites: CHEM 1311 and CHEM 1111, or CHEM 1411 General Chemistry I (Lecture and Laboratory)

Lesson 3. Chemical Bonding. Molecular Orbital Theory

Visualizing Molecular Orbitals: A MacSpartan Pro Experience

UV-Visible Spectroscopy

Nuclear Magnetic Resonance

Arizona Institute for Renewable Energy & the Solar Power Laboratories

Prentice Hall. Chemistry (Wilbraham) 2008, National Student Edition - South Carolina Teacher s Edition. High School. High School

6. 3. Molecular spectroscopy. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria

Exciton Diffusion. Exciton Diffusion

FUNDAMENTAL PROPERTIES OF SOLAR CELLS

FYS Vår 2014 (Kondenserte fasers fysikk)

An Introduction to Hartree-Fock Molecular Orbital Theory

Chemical Synthesis. Overview. Chemical Synthesis of Nanocrystals. Self-Assembly of Nanocrystals. Example: Cu 146 Se 73 (PPh 3 ) 30

AP CHEMISTRY 2009 SCORING GUIDELINES

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy

Applied Physics of solar energy conversion

Teoretisk Fysik KTH. Advanced QM (SI2380), test questions 1

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE

Chemistry 307 Chapter 10 Nuclear Magnetic Resonance

Group Theory and Chemistry

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

Photoinduced volume change in chalcogenide glasses

WRIGHT COLLEGE PROGRAM/DISCIPLINE ASSESSMENT FORM

Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in organic chemistry Related to MRI in medicine

Syllabus for Chem 359: Atomic and Molecular Spectroscopy

CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW

Energy band diagrams. Single atom. Crystal. Excited electrons cannot move. Excited electrons can move (free electrons)

Triplet Harvesting and Singlet Harvesting

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy

Nuclear Physics. Nuclear Physics comprises the study of:

Dr.B.R.AMBEDKAR OPEN UNVERSITY FACULTY OF SCIENCE M.Sc. I year -CHEMISTRY ( ) Course I: Inorganic Chemistry

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.

Nuclear Magnetic Resonance (NMR) Spectroscopy

Applications of Quantum Chemistry HΨ = EΨ

2012 HORIBA Scientific. All rights reserved HORIBA Scientific. All rights reserved.

Mean Field Flory Huggins Lattice Theory

1 Basic Principles of Fluorescence Spectroscopy

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Exciton Transport in Organic Semiconductors

Infrared Spectroscopy: Theory

The Role of Electric Polarization in Nonlinear optics

1 The water molecule and hydrogen bonds in water

Section 3: Crystal Binding

REMOTE CONTROL by DNA as a Bio-sensor -antenna.

Transcription:

Singlet fission for solar energy conversion A theoretical insight David Casanova Quantum Days in Bilbao July 16, 2014

Harvesting Solar Energy Solar energy 1h = 1 year human consumption We use ~ 0.07% Earth radiation ~0.1% world s energy demand radiation sea level Si c-si cell

Harvesting Solar Energy Solar energy 1h = 1 year human consumption We use ~ 0.07% Earth radiation ~0.1% world s energy demand Up conversion lanthanides ion pairs radiation sea level Si c-si cell up conversion

Harvesting Solar Energy Solar energy 1h = 1 year human consumption We use ~ 0.07% Earth radiation ~0.1% world s energy demand Up conversion lanthanides ion pairs Down conversion radiation sea level Quantum cutting 2 Si Si c-si cell rare earth glasses up conversion down conversion Multi Exciton Generation inorganic semiconductors Singlet Fission organic materials

Energy Singlet Fission: definition S 0 + S 1 T 1 + T 1 S 1 e - T 1 S 0 h +

Singlet Fission: definition S 0 + S 1 T 1 + T 1 S 1 e - Energy T 1 e - e - S 0 h + h +

Singlet Fission: definition S 1 S 0 + S 1 T 1 + T 1 e - Properties organic compounds bimolecular process spin allowed very fast ps Energy e - e - T 1 S 0 h + h +

