User Experience Design for Vehicles

Similar documents
Divergence of User experience: Professionals vs. End Users

User Experience in HMI: An Enhanced Assessment Model

Development of Evaluation Heuristics for Web Service User Experience

USER EXPERIENCE AS A TEST PLATFORM FOR INNOVATIONS

Measuring User Experience of Usability Tool, Designed for Higher Educational Websites

User Experience Why, What, How?

Quantitative Analysis of Desirability in User Experience

Studying Multimodal Interaction at an Interactive Museum Exhibit on SteamPower Locomotive

Experience design for forklift e-learning tool

Extending Quality in Use to Provide a Framework for Usability Measurement

MOBILE INTERNET SERVICE USER EXPERIENCE, SATISFACTION AND CONTINUAL USE INTENTION

DESIGNING FOR THE USER INSTEAD OF YOUR PORTFOLIO

Data Visualization How to ensure understandable and sustainable statistical products

The Importance of User-Centered Design

User Experience Evaluation in Mobile Industry

Simulator Training Emergency Vehicles Exclusion Criteria (T1)

Research-based design and research through design: a case study of the improvement in the user experience of an autism caregiver using ICT.

NVIDIA AUTOMOTIVE. Driving Innovation

NANYANG TECHNOLOGICAL UNIVERSITY

Driver Distraction in Finland. Petri Jääskeläinen

Table of Contents Section 8: How Children Learn

THE WELLBEING FRAMEWORK FOR SCHOOLS

The facts about mobile phones and driving

A Holistic Model of User Experience for Living Lab Experiential Design

Cloud Computing: A Comparison Between Educational Technology Experts' and Information Professionals' Perspectives

CONNECTED CAR. Creating a seamless life through the connected car. Global Automotive. GfK 2015 Connected Cars Study 2015

HUMAN COMPUTER INTERACTION (HCI) AND PSYCHOLOGY

LIS-643 Information Architecture & Interaction Design Fall 2013 Tuesday 3:30-5:50p (01) / 6:30-8:50p (02) Pratt Manhattan Center, Room 609

What Does It Mean for Students to Be Engaged?

Understanding, Scoping and Defining User experience: A Survey Approach

Smartphone Integration in the Car IT: User Acceptance of Phone-Centric Car Connectivity Solutions

Abbreviation Acknowledgements. The History Analysis of the Consumer Applicatl.o Using ASR to drive Ship, One Application Example

A SCENARIO OF USER EXPERIENCE

Acceptance of Future Persuasive In-Car Interfaces Towards a More Economic Driving Behaviour

Simulations, Games and Experiential Learning Techniques:, Volume 1, 1974

Usability and Design Considerations for Computer-Based Learning and Assessment

Balancing Your Wellness Wheel

Involving Children and Young Adults With Complex Needs in Game Design

Inspiring Leadership through Emotional Intelligence

~ musictherapyofidaho@gmail.com ~ (208)

user Experience - The Future of Design

Subject Description Form

Occupational Therapy Programme Wedge Gardens Treatment Centre

CAPTURING USER EXPERIENCE FOR PRODUCT DESIGN

AN INTRODUCTION TO PSYCHOLOGY

Gamification in Business: Designing Motivating Solutions to Problem Situations

ADVANCED DIPLOMA IN COUNSELLING AND PSYCHOLOGY

It s Mine. Yes To Mobility > Insight and Outlook 2015 Continental Mobility Study

Integrated Health Wheel:

MS INFORMATION SHEET DRIVING WITH MS. How can MS affect my ability to drive? Simultaneous coordination of arms and legs necessary when changing gears.

A Study on Satisfaction of Movie Viewers Watching Movies on Smartphones

Becoming a Registered Nurse in the Northwest Territories and Nunavut Requisite Skills and Abilities

RT & RM Training Module Script

USVH Disease of the Week #1: Posttraumatic Stress Disorder (PTSD)

User experience research and practice two different planets?

