Online Performance Anomaly Detection with



Similar documents
Architecture-Based Multivariate Anomaly Detection for Software Systems

Tool-Supported Application Performance Problem Detection and Diagnosis. André van Hoorn.

Self Adaptive Software System Monitoring for Performance Anomaly Localization

Performance Measures for Machine Learning

Performance Measures in Data Mining

ExplorViz: Visual Runtime Behavior Analysis of Enterprise Application Landscapes

Application Performance Monitoring of a scalable Java web-application in a cloud infrastructure

Performance Metrics. number of mistakes total number of observations. err = p.1/1

Business Case Development for Credit and Debit Card Fraud Re- Scoring Models

Capturing provenance information with a workflow monitoring extension for the Kieker framework

Log management with Graylog2 Lennart Koopmann, FrOSCon Mittwoch, 29. August 12

Log management with Graylog2 Lennart Koopmann, Kieker Days Mittwoch, 5. Dezember 12

Monitoring Drupal with Sensu. John VanDyk Iowa State University DrupalCorn Iowa City August 10, 2013

PREDICTING SUCCESS IN THE COMPUTER SCIENCE DEGREE USING ROC ANALYSIS

Development of a Concurrent and Distributed Analysis Framework for Kieker

Predictive Analytics

Topology Aware Analytics for Elastic Cloud Services

Knowledge Discovery and Data Mining

OpenAdmin Tool for Informix (OAT) October 2012

ANALYTICS IN BIG DATA ERA

An analysis of suitable parameters for efficiently applying K-means clustering to large TCPdump data set using Hadoop framework

CSC574 - Computer and Network Security Module: Intrusion Detection

Data Mining Algorithms Part 1. Dejan Sarka

The ADOxx Metamodelling Platform Workshop "Methods as Plug-Ins for Meta-Modelling" in conjunction with "Modellierung 2010", Klagenfurt

An Introduction to SAS Enterprise Miner and SAS Forecast Server. André de Waal, Ph.D. Analytical Consultant

Continuous Integration in Kieker

Data Mining - The Next Mining Boom?

Automatic Extraction of Probabilistic Workload Specifications for Load Testing Session-Based Application Systems

Bernd Ahlers Michael Friedrich. Log Monitoring Simplified Get the best out of Graylog2 & Icinga 2

TDAQ Analytics Dashboard

Performance Benchmarking of Application Monitoring Frameworks

the missing log collector Treasure Data, Inc. Muga Nishizawa

Self-Adaptive Performance Monitoring for Component-Based Software Systems. Jens Ehlers

Optimize for Infrastructure Moving from reactive to proactive IT infrastructure management

Double guard: Detecting Interruptions in N- Tier Web Applications

Azure Machine Learning, SQL Data Mining and R

Online Reviews as First Class Artifacts in Mobile App Development

A Software Development Platform for SOA

SaPHAL Sales Prediction powered by HANA and Predictive Analytics

GRNET NOC In-house management tools

Enabling Continuous Delivery for Java Projects with Oracle Cloud Services (Oracle PaaS) Siva Rama Krishna Oracle India

Application Testing Suite Oracle Load Testing Introduction

1. Classification problems

Evaluation & Validation: Credibility: Evaluating what has been learned

DATA CENTER INFRASTRUCTURE MANAGEMENT

GECO: Automatic Generator-Composition for (Aspect-oriented) DSLs

Data Mining + Business Intelligence. Integration, Design and Implementation

SAP Central Process Scheduling (CPS) 8.0 by Redwood

Disrupting The Market: Predictive Analytics As A Service

Log management with Logstash and Elasticsearch. Matteo Dessalvi

Multimodal Biometrics R&D Efforts to Exploit Biometric Transaction Management Systems

IDENTIFIC ATION OF SOFTWARE EROSION USING LOGISTIC REGRESSION

Hardware Performance Optimization and Tuning. Presenter: Tom Arakelian Assistant: Guy Ingalls

Predicting Deadline Transgressions Using Event Logs

IDS for SAP. Application Based IDS Reporting in the ERP system SAP R/3

AxiomEPM Training Axiom Dashboards Darryl Fleck

EVERYTHING THAT MATTERS IN ADVANCED ANALYTICS

Distack. Towards Understanding the Global Behavior of DDoS Attacks A Framework for Distributed Attack Detection and Beyond

Big Data in Education

Data Analysis with MATLAB The MathWorks, Inc. 1

ACCELRYS DISCOVERANT

Data Mining mit der JMSL Numerical Library for Java Applications

ANALYTICS IN BIG DATA ERA

Logging on a Shoestring Budget

Data Mining Application in Direct Marketing: Identifying Hot Prospects for Banking Product

