DATA MINING TECHNOLOGY IN PREDICTING THE CULTIVATED LAND DEMAND



Similar documents
Term Structure of Interest Rates: The Theories

The Valuation of Futures Options for Emissions Allowances under the Term Structure of Stochastic Multi-factors

Taxes and the present value assessment of economic losses in personal injury litigation: Comment 1

Numerical Algorithm for the Stochastic Present Value of Aggregate Claims in the Renewal Risk Model

Self-rescue in quantitative risk analysis

INFLUENCE OF DEBT FINANCING ON THE EFFECTIVENESS OF THE INVESTMENT PROJECT WITHIN THE MODIGLIANIMILLER THEORY

Discrete-Time Scheduling under Real-Time Constraints

Fixed Income Attribution. Remco van Eeuwijk, Managing Director Wilshire Associates Incorporated 15 February 2006

Life Analysis for the Main bearing of Aircraft Engines

Service Capacity Competition with Peak Arrivals and Delay Sensitive Customers

Chapter 4: Thinking Like a Programmer

Ref No: Version 5.1 Issued: September, 2013

Online Load Balancing and Correlated Randomness

A New Method to Evaluate Equity-Linked Life Insurance

Technological Entrepreneurship : Modeling and Forecasting the Diffusion of Innovation in LCD Monitor Industry

Yuriy Alyeksyeyenkov 1

Modern Portfolio Theory (MPT) Statistics

Children s best interests between theory & practice

Protecting E-Commerce Systems From Online Fraud

PARTICULAR RELIABILITY CHARACTERISTICS OF TWO ELEMENT PARALLEL TECHNICAL (MECHATRONIC) SYSTEMS

Reputation Management for DHT-based Collaborative Environments *

QUALITY OF DYING AND DEATH QUESTIONNAIRE FOR NURSES VERSION 3.2A

EuroFGI Workshop on IP QoS and Traffic Control TITOLO. A Receiver Side Approach for Real-Time Monitoring of IP Performance Metrics

An Efficient Load Balancing Algorithm for P2P Systems

GENETIC ALGORITHMS IN SEASONAL DEMAND FORECASTING

ANALYSIS OF ORDER-UP-TO-LEVEL INVENTORY SYSTEMS WITH COMPOUND POISSON DEMAND

Trading-Day Adjustment as a Practical Problem

Modeling Contract Form: An Examination of Cash Settled Futures. Dwight R. Sanders. and. Mark R. Manfredo *

The Sensitivity of Beta to the Time Horizon when Log Prices follow an Ornstein- Uhlenbeck Process

Control of Perceived Quality of Service in Multimedia Retrieval Services: Prediction-based mechanism vs. compensation buffers

Methodology of the CBOE S&P 500 PutWrite Index (PUT SM ) (with supplemental information regarding the CBOE S&P 500 PutWrite T-W Index (PWT SM ))

Constrained Renewable Resource Allocation in Fuzzy Metagraphs via Min- Slack

2. Evaluation of the probability characteristics of vehicles coming out of order

Lecture 40 Induction. Review Inductors Self-induction RL circuits Energy stored in a Magnetic Field

EUROPEAN ECONOMY EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR ECONOMIC AND FINANCIAL AFFAIRS

Many quantities are transduced in a displacement and then in an electric signal (pressure, temperature, acceleration). Prof. B.

Linear Extension Cube Attack on Stream Ciphers Abstract: Keywords: 1. Introduction

Estimating Powers with Base Close to Unity and Large Exponents

Non-Linear and Unbalanced Three-Phase Load Static Compensation with Asymmetrical and Non Sinusoidal Supply

Pricing Freight Rate Options

5 2 index. e e. Prime numbers. Prime factors and factor trees. Powers. worked example 10. base. power

ERLANG C FORMULA AND ITS USE IN THE CALL CENTERS

Mininum Vertex Cover in Generalized Random Graphs with Power Law Degree Distribution

How To Write A Recipe Card

A Real-time Adaptive Traffic Monitoring Approach for Multimedia Content Delivery in Wireless Environment *

Facts About Chronc Fatgu Syndrom - sample thereof

Multi- item production inventory systems with budget constraints

Modelling Exogenous Variability in Cloud Deployments

Section 3: Logistic Regression

Spline. Computer Graphics. B-splines. B-Splines (for basis splines) Generating a curve. Basis Functions. Lecture 14 Curves and Surfaces II

is knowing the car market inside out.

