Un modèle non linéaire pour la description d un défaut dans un cristal quantique



Similar documents
Derivation of Hartree and Bogoliubov theories for generic mean-field Bose gases

= N 2 = 3π2 n = k 3 F. The kinetic energy of the uniform system is given by: 4πk 2 dk h2 k 2 2m. (2π) 3 0

TRANSPORT APERIODIC MEDIA COHERENT & DISSIPATIVE. Jean BELLISSARD 1 2. Collaborators:

An Introduction to Hartree-Fock Molecular Orbital Theory

Electric Dipole moments as probes of physics beyond the Standard Model

F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.

Free Electron Fermi Gas (Kittel Ch. 6)

Parabolic Equations. Chapter 5. Contents Well-Posed Initial-Boundary Value Problem Time Irreversibility of the Heat Equation

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

Schrödinger operators with non-confining potentials.

Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid

arxiv:hep-th/ v1 25 Jul 2005

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

6.2 Permutations continued

1 Variational calculation of a 1D bound state

Introduction to General and Generalized Linear Models

Chapter 7: Polarization

2. Illustration of the Nikkei 225 option data

RESONANCES AND BALLS IN OBSTACLE SCATTERING WITH NEUMANN BOUNDARY CONDITIONS

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

PHYS 1624 University Physics I. PHYS 2644 University Physics II

BANACH AND HILBERT SPACE REVIEW

Techniques algébriques en calcul quantique

Fuzzy Differential Systems and the New Concept of Stability

DFT in practice : Part I. Ersen Mete

Review of Statistical Mechanics

Nonparametric adaptive age replacement with a one-cycle criterion

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

0.1 Phase Estimation Technique

Basic Concepts in Nuclear Physics

3D plasticity. Write 3D equations for inelastic behavior. Georges Cailletaud, Ecole des Mines de Paris, Centre des Matériaux

Invariant random subgroups and applications

Isotropic Entanglement

The Heat Equation. Lectures INF2320 p. 1/88

Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: µ >> k B T βµ >> 1,

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL

9 More on differentiation

Date: April 12, Contents

10.2 Series and Convergence

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

Dynamics at the Horsetooth, Volume 2A, Focussed Issue: Asymptotics and Perturbations

Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model.

Special Theory of Relativity

Supplement to Call Centers with Delay Information: Models and Insights

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).

Macroeconomics Lecture 1: The Solow Growth Model

NONLOCAL PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS

NMR and IR spectra & vibrational analysis

Physics 176 Topics to Review For the Final Exam

arxiv: v2 [physics.acc-ph] 27 Oct 2014

Group Theory and Chemistry

Trails in Quantum Mechanics and Surroundings

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok

Rate of convergence towards Hartree dynamics

The Electric Field. Electric Charge, Electric Field and a Goofy Analogy

s-convexity, model sets and their relation

Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES. 1. Introduction

Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Topologically Massive Gravity with a Cosmological Constant

Cash-in-Advance Model

Frustrated magnetism on Hollandite lattice

Perfect Fluids: From Nano to Tera

Cyber-Security Analysis of State Estimators in Power Systems

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

INTERACTION OF TWO CHARGES IN A UNIFORM MAGNETIC FIELD: II. SPATIAL PROBLEM

Some stability results of parameter identification in a jump diffusion model

Statistical Machine Learning

Duality in General Programs. Ryan Tibshirani Convex Optimization /36-725

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

Optical Properties of Solids. Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials University Leoben, Austria

Gambling Systems and Multiplication-Invariant Measures

24. The Branch and Bound Method

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Continued Fractions and the Euclidean Algorithm

Perfect Fluidity in Cold Atomic Gases?

OPTIMAL PORTFOLIO ALLOCATION UNDER ASSET AND SURPLUS VaR CONSTRAINTS

Auger width of metastable states in antiprotonic helium II

European Call Option Pricing using the Adomian Decomposition Method

Quantum Time: Formalism and Applications

SPECTRAL TRIPLES FOR AF C -ALGEBRAS AND METRICS ON THE CANTOR SET

GenOpt (R) Generic Optimization Program User Manual Version 3.0.0β1

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics).

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

Lecture 10. Finite difference and finite element methods. Option pricing Sensitivity analysis Numerical examples

FIELD THEORY OF ISING PERCOLATING CLUSTERS

Let H and J be as in the above lemma. The result of the lemma shows that the integral

arxiv:math/ v1 [math.co] 21 Feb 2002

Numerical methods for American options

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity

Asymptotics of discounted aggregate claims for renewal risk model with risky investment

Maximal clusters in non-critical percolation and related models

A STOCHASTIC MODEL FOR THE SPREADING OF AN IDEA IN A HUMAN COMMUNITY

Supporting Material to Crowding of molecular motors determines microtubule depolymerization

Anderson localization: Metallic behavior in two dimensions?