The Internet of Things

Scalable Application. Mikalai Alimenkou

White Paper. How Streaming Data Analytics Enables Real-Time Decisions

The SAP Business One Mobile Application for iphone and ipad. August 2011

automated acceptance testing of mobile apps

Health Care and Life Sciences

Data Mining For Intrusion Detection in Mobile Systems

SIMPLE MACHINE HEURISTIC INTELLIGENT AGENT FRAMEWORK

Online Ensembles for Financial Trading

Data Logging and Realtime Visualization

How To Monitor A Server With Zabbix

DTK and Connector Architecture

Effect of Network Traffic on IPS Performance

Chapter 6. The stacking ensemble approach

April 2016 JPoint Moscow, Russia. How to Apply Big Data Analytics and Machine Learning to Real Time Processing. Kai Wähner.

Feature Subset Selection in Spam Detection

Health monitoring & predictive analytics To lower the TCO in a datacenter

Automating Healthcare Claim Processing

Open-Source-Software als Katalysator im Technologietransfer am Beispiel des Monitoring-Frameworks

Data Mining. Nonlinear Classification

How To Cluster

<Insert Picture Here> Oracle SQL Developer 3.0: Overview and New Features

Transcription:

ΘPAD: Online Performance Anomaly Detection with Tillmann Bielefeld 1 1 empuxa GmbH, Kiel KoSSE-Symposium Application Performance Management (Kieker Days 2012) November 29, 2012 @ Wissenschaftszentrum Kiel Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 1 / 27

Agenda 1 Monitoring at XING 2 OPAD s Architecture 3 Evaluation 4 Results 5 Conclusion Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 2 / 27

Thesis Goals Author Tillmann Carlos Bielefeld Advisory Prof. Dr. Wilhelm Hasselbring Dipl.-Inform. André van Hoorn Dr. Stefan Kaes (XING AG) Case Study at XING AG 1 Design of online performance anomaly detection concept (ΘPAD) 2 ΘPAD implementation as plugin 3 ΘPAD integration with case study system 4 Evaluation @ Θnline Performance Anomaly Detection Diploma Thesis Tillmann Carlos Bielefeld Θnline Performance Anomaly Detection for Large-Scale Software Systems Diploma Thesis Christian-Albrechts-Universität zu Kiel PAD Tillmann C. Bielefeld: Online performance anomaly detection for large-scale software systems March 2012. Diploma Thesis, Kiel Univ. Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 3 / 27

Existing Logjam-based Monitoring @ XING Monitoring at XING Logjam-based monitoring already in place @ Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 4 / 27

Integration of ΘPAD in XING s Architecture Monitoring at XING Servers App Support Importer Log Database Logjam XWS (API) DB Background s logging/monitoring architecture Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 5 / 27

Integration of ΘPAD in XING s Architecture Monitoring at XING Servers App Support Importer Log Database Logjam XWS (API) DB Background ΘPAD Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 5 / 27

Example JSON Logging Message Monitoring at XING {... } "count": 5204.903527993169, "memcache_time": 6505.196318140181, "api_time": 2207.0271495891297, "db_time": 5004.8727338680155, "view_time": 3936.1623304929153, "total_time": 1586.8188192888886, "api_calls": 5546.250545491678 Input data received via AMQP and processed by ΘPAD Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 6 / 27

ΘPAD gets instantiated at startup of the Kieker server. Both main architectural components High-Level of Kieker, ΘPAD Monitoring Architecture and Analysis are used to route the measurements to the plugin. The data flow from input to output is illustrated in Figure 4.4. OPAD s Architecture Measurement Queue C «Adapter» AMQPBridge «artifact» Monitoring «artifact» Analysis «component» ΘPAD Plugin P Java Pipe Time Series Storage Alerting Queue X Figure 4.4: The coarse-grained architecture follows the linear data 1 AMQP messages transformed into Kieker monitoring records flow of the approach (see Chapter 3). The AMQPBridge adapter 2 ΘPAD: translates pipes-and-filters the monitored processing system s measurements of records to Kieker records 3 ΘPAD and therefore results passed makesto ΘPAD alerting reusable queueinand other time-series environments storage (NFR4). This graphic uses the AMQP notation of Figure 2.19. Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 7 / 27

ΘPAD Processing Steps OPAD s Architecture <<Reader>> Time Series Extraction Time Series Forecasting Anomaly Score Calculation Anomaly Detection Alerting (e.g., AMQP) Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 8 / 27