Singlet Fission: definition Energy S 1 T 1 S 0 + S 1 T 1 + T 1 e - e - e - Properties Requirements organic compounds bimolecular process spin allowed very fast ps E(S 1 ) 2E(T 1 ) E(T 2 ) > 2E(T 1 ) proper coupling S 0 h + h +

Singlet Fission: definition Energy S 1 T 1 S 0 + S 1 T 1 + T 1 e - e - e - Properties Requirements organic compounds bimolecular process spin allowed very fast ps E(S 1 ) 2E(T 1 ) E(T 2 ) > 2E(T 1 ) proper coupling S 0 h + h + Detecting SF triplet generation > 100% delayed fluorescence magnetic field effects

Singlet Fission: chronology 1965 photophysics of anthracene crystals 1968 low fluorescence in tetracene crystals 1980 carotenoids 1989 conjugated polymer 2004 proposed for photovoltaic applications 2006 theoretical guidelines new SF materials & development 2013 SF in solar cells molecular crystals more materials theory & experiment energy conversion

Purpose: theory of SF Computational characterization electronic structure methods States involved in SF Relative energies Mechanisms Rates of SF Key factors for SF Development of computational tools Propose/design new SF materials

Electronic states with RAS-SF Restricted Active Space Spin-Flip H 2 molecule Chemist s view virtual orbitals 1s σ* σ 1s α spin β spin occupied orbitals

Electronic states with RAS-SF Restricted Active Space Spin-Flip H 2 molecule Chemist s view virtual orbitals 1s σ* σ 1s HF singlet α spin β spin Energy, mh occupied orbitals FCI bond length, Å

Electronic states with RAS-SF Restricted Active Space Spin-Flip H 2 molecule Chemist s view virtual orbitals 1s σ* σ 1s HF singlet α spin β spin Energy, mh HF triplet occupied orbitals FCI bond length, Å

Electronic states with RAS-SF Restricted Active Space Spin-Flip H 2 molecule Active Space RAS3 1s σ* 1s σ HF singlet RAS2 Energy, mh HF triplet FCI RAS1 bond length, Å

Electronic states with RAS-SF Restricted Active Space Spin-Flip H 2 molecule Active Space + High Spin RAS3 1s σ* 1s σ HF singlet RAS2 Energy, mh HF triplet FCI RAS1 bond length, Å

Electronic states with RAS-SF Restricted Active Space Spin-Flip Reference Reduced Full CI spin-flip excitations

Electronic states with RAS-SF Restricted Active Space Spin-Flip Reference Reduced Full CI Casanova, Head-Gordon PCCP 10 2009 324 Casanova, JCP 137 2012 84105; JCC 34 2013 720 Particle Hole spin-flip excitations +

a or b. Parameters n H and eigenvector n P indicat equat allowed holes in RAS1 response and particles resulting operators on the to the total electrons in RAS2 wh a or b. Parameters n RAS-SF H and n P indicate the maximum number of algorithms allowed holes in RAS1 and particles in RAS3. n elec correspond to the total electrons in RAS2 when the RAS1 orbitals are Restricted Active Space Spin-Flip Casanova, Head-Gordon PCCP 10 2009 324 Casanova, JCP 137 2012 84105; JCC 34 2013 720 Journa configuration class occupation dimensions active 1010 1001 m n m n hole h 1110 1001 2O m n+1 m n part p 1000 1001 2V m n-1 m n