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

Notes on Elastic and Inelastic Collisions

Transcription:

Un modèle non linéaire pour la description d un défaut dans un cristal quantique Mathieu LEWIN Mathieu.Lewin@math.cnrs.fr (CNRS & University of Cergy-Pontoise) collaboration avec É. Cancès & A. Deleurence (ENPC, Marne-La-Vallée) Collège de France, 8 Janvier 2010 Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 1 / 18

Introduction Describing the electronic state of a crystal in presence of a defect is a major issue in Quantum Chemistry and Physics. electronics and optics: doped semi-conductors, quantum dots,... material science: storage of radioactive waste,... Germanium crystal doped with arsenic or indium. Structural damage created by displacement of zirconium, silicon and oxygen atoms in crystalline zircon (a candidate for storing nuclear waste for over 250 000 years) in the presence of a heavy nucleus. Farnan et al, Nature 445 (2007), 190. Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 2 / 18

Introduction System of interest: infinitely many classical fixed nuclei (perturb. of periodic structure); infinitely many quantum electrons. Difficulties: infinitely many electrons variable = operator of infinite rank; nonlinear model lack of compactness at infinity; long range of Coulomb potential divergences; two scales. References: [CDL1] Cancès, Deleurence & M.L. Comm. Math. Phys. 281 (2008). [CDL2] Cancès, Deleurence & M.L. J. Phys.: Condens. Matter 20 (2008). [CL] Cancès & M.L. Arch. Rat. Mech. Anal. (2010). Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 3 / 18

Supercell method Main method at present: supercell method. The supercell model spurious interactions between the defect and its periodic images; inaccuracies for charged defects. Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 4 / 18

Methodology Finite system model for N electrons E per (N) = ēn + o(n) E def (N) = E per (N) + c + o(1) thermodynamic limit N Infinite periodic system ground state γ 0 per Infinite perturbed system ground state γ = γ 0 per + Q [CLL] Catto, Le Bris & Lions. Ann. I. H. Poincaré 18 (2001). [HLSo] Hainzl, M.L. & Solovej. Comm. Pure Applied Math. 76 (2007). [CDL1] Cancès, Deleurence & M.L. Comm. Math. Phys. 281 (2008). Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 5 / 18

Reduced Hartree-Fock model for a finite system Electrons (=fermions). Spin neglected for simplicity. Hartree-Fock state: a density matrix γ B(L 2 (R 3 )) s.t. 0 γ 1. tr(γ) = ρ γ = nb of particles in the system. Density of charge: ρ γ (x) = γ(x,x) s.t. tr(γv ) = ρ γ V. N [ ] Example: γ = ϕ i ϕ i Ψ(x 1,...,x N ) = (N!) 1/2 det(ϕ i (x j )). i=1 Reduced Hartree-Fock energy: Ext. elec. field V ext = µ 1 x, where µ = charge distrib. of nuclei. ( ) ˆ E µ rhf (γ) := tr 2 γ + V ext ρ γ + 1 ˆˆ ρ γ (x)ρ γ (y) dx dy R 3 2 R 6 x y Rmk. Not a quantitative model: exchange-correlation missing. Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 6 / 18

Reduced Hartree-Fock model for a finite system ( ) ˆˆ E µ rhf (γ) := tr 2 γ ρ γ (x)µ(y) dx dy + 1 ˆˆ ρ γ (x)ρ γ (y) dx dy R 6 x y 2 R 6 x y Minimizers under constraint tr(γ) = N (, e.g., when N µ) γ = χ (,εf ) (H γ ) + δ, H γ = 2 + V γ, V γ = 4π(ρ γ µ) (mean-field / Fock operator) (Self-Consistent Field) where 0 δ χ {εf }(H γ ) and ε F =Lagrange multiplier=fermi level. Rmk. If δ 0, may be rewritten as ε F 0 2 + [Sol] Solovej. Appendix of Invent. Math. 104 (1991). σ (H γ)!! NX ϕ i 2 µ 1 ϕ i = λ i ϕ i, x i=1 for i = 1...N. Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 7 / 18