THE STOCHASTIC SEASONAL BEHAVIOR OF THE NATURAL GAS PRICE (*)

Rural and Remote Broadband Access: Issues and Solutions in Australia

union scholars program APPLICATION DEADLINE: FEBRUARY 28 YOU CAN CHANGE THE WORLD... AND EARN MONEY FOR COLLEGE AT THE SAME TIME!

Rapid Estimation of Water Flooding Performance and Optimization in EOR by Using Capacitance Resistive Model

Online Mean Kernel Learning for Object Tracking

Actuarial Research Paper No. 193

Homework: 49, 56, 67, 60, 64, 74 (p )

Capacity Planning. Operations Planning

PSYCHOLOGY AT SUNY POTSDAM

Economizing on Liquidity with Deferred Settlement Mechanisms

Personalized Web Search by User Interest Hierarchy

UNDERSTAND YOUR UNIVERSE: KNOW YOUR DATA-PRIVACY OBLIGATIONS

Advantageous Selection versus Adverse Selection in Life Insurance Market

Catalogue no XIE. Survey Methodology

Establishing Wireless Conference Calls Under Delay Constraints

Selected Financial Formulae. Basic Time Value Formulae PV A FV A. FV Ad

No 28 Xianning West Road, Xi an No 70 Yuhua East Road, Shijiazhuang.

Pedro M. Castro Iiro Harjunkoski Ignacio E. Grossmann. Lisbon, Portugal Ladenburg, Germany Pittsburgh, USA

Optimal Testing Resource Allocation, and Sensitivity Analysis in Software Development

Time Series. A thesis. Submitted to the. Edith Cowan University. Perth, Western Australia. David Sheung Chi Fung. In Fulfillment of the Requirements

APPLICATION OF CHAOS THEORY TO ANALYSIS OF COMPUTER NETWORK TRAFFIC Liudvikas Kaklauskas, Leonidas Sakalauskas

An Ensemble Data Mining and FLANN Combining Short-term Load Forecasting System for Abnormal Days

MORE ON TVM, "SIX FUNCTIONS OF A DOLLAR", FINANCIAL MECHANICS. Copyright 2004, S. Malpezzi

EXTRACTION OF FINANCIAL MARKET EXPECTATIONS ABOUT INFLATION AND INTEREST RATES FROM A LIQUID MARKET. Documentos de Trabajo N.

SPC-based Inventory Control Policy to Improve Supply Chain Dynamics

CEO Björn Ivroth. Oslo, 29 April Q Presentation

Increasing Net Debt as a percentage of Average Equalized ValuaOon

Sun Synchronous Orbits for the Earth Solar Power Satellite System

A Note on Approximating. the Normal Distribution Function

An RSA-based (t, n) threshold proxy signature scheme with freewill identities

ME 612 Metal Forming and Theory of Plasticity. 6. Strain

Pricing of Arithmetic Asian Quanto-Basket Options

P O T A T O S T O R A G E & V A L U E P R E S E R V A T I O N


NEW APPROACH FOR SOLVING SOFTWARE PROJECT SCHEDULING PROBLEM USING DIFFERENTIAL EVOLUTION ALGORITHM

The Rules of the Settlement Guarantee Fund. 1. These Rules, hereinafter referred to as "the Rules", define the procedures for the formation

Question 3: How do you find the relative extrema of a function?