a or b. Parameters n H and n P indicat aand or b. orbitals Parameters will be n RAS-SF H indicated and n P indicate by N algorithms elec theand maximum M, while number O, m, of and eigenvector equat allowed V will correspond holes in RAS1 to orthogonal the andorbitals particles in in each to RAS3. subspace orthogonal each n elec correspond RAS1, other. RAS2, to The response The each total typical resulting othe size nu allowed holes in RAS1 and particles to andthe RAS3. total The electrons r subindex denote spin and can take the values dure, as the Lan and RAS2 a or b. Parameters n H orbitals when the and n P will and RAS1 be orbitals indicated are will operators by beon Nindi the indicate the maximum number of eigenvector elec eq allowed holes in RAS1 V will and particles correspond in RAS3. n Casanova, V will JCP elec to response resulti 137 correspond the 2012 84105; orbitals JCC 34 2013 to 720 in Journa the eac to the total electrons in RAS2 when the RAS1 orbitals are operators on th configuration class occupation dimensions to the total electrons in RAS2 wh Restricted Active Space Spin-Flip Casanova, Head-Gordon PCCP 10 2009 324 and RAS3. Theand r subindex RAS3. The denote r subind spin a or b. Parameters Jou active a or 1010 n b. 1001 H Parameters and n P m indicate m n H ant n n allowed holes allowed in RAS1 holes and particles in RAS1ina m h 1110 1001 2O m hole to the total electrons to the total in RAS2 electrons n+1 n when part p 1000 1001 2V m n-1 m n H

a or b. Parameters n H and n P indicat aand or b. orbitals Parameters will be n RAS-SF H indicated and n P indicate by N algorithms elec theand maximum M, while number O, m, of and eigenvector equat allowed V will correspond holes in RAS1 to the andorbitals particles in each subspace RAS1, RAS2, The typical size allowed in RAS3. holes n elec correspond in RAS1 response and particles resulting to andthe RAS3. total The electrons r subindex RAS2 denote when spinthe andras1 can take orbitals the values are operators dure, asonthethe Lan a or b. Parameters n H and n P indicate the maximum number of eigenvector eq allowed holes in RAS1 and particles in RAS3. n Casanova, JCP elec correspond response resulti 137 2012 84105; JCC 34 2013 720 Journa to the total electrons in RAS2 when the RAS1 orbitals are operators on th configuration class occupation dimensions to the total electrons in RAS2 wh Restricted Active Space Spin-Flip Casanova, Head-Gordon PCCP 10 2009 324 active 1010 1001 m n m n Jou hole h 1110 1001 2O m n+1 m n part p 1000 1001 2V m n-1 m n Algorithm H Configuration driven TDDFT, CIS

Any active, hole, or particle r-string is univocally described r;1 by In eq. (15), if c ¼ 0 and substring orbitals will R r,c corresponding be indicatedtobythe N jr RAS2 subspace, and with RAS-SF algorithms elec and r;1 i ¼M, while O, ^a s sm, and ^a i a or b. Parameters n {r, r 0 H and n P a orthe b. maximum Parameters i jrefi numbers2ras2 nof eigenvector } is necessary, equat s2ras2 H and ni2ras1 i2ras1 P indicat and allowed V will extra correspond holes orbital in index RAS1 to the for andorbitals the particles hole in(i in each [ RAS1) RAS3. subspace and n elec particle correspond RAS1, (a RAS2, [ sponding response The! typical resulting to asize! allowed holes in hol RAS3) to andthe RAS3. cases total The [eqs. electrons r (9 11)]. subindex The RAS2 denote R r,c when RAS2 spinthe and strings RAS1 can can take orbitals be Yn r the 1RAS1! Yn r 1and represented a or b. by Parameters a binary word n f R r,c values are b-space operators Y O particles! Y O jr dure, (rason ¼the b), the Lan are of length m with n r þ c 1 0 H and n P indicate jr r; 1 theimaximum ¼ ^a r; 1 i ¼ ^a a a number ^a ^a s s, that s ofminant eigenvector ^a ^a i jrefi i s2ras2 belonging i2ras1 eqt is, allowed occupied holes spin RAS1 orbitals, and and particles m in(n Casanova, r RAS3. þ c) n JCP 0 0 elec s, correspond 137 that 2012 is, 84105; following response JCC 34 2013 theresulti 720 ampli Journa unoccupied to the total spin electrons orbitals. in TheRAS2 list ofwhen all R r,c the strings RAS1 with orbitals n r þ care by operators introducingonanth Any active, Any hole, active, or hole, electrons in m orbitals will be denotedclass by L m particle particle n r occupation þc. r-string r-string is univocally is univoca desc configuration dimensions orbital with a hole i a substring a substring R r,c corresponding R r,c corresponding to the RAS2 to the subspace, RAS2 sub a Jou R r;0 and! extra and ~R r;0 ; m; orbital extra n r index orbital 1010 for index 1001 the hole for the m m (9) (i [ hole RAS1) (i [ and RAS1) part a active n n RAS3) cases RAS3) [eqs. cases (9 11)]. [eqs. The (9 11)]. The R r,c RAS2 R r,c strings RAS2 can stringb sented bysented a binary by aword binary f word 722 Journal of Computational Chemistry 2013, 34, 720 730 h 1110 1001 R r,c of length f R r,c ofmlength with m 2O m n with r þ c is, occupied is, hole occupied spin orbitals, spin orbitals, and m and n+1 (nm r þ n c) (n r 0þ 0 s, unoccupied unoccupied spin orbitals. spin orbitals. The list of Theall list of R r,c strings all R r,c with strin m p 1000 1001 2V m electrons electrons in part m orbitals in m will orbitals be denoted will be denoted by L m by n-1 n r þc n. L m n r þ R r;0! R~R r;0 r;0 ;! m; n ~R r;0 r ; m; n r to the total electrons in RAS2 wh Restricted Active Space Spin-Flip Casanova, Head-Gordon s2ras2 PCCP 10 i2ras1 2009 324 Algorithm Integral driven 722 Journal 722 ofjournal Computational of Computational Chemistry Chemistry 2013, 34, 2013, 720 730 34, 720 7 CAS, FCI