Periodic Fermi sea I Discrete subgroup L R 3, compact fundamental domain Γ. Nuclei: µ = µ per = z L χ( z) Γ where χ 0, χ N \ {0} support in Γ. Thermodynamic limit: retain nuclei in a box C L = [ L/2;L/2) 3. Electrons in the whole space [CLL] or in C L, with chosen BC [CDL1]. Impose neutrality: N = C L µ per. As L, γ L CV to the unique L-periodic sol. of γ 0 per = χ (,ε F ) ( H 0 per ), H 0 per = 2 + V 0 per, V 0 per = 4π( ρ γ 0 per µ per ), with ˆ Γ ) (ρ γ µ 0per per = 0. Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 8 / 18

Periodic Fermi sea II Bloch-Floquet transform: H 0 per commutes with all translations {τ z} z L. Hper 0 Hper(ξ), 0 Hper(ξ) 0 = 1 Γ 2 ( i + ξ)2 + Vper 0 on L 2 per(γ) Brillouin zone: Γ = {ξ R 3 : ξ x π, x Γ}. ε F ε F ε 2 (ξ) ε 1 (ξ) Insulator / semi-conductor Conductor N = 2 N = 3 Assumption: insulator in the following. Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 9 / 18 Γ ξ

Introducing a defect Take µ = µ per + ν where ν= local defect. Goal: construct solution of γ = χ (,εf ) (H γ ) + δ, H γ = /2 + V γ, V γ = 4π ( ρ γ µ per ν ) with ε F gap. Meaning of ρ γ? Correct functional setting? Idea [CIL,HLSS]: write everything relatively to γ 0 per. ( ) Q = γ γ 0 per = χ (,εf ) (H γ ) χ (,εf ) ( H 0 per ) + δ, H γ = H 0 per + W Q, W Q = 4π ( ρ Q ν ). Fermi sea γ ε F σ(h γ) electrons [CIL] Chaix, Iracane + Chaix, Iracane & Lions. J. Phys. B 22 (1989). [HLSS] Hainzl, M.L., Séré & Solovej. J. Phys. A 76 (2007). Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 10 / 18

Functional analysis setting Schatten classes: Let A= self-adjoint compact operator, A = i λ i ϕ i ϕ i (λ i 0). A Hilbert-Schmidt (A S 2 ) when i λ i 2 <. A trace-class (A S 1 ) when i λ i <. Then tr(a) = i λ i = k e k,ae k for any orth. basis {e k }. Density ρ A (x) = i λ i ϕ i (x) 2 L 1 (R 3 ). The sum k e k,ae k can CV for one basis and not for other ones! Generalization [HLSé]: A is γper 0 -trace-class (A S0 1 ) when A S 2 and A = γper 0 Aγ0 per, A++ = (γper 0 ) A(γper 0 ) S 1. Define tr 0 (A) = tr(a + A ++ ). ( A A = A + ) A + A ++ f (x)g(y) Notation: D(f,g) = R 6 x y dx dy = 4π C := {f : D(f,f ) < }. R 3 ˆf (k)ĝ(k) k 2 dk and [HLSé] Hainzl, M.L. & Séré. Commun. Math. Phys. 257 (2005). Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 11 / 18

Existence of bound states Theorem (Existence of bound states [CDL1]) For all ε F in the gap and ν such that ν 1 L 2 (R 3 ) + C, there exists at least one solution Q to Eq. ( ), such that (1 ) 1/2 Q S 2, (1 ) 1/2 Q ±± (1 ) 1/2 S 1 and ρ Q L 2 (R 3 ) C. The associated density ρ Q is unique, hence so is the mean-field op. H γ. Only δ can vary among solutions. These states are the ones obtained in the thermo. limit. If ε F is fixed in the gap and ν is small enough, then ε F / σ(h Q ), hence δ 0 and Q is unique. Furthermore one has tr 0 (Q) = 0. Variational proof [CIL,HLSS]: formally E µper+ν rhf (γ) E µper+ν rhf (γper) 0 = tr ( HperQ 0 ) ˆˆ ρ Q (x)ν(y) dx dy R 6 x y + 1 ˆˆ ρ Q (x)ρ Q (y) dx dy := F ν (Q). 2 R 6 x y Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 12 / 18

Variational interpretation F ν (Q) ε F tr 0 Q = tr 0 (H 0 per ε F)Q D(ν,ρ Q ) + 1 2 D(ρ Q,ρ Q ). Note 0 γ 1 γ 0 per Q (γ 0 per) Q 2 Q ++ Q tr 0 (H 0 per ε F )Q = tr H 0 per ε F (Q ++ Q ) tr H 0 per ε F Q 2 0. Theorem (Variational interpretation [CDL1]) For all ε F in the gap, F ε F tr 0 is strongly continuous and convex on K := {Q = Q : γ 0 per Q (γ 0 per), (1 ) 1/2 Q S 2, (1 ) 1/2 Q ±± (1 ) 1/2 S 1 }. Minimizers Q K are exactly the solutions of ( ). Any such Q also minimizes the pb ( ) E ν (q) = inf R K, tr 0 (R)=q Fν (R) where q = tr 0 (Q). One has E ν (q) < E ν (q q ) + E 0 (q ) for all q q and any minimizing sequence for ( ) is precompact in Q. Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 13 / 18