LG has introduced the NeON 2, with newly developed Cello Technology which improves performance and reliability. Up to 320W 300W

THÈSE L UNIVERSITÉ BORDEAUX 1

ALCOHOL, TOXINS, CALORIES CUT OUT THE ADVERSE EFFECTS OF ALCOHOL

A SOFTWARE RELIABILITY MODEL FOR CLOUD-BASED SOFTWARE REJUVENATION USING DYNAMIC FAULT TREES

Whole Systems Approach to CO 2 Capture, Transport and Storage

Transcription:

DATA INING TECHNOLOGY IN REDICTING THE CULTIVATED LAND DEAND Lu Yaoln a, *, ao Zuohua a a School of Rsourc and Envronn Scnc, Wuhan Unvrsy, Chna, Wuhan - whzh@hoal.co KEY WORDS: Daa nng, Fuzzy Logc Thory, Transon robably arx, Wgh ABSTRACT: Alhough daa nng s rlav young chnqu, has bn usd n a wd rang of probl doans ovr h pas fw dcads. In hs papr, h auhors prsn a nw odl o forcas h culvad land dand adops h chnqu of daa nng. Th nw odl whch s calld fuzzy arov Chan odl wh wghs alora h radonal T Hoognous Fn arov chan odl o prdc h fuur valu of culvad land dand n land us plannng. Th nw odl appld daa nng chnqu o xrac usful nforaon fro norous hsorcal daa and hn appld fuzzy squnal clusr hod o s up h dsslud fuzzy clusrng scons. Th nw odl rgards h sandardzd slf-corrlav coffcns as wghs basd on h spcal characrscs of corrlaon aong h hsorcal sochasc varabls. Th ranson probabls arx of nw odl was oband by usng fuzzy logc hory and sascal analyss hod. Th xprnal rsuls shown ha h alorav odl cobnd wh chnqu of daa nng s or scnfc and praccal han radonal prdcv odls.. INTRODUCTION Daa nng s h nonrval xracon of plc, prvously unnown, and ponally usful nforaon fro h ass, ncopl, fuzzy, uncran and sochasc daa. Daa nng s h poran sp of Knowldg Dscovry n Daabas (KDD) (L, 00). I has hr aor coponns such as clusrng or classfcaon, assocaon ruls and squnc analyss. Th ass of daa nng ar anly such as assocaon analyss, clusrng, classfcaon, prdcon, -srs parn, and dvaon analyss c. Daa nng ncopass a nubr of dffrn chncal approachs such as sascal hods, arfcal nural nwor, dcson rs, gnc algorhs, nars nghbour hod, rough s hory, and fuzzy logc hory c. A prsn, daa nng anly appld o h rad rrors such as banng, lco, nsuranc, ransporaon, and ralng. I solvd h bhavours of arabl analyss such as daabas arng, cusor sgnaon & classfcaon, crd scorng, and fraud dcon c. Go-spaal daa nng, a subfld of daa nng, s a procss o dscovr nrsng and ponally usful spaal parns bddd n spaal daabass. Effcn ools o xrac nforaon fro assv go-spaal daass ar crucal for organzaons own, gnra, and anag go-spaal daass. Ths organzaons ar sprad across any doans ncludng cology and nvronnal anagn, publc safy, ransporaon, publc halh, ours (Hnzl, 004). Tchnqu of daa nng s rlav young rsarch fld. Nw odls and hors appard vry yar. any probls and challngs wr prsnd for daa nng such as nhancng h ffcncy of odl, daa nng fro dynac ss, daa nng on wb, fuzzy spaal assocaon ruls nng c. As a nw nd of daa analyss chnqu daa nng dvlopd fas. any nds of daass can b h obcs of daa nng. Bcaus srs daa ar vry coon n daass, T Srs Daa nng (TSD) has bn on of h focuss of currn daa nng rsarch (urray, 998). Th culvad land dand daa ar srs daa bu rsarchs on how o apply h chnqu of daa nng o prdc culvad land us ar no dscovrd a currn. In hs papr, h auhors prsn a nw odl adop daa nng chnqu o prdc h culvad land dand n land us plannng.. DATA INING AND REDICTION OF CULTIVATED LAND DEAND rdcon s on of ass of daa nng chnqu. I s a procss o fnd h uav rul fro ass, fuzzy, sochasc daa and hn consruc prdcv odl o forcas h rnd, cagory, and characr of fuur valu. rdcon of culvad land dand s an poran sag of land us plannng. Th rsul of prdcon accura or no rla drcly wh h qualy of land us plannng. Lnar rgrsson prdcon odl and rnd prdcon odl wr radonal hods whch only usd ahacal hod o analyzd h srs daa and no consdrd h fuzzy and uncran ffc of naural and socal facors. Tradonal hods on prdcon of culvad land dand appld h chnqu of daa nng un-suffcnly. Th fuzzy logc hory s on of chncal approachs of daa nng. I s an un-classcal ahacs hory for uncran probls. I as avalabl a convnn and anngful ool o h praccng ngnrs o ncorpora hs sngly vagu bu praccally powrful facors n h svral phass of a proc lf cycl. Ths rsarch s suppord by h Naural Scnc Fund of Chna (No. 407088), h nsry of Educaon Fund of Chna for scholar rurnd fro abroad (No. 574).