How to Manage User Experience Properly

Social Service Agencies. Programs for Schools & Music Therapy. Outreach

AP Psychology Ms. Samuelson Per 6

Towards Distinctive User Experiences

Study Plan in Psychology Education

Thematic File Road Safety 5 Distraction in Traffic

Emotionally Intelligent Leadership

CONTENTS INTRODUCTION 1

BAA Course: Psychology 12

Getting the occupational safety basics organised

A BEHAVIORAL VIEW OF LEARNING

Psychology SQP (2015) Class XII Blue Print

APA National Standards for High School Psychology Curricula

USER EXPERIENCE WHITE PAPER

Reach out and touch the future: Accenture connected vehicle solutions

Course Descriptions Psychology

Employee Drug-Free Workplace Education

Challenging behaviour and cerebral palsy

How ipads can help people living with dementia: a summary

User Experience of Interaction with Technical Systems

EXPERTKANSEIWEB A Tool to Design Kansei Website

An OSGi based HMI for networked vehicles. Telefónica I+D Miguel García Longarón

Financial Freedom: Three Steps to Creating and Enjoying the Wealth You Deserve

Bad designs. Chapter 1: What is interaction design? Why is this vending machine so bad? Good design. Good and bad design.

Interaction and Visualization Techniques for Programming

User Experience in the Cloud: Towards a Research Agenda

CARS Configurable Automotive Research Simulator

Testing Websites with Users

School Authority: Society For Treatment of Autism (Calgary Region)

Persuasive Speech Outline. Specific Purpose: To persuade my audience to not get distracted while driving so they will not get into a car accident

What users want: Functional user experience. John Sandler Telstra Corporation Melbourne, Australia

ACADEMIC DIRECTOR: Carla Marquez-Lewis Contact: THE PROGRAM Career and Advanced Study Prospects Program Requirements

CONSUMERLAB CONNECTED LIFESTYLES. An analysis of evolving consumer needs

User Experience: Buzzword or New Paradigm?

Some Reflections on Evaluating Users Experience

Chapter 14: Usability testing and field studies. The aims: Usability testing

ANALYSIS OF USER ACCEPTANCE OF A NETWORK MONITORING SYSTEM WITH A FOCUS ON ICT TEACHERS

JOB DESCRIPTION. Chief Nurse

COURSE DESCRIPTIONS 科 目 簡 介

Al Ahliyya Amman University Faculty of Arts Department of Psychology Course Description Psychology

Customer Experience Outlines

Finding Your Gift: Three Paths to Maximizing Impact in Your Career

In-Vehicle Infotainment. A View of the European Marketplace

Workshop W2 Developing Effective Employee Engagement Strategies for Business Success

Transcription:

User Experience Design for Vehicles Tutorial @ AutomotiveUI 2012 Manfred Tscheligi

1 Introduction Vehicles have become a temporary mobile workplace and home-place for both drivers and passengers interaction with information about one s own identity entertainment relationship-building/maintenance (e.g., communication with others) access to information resources (e.g., travel information, references, other databases) Vehicles as communication, entertainment, and information environments Vehicles as interaction and living context [Boehm-Davis et al (2003)]

1 Introduction Definitions Contextual User Experience (UX) UX Factors UX in the Car Example UX studies [http://www.freeband.nl/project.cfm?id=1126&language=en]

2 UX Definition Up to now UX is associated with a broad range of fuzzy and dynamic concepts [Law et al., 2008] There is a broad range of different definitions, e.g.: ISO/DIS 9241-210 Nielsen-Norman Group Uxnet (http://www.uxnet.org) Sward & MacArthur, 2007 Hassenzahl & Tractinsky, 2006 Mäkelä & Fulton Suri, 2001 Alben, 1996

2 UX Definition Non-utilitarian aspects of interactions shifting to user affect, sensation, shifting to meaning, shifting to values, hedonics, aesthetics and beauty Quality of interaction as much more comprehensive concept Beyond the traditional ingredients of quality

2 UX-Definition [Alben, 1996] All the aspects of how people use an interactive product: the way it feels in their hands, how well they understand how it works, how they feel about it while they are using it, how well it serves their purposes, and how well it fits into the entire context in which they are using it

2 UX-Definition [Hassenzahl & Tractinsky, 2006] UX is a consequence of a user s internal state (predispositions, expectations, needs, motivation, mood, etc.), the characteristics of the designed system (e.g. complexity, purpose, usability, functionality, etc.) and the context (or the environment) within which the interaction occurs (e.g. organisational/social setting, meaningfulness of the activity, voluntariness of use, etc.)