Properties of bound states Theorem (Properties of bound states [CL]) Fix ε F gap. Assume ν L 1 (R 3 ) L 2 (R 3 ) is small enough with R 3 ν 0. Then Q is not trace-class. If L is anisotropic, then ρ Q is not in L 1 (R 3 ). Reason: ρ Q = L(ρ Q ν) + o(ρ Q ν). L can be explicitely computed. f L 1 (R 3 ) lim k 0 L(f )(σ k ) = f (0)σ T Lσ for σ S 2. L 0 is given by the Adler-Wiser formula [Adl,Wis] + 2 (k x )u n,q,u n,q L 2per (Γ) k T Lk = 8π Γ N n=1 n =N+1 Γ ( ǫn,q ǫ n,q ) 3 dq, where ǫ n,q,u n,q = eigenvalues/vectors of Bloch Hamiltonian H 0 per (q). Always L 0; for anisotropic materials, L ci 3. [CL] Cancès & M.L. Arch. Rat. Mech. Anal. (2010). [Adl] Adler, Phys. Rev. 126 (1962). [Wis] Wiser, Phys. Rev. 129 (1963). Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 14 / 18

Dielectric permittivity Theorem (Homogenization limit [CL]) Fix ε F gap and take ν η = η 3 ν( η). Let V η = (ρ Qη ν η ) 1. Then W η (x) = η 1 V η (x/η) CV weakly in C as η 0 to the unique sol. of div(ε M W ) = 4πν where ε M is a 3 3 symmetric matrix I 3, the (electronic contribution to the) macroscopic dielectric tensor of the perfect crystal. Explanation: ρ Q = L(ρ Q ν) + o(ρ Q ν) ν ρ Q = (1 + L) 1 ν +. ε M obtained from strong limit of U η (1 + L) 1 U η, U η = dilation unitary operator. Calculation: ε := vc 1/2 (1 + L)vc 1/2 where v c (ν) := ν 1. Bloch matrix { ε K,K (q)} K,K (2πZ) 3, q [ π, π)3. lim η 0 ε 0,0 (ση) = 1 + σ T Lσ, lim η 0 ε 0,K (ση) = β K σ, lim η 0 ε K,K (ση) = C K,K. Then [BarRes86]: ε M = 1 + L K,K (2πZ) 3 \{0} β K [C 1 ] K,K β K [BarRes86] Baroni and Resta, Phys. Rev. B 33 (1986). Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 15 / 18

Numerics I Two different scales: use of Bloch-Floquet transform to discretize periodic pb; use of localized Wannier basis for the locally perturbed pb. Ex: Maximally Localized Wannier functions [MV]. 1D simulation [CDL2]: Yukawa potential, Z = 2. 1.5 1 0.5 Modulus of the Maximally Localized Wannier Orbitals [MV] for the first two bands (red and green), the 3rd and 4th bands (blue and orange). 0 0 5 10 15 20 [MV] Marzari, Vanderbilt. Phys. Rev. B 56 (1997). Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 16 / 18

Numerics II Comp. of Q: relaxed constraint algorithms [Can]. ν = δ 0.3 2δ 0 3.0 0.4 2.8 0.2 2.6 0.0 2.4-0.2 2.2-0.4 2.0-0.6 1.8 1.6-0.8-6 -4-2 0 2 4-1.0-10 -8-6 -4-2 0 2 4 6 8 10 Polarization of the Fermi sea in the presence of defect, calculated with 28 MLWFs. As good as supercell calculation in a basis set of size 1000. Left: ρ γ 0 per and ρ γ. Right: ρ γ ρ γ 0 per. [Can] Cancès, Le Bris Int. J. Quantum Chem. 79 (2000). Cancès, J. Chem. Phys. 114 (2001). Kudin, Scuseria, Cancès, J. Chem. Phys. 116 (2002). Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 17 / 18

Conclusion Possible to describe an infinite quantum system perturbed locally: use perfect system as reference; variational (as soon as the perturbation is localized enough); divergences; well-behaved associated numerical methods. Perspectives: simulations on real systems; theory of realistic models; time-dependent setting; relaxation of nuclei; correlation? metals? Mathieu LEWIN (CNRS / Cergy) Cristaux quantiques avec défauts Collège de France, 08/01/10 18 / 18