arov chan odl can prdc a good any probls, bu xs shorags. Th radonal T Hoognous Fn arov Chan odl ransac h srs daa wh pur algbra hod and no consdr h ffc of fuzzy, uncran nforaon bddd n daa. Ths papr prsns nw arov chan odl cobnd wh fuzzy logc hory. Culvad land dand daa ar sochasc srs daa, so arov chan odl can b ployd o forcas h fuur daa accordng o hsorcal daa. Gnrally srs daa can b dvdd no a connuous ral nubr zon. In ordr o us arov chan odl, h connuous ral nubr zon should b dvdd no fn nubr unabguous sa ss. Bu sas durng h procss of prdcon of culvad land dand wr no unabguous bu fuzzy. Accordng o h nsanc, h auhors prsn ha usng h fuzzy sa ss dscrb h classfd sas wll b closly o h acual saus. Facors wr dvrs, coplcad, and uncran whch affcd culvad land dand, so h auhors ndca ha h nw odl should adop h chnqu of daa nng. In hs papr, h auhors cobn h fuzzy logc hory and daa nng chnqu wh radonal arov chan odl o nhanc h prcson of prdcon of culvad land dand. In ordr o ffcvly ploy h hsorcal daa, nw odl also calculad h wghs accordng h corrlaons aong hsorcal daa srs. 3. CONSTRUCTION OF NEW ODEL Calculaon of ranson probabls s h poran sp of arov chan odl procss. Transon probabls wr calculad basd on h unabguous sa ss. Th auhors solvd hs probl by xndng h ranson probabls arx fro unabguous sa ss o fuzzy sa ss. Fuzzy squnal clusr odl s on of usful hod o classfy srs daa. In hs papr, h auhors apply fuzzy squnal clusr odl o dvd h hsorcal daa of culvad land dand no fuzzy sa zons and hn consruc h ranson probabls arx of arov chan odl by usng fuzzy logc hory and daa nng chnqu. 3. Fuzzy Squnal Clusr odl In ordr o a h dvdd zons rasonabl, h nw odl apply fuzzy squnal clusr odl o dvd h culvad land dand daa no svral fuzzy uav zons basd on h analyss of daa srucur. Fshr algorh was h radonal algorh of fuzzy squnal clusr odl (HU, 990). Th fundanal of Fshr algorh can b dscrbd as followng quaon: + x l l avrag vcor x L x, on possbl fuzzy squnal { } clusrng zon of sochasc varabls srs. x L x n Th corrlaon aong srs daa s h followng quaon: () l ( xl x ) ( xl x D(, ) ) () D (, ) { } h dar of x L x,. I dnos h dscrpan dgr aong varabls loca a on and h sa clusrng zon. And shows ha whn D(, ) sallr ndcas dscrpancy aong daa srs sallr and h corrlaon or adacn, conrarws h dscrpancy largr and corrlaon s dsprsv. In ordr o copar h ffc aong dffrn possbl clusrng, Fshr algorh dfnd h rror funcon dscrbd as followng: [ ( n K) ] ( [ ( n K) ], D, + ) (3), h rror nurcal valu D, + s oband fro Eq, ( n, K) K h nubr of clusrng zons, ( ) s on possbl clusrng b xprssd as followng: ( n K) :{,, };{, L, }; L; {, n, 3 L, (4) L } [ ( n, K)] Fro Eq 3 w can s ha whn g nal valu h bs fuzzy clusrng dvson wll b oband. A h sa, h nubr K can b oband a h nflxon of corrlaon graph bwn [ ( n K) ], and K. 3. T Hoognous Fn arov Chan odl A T Hoognous Fn arov Chan odl was a sochasc procss wh fn ss S {,, L,n} of sa (Brn, 997). How o calcula hs ranson probabls s h poran sp of arov chan odl. Th ranson probably only dpndd on h sa n h prvous sp. I can b dscrbd as followng: In Eq5 p { x x } (5) n n h srs nubr of sa aong sa ss n. n and x n xprss h arov chan procss loca a x n sa a n and xprss h procss loca a sa a n. Dfn dnos h ranson ( n) probably fro. Ths ranson probabls for h ranson probably arx xprssd p sa o sa a n