2 UX Definition [Hekkert, 2006] ( ) the entire set of effects that are elicited by the interaction between a user and a product, including the degree to which all our senses are gratified (aesthetic experience), the meanings we attach to the product (experience of meaning), and the feelings and emotions that are elicited (emotional experience).

2 Our UX Definition (Instant) User Experience is defined as the user s sensory, emotional and reflective response to the interaction with a system in a context. " User: Someone who uses or employs something, i.e. the role of a user is defined by the process of interacting with a system." System (Product/Service): A group of devices or artificial objects that are organized for a purpose. " Context: Context refers to the interrelated conditions in which something exists or occurs." Interaction: A chain of interdependent actions and reactions between a user and a system." " "

2 UX Definition [Oppelaar 2008]: Experience goes beyond the artefact Experience goes behind the actual use Experience is a momentum Analysis of experience requires multidisciplinary viewpoints Experience has a timeframe

2 UX Definition Roto 2006 Context Physical Context Social Context Temporal Context Task Context User System Needs Resources Emotional State Experiences Expectations Perception Interaction Products involved Objects involved Services involved People involved Infrastructure involved USER EXPERIENCE

3 Contextual UX

3 Contextual UX SOCIAL CONTEXT Hierarchy Example Factors: Reputation Norms Gender Habits Languages Role Origin Relationship to other People Expertise Number of People Interpersonal Trust USER CONTEXT Expectations Predispositions User values Overall judgements Relationship to other people Embodiment Mobility Behavioral tendencies Skills Robustness Flexibility Desirability Usage behavior Consistency Curiosity Ergonomics R Investment INTERACTION Motivation Texture Size Interest Knowledge Mood Reflective Needs Adaptivity Personalization Customization S Example Factors: Sensory UX Emotional E PHYSICAL CONTEXT SYSTEM CONTEXT Errors Example Factors: Location/Place Temperature Smell Noise (Audio) Light (Vision) Taste Example Factors: Weight Unobtrusiveness Findability Roughness TEMPORAL CONTEXT

3 Contextual UX SOCIAL CONTEXT PHYSICAL CONTEXT USER USER CONTEXT SYSTEM CONTEXT Mood UX TEMPORAL CONTEXT

4 Temporality of UX User experience is the complete experience of a user before, during or after the use of a product or service, directly caused or changed by this product or service. There are many aspects influencing the user experience, e.g. fulfillment of user needs and desires, usability aspects, emotional aspects of product usage. [Eggenkamp, 2006] User Experience Phases [Roto, 2007]

5 UX Factors Trust Sensoric Attitudes / Aesthetics Perceived Workload / Stress Fun/Enjoyment Usability User Acceptance Co-Experience Perceived Safety Emotion

5 UX Factors

5 Trust Trust is a basic organizing principle of interpersonal exchange relations. It can be described as the problem of acting without knowing the reaction of the exchange partner in advance [Leimeister et al (2005)] Trust is one of the most important social concept that helps human agents to cope with their social environment and is present in all human interaction [Gambetta, 1990]

5 Trust Trust exists between a trusting party (trustor) and a party to be trusted (trustee). The development of trust depends on the ability of the trustee to act in the best interest of the trustor and the degree of trust that the trustor places on the trustee. systems (system trust) people (interpersonal trust) organizations (organizational trust) trusting party party to be trusted

5 Sensoric Attitudes / Aesthetics Everything humans perceive must enter their minds through their senses. Designing for smell, taste, touch, sound and sight is combined in the term sensorial design [Shedroff, 2001] A deeper understanding of sensorial attitudes can result in more intuitive and easy to grasp interfaces by interacting with users in an innovative way Parts of the car as design material

5 Perceived Workload / Stress The effort invested as a response to a demand placed on humans, physical and/or mental in nature Limited processing capacity theory: human mental resources are limited and that their deployment is under voluntary control. The higher the demand, the more resources have to be invested in order to keep the performance stable Cause is both external (task demand) and internal (person specific demand)