Singlet Fission: mechanism S 0 + S 1 1 (TT) T 1 + T 1 S* hν excitation S 0

Singlet Fission: mechanism S 0 + S 1 1 (TT) T 1 + T 1 S* hν excitation relaxation TT S 0

Singlet Fission: mechanism S 0 + S 1 1 (TT) T 1 + T 1 S* hν excitation relaxation T TT fission T S 0 diffusion

Singlet Fission: mechanism S 0 + S 1 1 (TT) T 1 + T 1 charge resonance S* hν excitation relaxation T TT fission T S 0 diffusion

Singlet Fission: electronic states SF precursor 1 TT Ŝ 2 1 TT = s(s +1) 1 TT 1 TT = T 1 T -1 T -1 T 1 T 0 T 0

Singlet Fission: electronic states SF precursor 1 TT Ŝ 2 1 TT = s(s +1) 1 TT 1 TT = T 1 T -1 T -1 T 1 T 0 T 0 Reference 5 TT

Singlet Fission: electronic states SF precursor 1 TT Ŝ 2 1 TT = s(s +1) 1 TT 1 TT = T 1 T -1 T -1 T 1 T 0 T 0 Reference 5 TT TT CT double spin-flip particle hole RAS-2SF wavefunction single exciton multiple exciton charge transfer

Singlet Fission: molecular vibration Intermolecular distortion Phonon like Chromophore coupling tetracene, pentacene JACS, 133 2011 19944

Singlet Fission: molecular vibration Intermolecular distortion Phonon like Chromophore coupling tetracene, pentacene JACS, 133 2011 19944 Intramolecular distortion S 1 optimization Energy levels tetracene, DPT, rubrene JCTC 10 2014 324 a g breathing mode

Singlet Fission: molecular vibration Intramolecular distortion Tetracene SF thermally activated Jundt et al., CPL (1995) DPT large thermodynamic driving force for SF Roberts et al., JACS (2012)

Singlet Fission: molecular vibration Intramolecular distortion HOMO LUMO Tetracene DPT

Singlet Fission: molecular vibration Intramolecular distortion Crystal structure Tetracene herringbone lattice Holmes et al., Chem. Eur. J. (1999) DPT slip-stack structure Roberts et al., JACS (2012)

Singlet Fission: molecular vibration Intramolecular distortion Tetracene energy, ev S 1 TT S 2 DPT energy, ev

Singlet Fission: molecular vibration Intramolecular distortion Tetracene energy, ev kt S 1 TT S 2 DPT energy, ev conical intersection