. I s an non-ngav arx as ( ),, L, n n n (such a arx s calld sochasc). Th ranson probabls arx can b dscrbd as followng: ) L n n ( (6) L n L n L L L L nn 4. FUZZY ARKOV CHAIN ODEL WITH WEIGHTS BASED ON DATA INING As abov scons analyz, h auhors prsn a nw odl adop h chnqu of daa nng. Th nw odl s suarzd as h followng sps:. Calcula h slf-corrlav coffcn of culvad land dand daa Th culvad land dand daa srs ar dpndd on ach ohr. In ordr o dscrb h corrlaon, nw odl calcula h slf-corrlav coffcns aong daa. Th quaon of slf-corrlav coffcns calculaon can b xprssd as: r n n n ( x x)( x x) ( x x) ( x x) +. + (7) ( ) 00 00 S ds s 00 (9) s h culvad land ara a h bgnnng of suprvson ds h rducv aoun of calcula land durng of suprvson h s lngh of suprvson S h culvad land us rnd coffcn whch was scald up o 00 n ordr o a rsarch convnnly 4. Dvd h fuzzy clusrng zons Wh sp3 h daa of culvad land us rnd coffcns wr oband. Nw odl appls h fuzzy squnal clusr odl o dvd hs coffcns daa srs no svral fuzzy clusrng zons. Thus, h fuzzy clusrng zon sa for ach hsorcal culvad land dand daa locad a can b confrd. 5. Calcula h ranson probably Calculaon of ranson probabls s h an sp of nw odl. In hs papr, h auhors calcula h ranson probably for ach dffrn sp by usng fuzzy logc hory. Th procss of calculaon can b dscrbd as followng: Assu : x L x n culvad land dand, s h sochasc srs daa of E : L s on fuzzy clusrng s for. Th nw odl obans h ranson probably by followng quaons: r x s ), h slf-corrlav coffcns of grad (sp h culvad land dand daa a x h avrag valu of all culvad land dand daa srs n h daa nubr of culvad land dand daa srs. Sandardzng slf-corrlav coffcns daa as wghs Dffrn fuzzy clusrng zon has dffrn ffc on prdcv valu. In ordr o dscrb hs dffrnc, h nw odl as h sandardzd slf-corrlav coffcn daa as wgh. Th wgh can b calculad by followng quaon: ϖ r r (8) ϖ wgh, r can b oband wh Eq7. 3. Calcula h culvad land us rnd coffcns Th culvad land us rnd coffcn (LUTC) s an poran parar o xprss h ulzd dgr of culvad land durng on un. Th coffcn can b calculad by followng quaon: and, n l,, L l ( ) ( x ) μ (0) n ( ) μ ( x ) μ ( x ) l l l+ h nubr of daa whch loca a h fuzzy E clusrng sa ( ) aong ( ) h daa nubr ransond fro () fuzzy clusrng sa o sa hrough sps, h sp nubr of ranson μ h fuzzy brshp funcon whch ( ) x l x dnos h dgr of l blongs o fuzzy sa. Fro Eq0 and Eq, Th auhors oban h ranson probably fro fuzzy clusrng sa o sa by h followng quaon:

( ) ( ) ( ) () 6. Consruc h nw ranson probabls arx. Each ln vcor s h dffrn sp ranson probabls of hsorcal daa calculad wh Eq. 7. Calcula h prdcv valu Sung h daa of ach row vcor blongs o on and h sa sa wh h corrspondng wgh n h nw ranson probabls arx by h followng quaon: Calcula h slf-corrlav coffcn of culvad land dand daa of rsarch ara, ha s: r 0.980, r r3 r4 0.94, 0.905, 0.87. Sandardzng slf-corrlav coffcns daa as wghs, ha s: ϖ 0.66, ϖ 0.55, ϖ 3 0.45, ϖ 4 0.36. Applyng fuzzy squnal clusr odl o dvd h culvad land dand daa whch b arrangd fro low o hgh ordr no fuzzy clusrng zons. Fgur shows h corrlaon bwn rror and h nubr of cagory. ( ) ϖ (3) ( ) h ranson probably of sp h sral nubr of fuzzy clusrng zon ϖ wgh oband wh Eq8. In hs papr, h fuzzy clusrng sa of prdcv valu s oband accordng o h axu subordnaon prncpl, ha s: ax {, I}. Th prdcv valu can b calculad wh h followng quaon: ) Y ( ) Q + Q d d (4) Fgur. Culvad land usd rnd dgr Fgur s h graph of culvad land usd rnd dgr. In h graph, ngav valu xprss ha h ara of culvad land was ncrasd, conrarws posv valu xprss ha h ara of culvad land was dcrasd. As fgur shown, h chang of culvad land ara was gra bfor 979 and h chang was slow afr 979. ) Y ( ) h prdcv valu Q d h lf valu of fuzzy clusrng valu zon Q d h rgh valu of fuzzy clusrng valu zon 8. Qualy assssn of h nw odl Rlav rror bwn prdcv valu and facual valu s an as h qualy assssn parar of nw odl. Rlav rror can b calculad by h followng quaon: ( ) ( ) 00 σ ( ) Y( ) Y 00 (5) Y ) σ h rlav rror Y ) ( ) prdcv valu oband wh Eq4 Y( ) facual valu oband fro sascal yarboo [ ] Fgur. Corrlaon graph of rror ( ( n, K ) ) and nubr of cagors (K) As fgur shown, 4 s h nubr of bs dvson cagory. Tabl shows h rsul of fuzzy clusrng zons usng h hod of fuzzy squnal clusrng. 5. EERIENTAL RESULTS AND ANALYSES Th hsorcal culvad land dand daa of on couny n h provnc of Hub (Tabl ) durng 950~003 prods wr oband fro Hub rovnc Sascal Yarboo. Sas Lvls Dsngushd Sandards Incras Qucly 0.59 Incras Slowly 0 x< 0.59 3 Dcras Slowly -.349 x<0 4 Dcras Qucly x<-.349 Tabl. Fuzzy clusrng zons of culvad land daa