Step 1: Time Series Extraction ΘPAD Processing Steps (cont d) OPAD s Architecture <<Reader>> Time Series Extraction Time Series Forecasting Anomaly Score Calculation Anomaly Detection Alerting (e.g., AMQP) Continuous Time Discrete Time Series 5 2 1 8 1 2 11 0 10 20 30 2 3 4 X 4 2 } } }} f f f 7 8 5 6 } f Event on ES Discretization Function Time Series X Current Time select sum(value) as aggregation from MeasureEvent.win:time_batch( 1000 msec ) Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 9 / 27

Step 2: Time Series Forecasting ΘPAD Processing Steps (cont d) OPAD s Architecture <<Reader>> Time Series Extraction Time Series Forecasting Anomaly Score Calculation Anomaly Detection Alerting (e.g., AMQP) 4 3 3 4 6 5.79 1 2 3 4 5 6 W Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 10 / 27

Step 3: Anomaly Score Calculation ΘPAD Processing Steps (cont d) OPAD s Architecture <<Reader>> Time Series Extraction Time Series Forecasting Anomaly Score Calculation Anomaly Detection Alerting (e.g., AMQP) 1 0.5 0 6 1 1 0 0 2 1 2 3 4 5 6 Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 11 / 27

Step 4: Anomaly Detection ΘPAD Processing Steps (cont d) OPAD s Architecture <<Reader>> Time Series Extraction Time Series Forecasting Anomaly Score Calculation Anomaly Detection Alerting (e.g., AMQP) 1 0.5 0 1 2 3 4 5 6 Abnormal Score Normal Score Anomaly Threshold Anomaly Detected Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 12 / 27

ΘPAD Web Interface OPAD s Architecture Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 13 / 27

Evaluation Methodology: GQM Evaluation Goal Assess Practicality of Approach Questions How precise is the detection? How accurate is the detection? Metric Number of true positives Metric Number of false negatives Goal/Question/Metric (GQM) plan (excerpt) Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 14 / 27

Manual Identification of Anomalies Evaluation Methodology (cont d) Evaluation 0:00 12:00 23:00 API time Memcache time Other time DB Time View time Manual detection using the visualization tool 8 anomalies were detected Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 15 / 27

ΘPAD Results Evaluation Results aptt.fses.d1min.l15min aptt.fets.d1min.l1h aptt.fmean.d5min.l1h Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 16 / 27

ROC Curves (Introduction) Evaluation (cont d) Results 1 Random Guess True Positive Rate (TPR) 0.5 Better Worse 3 2 Evaluation Run 0 0.5 1 False Positive Rate (FPR) TPR = TP TP + FN = TP F FPR = FP FP + TN = FP NF (1) Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 17 / 27

ROC Curves (ΘPAD Results) Evaluation (cont d) Results 1 1 mean.d1min.l1h ses.d1min.l15min 0,8 0,8 0,6 0,6 2 0,4 1 0,4 0,2 0 0 0,5 1 1 mean.d20min.l2h 0,8 0,6 0,4 0,2 0 0 0,5 1 0,2 0 0 0,5 1 1 0,8 0,6 0,4 0,2 aptt.fws.d1h.l24 h 0 0 0,5 1 Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 18 / 27

Accuracy and Precision Evaluation (cont d) Results ACC 1,00 PREC 0,80 0,60 0,40 0,20 0,00 0,00 Accuracy 0,98% 0,07 0,13 0,20 0,27 Detection Threshold ACC = PREC = 1 2 0,14% TP + TN N Precision 0,33 0,40 0,47 0,53 0,60 0,67 0,73 0,80 0,87 0,93 1,00 TP POS = TP TP + FP. (2) = TP + TN TP +FP +FN +TN. (3) Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 19 / 27

Summary and Outlook for Large-Scale Software Systems Diploma Thesis Christian-Albrechts-Universität zu Kiel Author Tillmann Carlos Bielefeld Advisory Prof. Dr. Wilhelm Hasselbring Dipl.-Inform. André van Hoorn Dr. Stefan Kaes (XING AG) Case Study at XING AG Conclusion http://kieker-monitoring.net Θnline Performance Anomaly Detection Diploma Thesis Tillmann Carlos Bielefeld Θnline Performance Anomaly Detection PAD Tillmann C. Bielefeld: Online performance anomaly detection for large-scale software systems March 2012. Diploma Thesis, Kiel Univ. Outlook ΘPAD to be released as part of Kieker Follow-up theses on ΘPAD Contact Us till@empuxa.com Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 20 / 27

Demo Conclusion Win a free empuxa Hoodie! http://freebies.tielefeld.com Tillmann Bielefeld (empuxa GmbH) ΘPAD w/ Kieker Nov. 29, 2012 @ Kiel 21 / 27