Singlet Fission: chromophore coupling SF transition rate S 0 S 1 TT Fermi golden rule S 0 S 1 TT

Singlet Fission: chromophore coupling SF transition rate small -2.2 mev S 0 S 1 TT Fermi golden rule Tetracene dimer

Singlet Fission: chromophore coupling SF transition rate S 0 S 1 TT Fermi golden rule Tetracene dimer small -2.2 mev excitonic CT Findings Direct coupling very weak Largest couplings to CT states JCTC 10 2014 324

Singlet Fission: chromophore coupling SF transition rate S 0 S 1 TT Tetracene dimer 1 st order 2 nd order direct coupling mediated coupling excitonic CT Findings Direct coupling very weak Largest couplings to CT states JCTC 10 2014 324

Singlet Fission: chromophore coupling SF transition rate S 0 S 1 TT Tetracene dimer 1 st order 2 nd order direct coupling mediated coupling excitonic CT -2.2 mev -52.1 mev Findings Direct coupling very weak Largest couplings to CT states SF mediated by CT states JCTC 10 2014 324

1 molecule 2 chromophores Singlet Fission: in one molecule

Singlet Fission: in one molecule 1 molecule 2 chromophores quinoidal bithiophene! Fluorescence intensity (counts) 100000 10000 1000 100 10 1 580nm 470nm 0 5 10 15 20 25 30 Time (ns)

Singlet Fission: in one molecule 1 molecule 2 chromophores Fission 1 ME T 1 + T 1 Energy gap ΔE F = E[ 5 ME] E[ 1 ME] 0 Fluorescence intensity (counts) 100000 10000 1000 100 10 1 quinoidal bithiophene 580nm 470nm 0 5 10 15 20 25 30 Time (ns)!

Singlet Fission: in one molecule 1 molecule 2 chromophores Fission 1 ME T 1 + T 1 Energy gap % 1 TT ΔE F = E[ 5 ME] E[ 1 ME] 0 [ 1 TT] [ 1 ME] 100% Contribution of 1 TT in the overall 1 ME wavefunction Fluorescence intensity (counts) 100000 10000 1000 100 10 1 quinoidal bithiophene 580nm 470nm 0 5 10 15 20 25 30 Time (ns)!

Singlet Fission: in one molecule 1 molecule 2 chromophores Fission 1 ME T 1 + T 1 Energy gap % 1 TT Radical character ΔE F = E[ 5 ME] E[ 1 ME] 0 [ 1 TT] [ 1 ME] 100% Contribution of 1 TT in the overall 1 ME wavefunction N U = 1 1 n i N U 4 Number of unpaired electrons of 1 ME i Fluorescence intensity (counts) 100000 10000 1000 100 10 1 quinoidal bithiophene 580nm 470nm 0 5 10 15 20 25 30 Time (ns)!

Singlet Fission: in one molecule 1 molecule 2 chromophores Fission 1 ME T 1 + T 1 Energy gap ΔE F = E[ 5 ME] E[ 1 ME] 0 quinoidal bithiophene! % 1 TT Contribution of 1 TT in the overall 1 ME wavefunction Radical character [ 1 TT] [ 1 ME] 100% N U = 1 1 n i N U 4 Number of unpaired electrons of 1 ME i

Eskerrik asko www.q-chem.com coming Collaborations Theodore Goodson (U. Michigan) Juan Casado (U. Malaga) QOT2 Funding Research Fellowship IT588-13 SAIOTEK S-PC13UN002

Appendix

Singlet Fission: chromophore coupling Electronic coupling Probability of TT formation Singlet Fission rate Diabatic approach well characterized states physically sound and intuitive CT/CR role direct vs. mediated definition diabatic states is arbitrary Adiabatic approach eigenstates electronic Hamiltonian quantitative values CT/CR role non adiabatic transitions coherent population

Singlet Fission: electronic states Dimer model S 0

Singlet Fission: electronic states Dimer model S 0 T S* 5 TT 1 TT CT