Yar 950 95 95 953 954 955 956 957 958 959 Ara /h 63646.57 65866.6 7073.33 73480.0 73493.30 75440.0 74406.67 74673.43 736.68 7000.0 LUTC 3.488 9.43.95 0.08.649 -.370 0.359 -.937-4.379 Sas 4 4 4 Yar 960 96 96 963 964 965 966 967 968 969 Ara /h 66973.33 7066.6 67006.59 6780.0 6779.80 6779.80 65846.67 65333.33 60073.38 5896.6 LUTC -4.35 5.455-5.6 0.59 0.000 0.000 -.984-0.780-8.05 -.909 Sas 4 4 4 3 4 4 Yar 970 97 97 973 974 975 976 977 978 979 Ara /h 56866.69 56400.06 5670.08 55986.67 55566.39 55380.07 55333.33 55086.59 55073.33 55073.33 LUTC -3.496-0.8 0.567 -.93-0.75-0.335-0.084-0.446-0.04 0.000 Sas 4 3 3 3 3 3 3 3 Yar 980 98 98 983 984 985 986 987 988 989 Ara /h 55046.68 54933.3 54866.55 54906.60 54806.58 54739.5 54553.33 54366.6 54086.57 53906.48 LUTC -0.048-0.06-0. 0.073-0.8-0. -0.340-0.34-0.55-0.333 Sas 3 3 3 3 3 3 3 3 3 Yar 990 99 99 993 994 995 996 997 998 999 Ara /h 5346.37 53059. 5986.37 549. 5939.0 533.3 50805.66 50453.3 49500.0 4895.89 LUTC -.40-0.64-0.37 -.07-0.96 -.359-0.834-0.694 -.889 -.05 Sas 4 3 3 3 3 4 3 3 4 3 Yar 000 00 00 003 Ara /h 4859.9 47606.6 46959.8 4637.0 LUTC -.46 -.354 -.359 -.347 Sas 4 4 4 3 Tabl. Culvad land dand daa and sas durng 950~003 prod Confrng h fuzzy sa of ach hsorcal daa loca a basd on h sandard of abl. Th rsul s dscrbd n abl. Calcula h ranson probably arx of ach ranson sp. Tha s followng: 3 4 / 5 / 8 0 / 4 /4 / 5 0 / 8 0 / 4 /3 / 5 0 / 8 0 / 4 / / 5 / 8 0 / 3 0 / / 5 / 8 3/ 4 /4 3/ 5 / 8 / 4 /3 / 5 / 8 / 4 3/ / 5 / 8 / 3 3/ 6 / 4 5 /4 4 / 8 7 / 4 3/3 4 / 8 7 / 4 3/ 7 / 3 4 / / 5 / 8 5 / 4 5 /4 5/ 4 5 /3 / 5 3/ 4 3/ / 5 3/ 3 4 / rdc h culvad land dand daa n 003 basd on h hsorcal daa and corrspondng ranson probabls arx durng 999-00 prods. Tabl 3 shows h rsul of prdcon usng h proposd nw odl n hs papr. yar sas sps wghs Transon robabls 3 4 999 3 4 0.36 0/3 /3 7/3 3/3 000 4 3 0.45 / 3/ 3/ 3/ 00 4 0.55 /3 /3 3/3 5/3 00 4 0.66 /4 /4 5/4 5/4 Th su of wh wghs 0.06 0.54 0.395 0.95 Tabl 3. rdcon of culvad land dand daa n 003 yar sas sps wghs Transon robabls 3 4 000 4 4 0.36 0/ 3/ 4/ 4/ 00 4 3 0.45 / 3/ 3/ 3/ 00 4 0.55 /3 /3 3/3 5/3 003 3 0.66 0/4 3/4 6/4 5/4 Th su of wh wghs 0.04 0. 0.4 0.3 Tabl 4. rdcon of culvad land dand daa n 004 { } 395 ax p 0. 3 As abl 3 shown, h and. I shows ha h prdcv daa loca a hrd fuzzy squnal clusrng zon (dcras slowly). Th fuzzy zon of prdcv valu can b calculad, ha s: [ ]. Y ) 4636.33, 46959.8 Thus, h prdcv valu ( ) n 003 s 4664.84 h whl h facual valu s 4637.0 h oband fro h sascal yarboo. I s asly o calcula h rlav rror only 0.68%. I ndcas ha applyng h rforav odl (fuzzy arov chan odl wh wghs) o prdc h culvad land dand daa wll ffcvly nhanc h prcson of prdcon. A h sa nw odl can rduc h coplxy of calculaon. Wh h sa procss, h auhors prdc h culvad land dand daa n 004 basd on h hsorcal daa and