5 Fun / Enjoyment Things are fun when they attract, capture, and hold our attention by provoking new or unusual perceptions, arousing emotions in contexts that typically arouse none, or arousing emotions not typically aroused in a given context. Things are fun when they surprise us; when they don t feel like they look, when they don t sound like they feel. Things are fun when they present challenges or puzzles to us as we try to make sense and construct interpretations [Carroll, 2004]. [Brandtzæg et al. (2003) ] present three main design implications for designing enjoyable technologies 1. User control and participation, with appropriate challenge 2. Variation and multiple opportunities 3. Social opportunities in terms of co- activity and social cohesion

5 Usability ISO 9241-11 (1998) specifies usability as: The extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use. Therefore it is interesting to find out, for example: Is the system easy to use? Can users quickly learn to use this system? How confident does the user feel while using the system?

5 User Acceptance User Acceptance can be defined as the demonstrable willingness within a user group to employ technology for the tasks it is designed to support [Dillion, 2001] Technology Acceptance Model (TAM) [Davis 1989] Perceived Usefulness: the extent to which the individual believes that using a system will enhance his/her job performance Perceived Ease of Use: the extent to which an individual believes using a system will be free of effort Behavioral Intention of Use: The intent of the user to use the technology once it is made available

5 Co-Experience Co-experience is about user experience in social contexts Co-experience takes place as experiences are created together, or shared with others Co-experience reveals how the experiences an individual has and the interpretations that are made of them are influenced by the physical or virtual presence of others [Forlizzi & Battarbee, 2004]

5 Perceived Safety The perception of humans to what extent one is safe; the perceived level of danger while using an interactive system Design and behaviour of a system can positively influence the perceived safety A high level of perceived safety might be desirable in some areas but can also lead to negative effects such as users stop paying sufficient attention when handling dangerous tasks Make user aware of the difference of perceived safety and objective safety when designing interactive systems

5 Emotion The driver s emotional state is an important issue for automotive safety. Since emotions affect perception and action, they are relevant for traffic participation. A number of driving behaviors are negatively affected by emotions, linking anger or aggression to accidents (see e.g. [Lajunen & Parker, 2001]. Relevant emotional states during driving are e.g., Aggressiveness & Anger Stress Anxiety Sadness Happiness

6 User Experience in the Car Apart from Usability & Usefulness, the Drivers Experience needs to get into the focus on a more comprehensive level à Focus: How to design cars & in-car systems that provide positive and desirable experiences to drivers and passengers?

6 Car Experience Spaces Front Seat Passenger Experience source of both assistance & distraction Driver Experience area of a variety of safety-critical interactions Rear Seat Passenger Experience included towards a holistic picture of the cabin

6 Car Experience Spaces Context Car is highly linked to context aroung it Understanding of context factors is important to understand experiences Front Seat Passenger Driver Rear Seat Passenger

7 Investigating Car UX Lab Studies Highly controllable Reduced realism In-Situ Studies Researcher present (e.g., Ethnography, Contextual Inquiry) High effort, safety issues High realism, natural surrounding Remote In-Situ Studies Researcher not present (e.g., ESM, Video Ethnography) Mostly technology supported Danger of missing relevant real experiences

7 Investigating Car UX The Dangerous Car How can we avoid that somebody gets harmed during a study? Safe integration of equipment, unobtrusive observation Limited Space Limited space to include researcher and/or equipment Intrusion into the social space The Moving Car Changing environmental conditions (light, noise,...) High effort travelling for researcher

8 Example Studies (1) [Leshed et al (2008)]: In-car gps navigation: engagement with and disengagement from the environment Ethnographically-informed study with GPS users Found evidence for practices of disengagement of users with their environment. You no longer need to know where you are and where your destination is, attend to physical landmarks along the way, or get assistance from other people in the car and outside of it. Also found opportunities Discovering invisible landmarks, exploring previously unknown areas thanks to a new sense of security

8 Example Studies (2) Automotive HMI Test (under publication): Audi MMI, BMW idrive, Mercedes COMAND Video Summary available online (german): http://www.youtu.be/gqtu1_pdxxs

8 Example Studies (3) [Meschtscherjakov et al (2009)]: Acceptance of future persuasive in-car interfaces towards a more economic driving behavior. Evaluate future eco-friendly interfaces towards their user acceptance Online Survey based on TAM (+added questions towards disturbance, security risks, suitability) Results: Augmentation of existing interfaces was most accepted (e.g. eco speedometer)

8 Example Studies (4) [Knobel et al. (2012)]: Clique Trip: feeling related in different cars Stress the importance of creating relatedness experiences when travelling in different cars to the same destination Conducted a case study: Addressed analysis, design, and evaluation of the experience regarding the Clique Trip prototpye Insights were derived from experience reports, implemented in the car and evaluated on the road. Demonstrated how they designed for a positive social experience in the automotive context to evoke a feeling of relatedness and closeness while driving

8 Example Studies (5) [Harris & Nass (2011)]: Emotion regulation for frustrating driving contexts Negative emotional states e.g., through frustrating events are dangerous during driving Examined effects of cognitively reframing frustrating events Task: navigate a challenging driving course that included frustrating events such as long lights and being cut-off (N=36) 3 conditions: Reappraisal-down: voice prompts that should deflate negative reactions Reappraisal-up: voice prompts that brought attention to the negative actions of vehicles and pedestrians Silent: no voice prompts Result: Participants in the reappraisal-down condition had better driving behavior and reported less negative emotions à Lowering frustration on the road could be done by changing cognitions immediately after frustrating events

8 Example Studies (6) [Inbar & Tractinsky (2011)]: Make a Trip an Experience: Sharing In- Car Information with Passengers Suggest to involve passengers in the handling of invehicle information systems (IVIS) à also consider needs of passengers and their potential contribution as additional information handlers who buffer the driver from information overload à Benefits: For passengers: reduced boredom, increased trust, a sense of inclusion For drivers: less distraction and reduced information load

5 Example Studies (7) [Eckoldt et al. (2012)]: An Experiential Perspective on Advanced Driver Assistance Systems. Stresses the experiential perspective in the automotive domain Study on advanced driver assistance systems (ADAS) How do ADAS impact people s driving experience? Results show that there is a difference in the usage of ADAS with regard to joy of driving and joy while driving : ADAS are perceived rather negatively when joy of driving is in the fore, as this is related to a feeling of mastery and control over the car. ADAS are perceived rather positively when joy while driving is in the fore, as this stems from aspects beyond driving, e.g., through a stimulating landscape or through feeling related to others inside or outside the car.

9 Summary User Experience is a comprehensive concept which needs comprehensive consideration There are relations between factors There is a temporal dimension There is a contextual dimension UX insights in some domains not necessarily hold also in the car context More studies are needed to get a bigger picture (still fragmented)

Annex: Selected References Boehm-Davis, D. A., Marcus, A., Green, P. A., Hada, H., and Wheatley, D. 2003. The next revolution: vehicle user interfaces and the global rider/driver experience. In CHI EA 03, 708 709. Brandtzæg, P.B., Følstad, A., & Heim, J. (2003). Enjoyment. Lessons from Karasek. In M. A. Blythe, K. Overbeeke, A. F. Monk and P. C. Wright (Eds.), Funology: from usability to enjoyment (pp. 55-65). Dordrecht, the Netherlands: Kluwer. Carroll, J. M. (2004). Beyond fun. interactions, 11(5):38 40. Davis, F., Bagozzi, R., & Warshaw, P. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 982 1003. Dillon, A. (2001) User Acceptance of Information Technology. In W. Karwowski (ed). Encyclopedia of Human Factors and Ergonomics. London: Taylor and Francis. Eckoldt, K., Knobel, M., Hassenzahl, M., Schumann, J. An Experiential Perspective on Advanced Driver Assistance Systems. it - Information Technology, 54(4), (2012), 165-171. Forlizzi, J. and Battarbee, K. (2004). Understanding experience in interactive systems. In DIS 04: Proceedings of the 5th conference on Designing interactive systems, pages 261 268, New York, NY, USA. ACM.