corrspondng ranson probabls arx durng 000-003 prods. Tabl 4 shows h rsul of prdcon usng h proposd nw odl n hs papr. { } 34 ax p 0. 3 As abl 4 shown, h and. I shows ha h prdcv daa loca a hrd fuzzy squnal clusrng zon (dcras slowly). Fuzzy zon of prdcv valu can b calculad, ha s: [.06, 4637.0] 4570. Thus, h prdcv valu n 004 s 4604.53 h. 6. CONCLUSIONS AND DISCUSSIONS Th radonal odls for prdcon of culvad land dand wr no ffcvly solvd h fuzzy and uncrany nforaon. As a nw nd of daa analyss chnqu, daa nng can xrac h usful nforaon fro norous hsorcal daa. Thus, h auhors prsnd a nw odl o rfor h gnral T Hoognous Fn arov Chan odl. Th nw odl adopd h daa nng chnqu such as fuzzy logc hory, wghs, sascal analyss, and culvad land us rnd coffcns odl. As xprnal rsuls and analyss shown, h rforav odl can dvd h srs daa or rasonabl and ffcvly dscrb h dsrbung rul xsd n h daa srs. Nw odl a sandardzd slf-corrlav coffcn of ach ranson sp as wgh and b cobnd wh corrlaon analyss. Th physcs concp of nw odl was clar and calculaon was sply. Th nw odl provdd a gropng hod for nhancng h prcson of prdcon. A h sa, h auhors ndca ha h nflunc of ohr fuzzy sa zons bsds h axu subordnaon sa zon should b consdrd whn calculad h prdcv valu. Th corrspondng wgh for ach fuzzy clusrng sa zon should b dfnd and hn calcula h prdcv valu wh h avrag valu of all wghs. Adop anohr hory and odl no h calculaon of wgh for fuzzy clusrng sa zons s h rsarch a nx sag. F. Hnzl,.. Ssr, 004. Drvaon of plc nforaon fro spaal daa ss wh daa nng. In: Th Inrnaonal Socy for hoograry and Ro Snsng, Isanbul, Tury, Vol 35, pp.335-34. Brn T.V., Arov V.Y., Kulov G.G, 997. On Sochasc Sys Idnfcaon: arov odls Approach. In: Kora rocdngs of h nd Asan Conrol Confrnc, Soul, Kora, pp. 775-778. HU Guodng, ZHANG Runchu, 990. Analyzng ulvara Daa-Transacng wh ur Algbra hod. Tanng: Nanan Unvrsy rss. chln Kabr, JIA Whan, 00. Daa nng: Concp and Tchnqus. Bng: Chna chancal Indusry rss. CHNEG Baoxu, YU Jngshan,004. Fasbly Sudy of Applcaons of Daa nng o Wahr Forcas. Appld Scnc and Tchnology, 3(3), pp. 48-50. LIANG Wuq, JIANG Kqng, 004. Rsarch on Fuzzy Clusr Analyss and Applcaon n Daa nng. Journal of Anqng Tachrs Collg (Naural Scnc), 0(), pp.65-68. LAN Rongqn, LIN Lxa, CHENG Langyou, 004. Saus and rogrss of Spaal Daa nng and Knowldg Dscovry. Gographcal Inforaon, 0(3), pp. 9-. FENG Yaolong, HAN Wnxu, 999. Th Applcaon of Wghd arov-chan o h rdcon of Rvr Run off Sa. Syss Engnrng-Thory and racc, 0(0), pp. 89-93. Ndlovc I., 004. Iag classfcaon basd on fuzzy logc. In: h Inrnaonal Socy for hoograry and Ro Snsng, Isanbul, Tury, Vol34, ar, pp. 83-89. REFERENCES LI Drn, WANG Shulang, SHI Wngzhong, 00. On Spaal Daa nng and Knowldg Dscovry. Goacs and Inforaon Scnc of Wuhan Unvrsy, (6), pp. 49-499. LI Drn, CHENG Tao, 994. Knowldg dscovry fro GIS. Th Canadan Confrnc on GIS, Oawa, Canadan. Vol, pp.00-0. urray A T, Esvll-casro V, 998. Clusrng Dscovry Tchnqus for Exploraory Spaal Daa Analyss. Inrnaonal Journal of Gographcal Inforaon Scnc, (5), pp. 43-443. Hla C, 004. Daa nng and nowldg dscovry n prdcv oxcology. h Inrnaonal Worshop on Quanav Srucur-Acvy Rlaonshps n h Huan Halh and Envronnal Scncs, 5(6), pp. 367-383. LIU Yaoln, LIU Yanfang, ZHANG Yu, 004. rdcon of Gross Arabl Land Basd on Gry-arov odl. Goacs and Inforaon Scnc of Wuhan Unvrsy, 9(7), pp. 575-580.