Annex: Selected References Gambetta, D. (1990). Trust: Making and breaking cooperative relations. Harris, H., Nass, C. 2011. Emotion regulation for frustrating driving contexts. In Proc. CHI 2011, ACM Press (2011), 749-752. Hassenzahl, M., Tracinsky, N. 2006. User experience - a research agenda. Behavior and Information Technology 25(2), 91 97 Hassenzahl, M. Experience Design: Technology for All the Right Reasons, Morgan and Claypool Publishers, 2010. Hekkert, P. (2006). Design aesthetics: Principles of pleasure in product design. Psychology Science, 48(2):157 172. Inbar, O., Tracinsky, N. (2011). Make a trip an experience: sharing in-car information with passengers. In Proceedings of the 2011 annual conference extended abstracts on Human factors in computing systems (CHI EA '11). ACM, New York, NY, USA, 1243-1248. Jonsson I.-M., Nass C., Endo J., Reaves B., Harris H., Le Ta J., Chan N., Knapp S., 2004. Don't blame me I am only the driver: impact of blame attribution on attitudes and attention to driving task. In CHI '04 Extended Abstracts on Human Factors in Computing Systems (CHI EA '04). ACM, New York, NY, USA, 1219-1222.

Annex: Selected References Knobel, M., Hassenzahl, M., Lamara, M., Sattler, T., Schumann, J., Eckholdt, K., Butz A. (2012). Clique Trip: feeling related in different cars. In Proc.of DIS '12. ACM, 29-37. Law, E. L.-C., Roto, V., Hassenzahl, M., Vermeeren, A. P., Kort, J. 2009. Understanding, scoping and defining user experience: a survey approach. In CHI 09: Proceedings of the 27th international conference on Human factors in computing systems. ACM, New York, NY, USA, 719 728. Lajunen, T. and Parker, D. (2001). Are aggressive people aggressive drivers? A study of the relationship between self-reported general aggressiveness, driver anger and aggressive driving, Accident Analysis & Prevention, Volume 33, Issue 2, 1, p. 243-255. Leshed, G, Velden, T., Rieger, O., Kot, B., Sengers, P. 2008. In-car gps navigation: engagement with and disengagement from the environment. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '08). ACM, New York, NY, USA, 1675-1684. Mäkelä, A. and Fulton Suri, J. (2001). Supporting users creativity: Design to induce pleasurable experiences. In Proceedings of the International Conference on Affective Human Proceedings of the International Conference on Affective Human Factors Design, pages 387 394. ASEAN Academic Press. Norman, D. A. 2003. Emotional Design: Why We Love (or Hate) Everyday Things, Basic Books.

Annex: Selected References Meschtscherjakov, A., Wilfinger, D., Scherndl, T., Tscheligi, M.. 2009. Acceptance of future persuasive in-car interfaces towards a more economic driving behaviour. In. In Proceedings of the 1st International Conference on Automotive User Interfaces and Interactive Vehicular Applications. Nass, C., Jonsson, I., Harris, H. Reaves, B., Endo, J. Brave, S., Takayama, L. 2005. Improving automotive safety by pairing driver emotion and car voice emotion. In Procs CHI EA '05. ACM, NY, USA, 1973-1976. Oppelaar, E., Hennipman, E. and van der Veer, G. 2008. Experience design for dummies. In Proceedings of the 15th European conference on Cognitive ergonomics: the ergonomics of cool interaction (ECCE '08), Julio Abascal, Inmaculada Fajardo, and Ian Oakley (Eds.). ACM, New York, NY, USA,, Article 27, 8 pages. Roto, V. (2006). User experience building blocks. In Law, E., Hvannberg, E., and Hassenzahl, M., editors, Proceedings of the The Second COST294-MAUSE International Open Workshop: User Experience-Towards a Unified View, pages 124 128. Roto, V. (2007). User experience from product creation perspective. In Law, E., Vermeeren, A., Hassenzahl, M., and Blythe, M., editors, Proceedings of the COST294- MAUSE affiliated workshop: Towards a UX Manifesto, pages 31 34. Shedroff, N. 2001. Experience Design 1. New Riders Publishing, Thousand Oaks, CA, USA.

* Contact Christian Doppler Labor Contextual Interfaces HCI & Usability Unit ICT&S Center, University of Salzburg Sigmund-Haffner-Gasse 18 5020 Salzburg, Austria Manfred Tscheligi manfred.tscheligi@sbg.ac.at