2 LAJOS MOLNÁR PROFESSIONAL DATA September 27, 2015 Office Address: E-mail: URL: Department of Analysis, Bolyai Institute, University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1. Hungary molnarl@math.u-szeged.hu http://www.math.unideb.hu/ molnarl/ Born: August 19, 1964; Kemecse, Hungary Citizenship: Hungarian Marital Status: Married, two daughters (born in 1994, 1997) Degrees MSc: Mathematics, University of Debrecen, 1988 (Antal Járai, Adviser). Thesis: A class of measures equivalent to the Haar-measure, and stochastic processes on groups. PhD: Mathematics, University of Debrecen, 1990. Thesis: HS operator valued c.a.g.o.s. measures and reproducing kernel Hilbert A- modules. DSc: Mathematics, Hungarian Academy of Sciences, 2005. Dissertation: Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces 1
2 Employment 1988-1989: Assistant, Department of Mathematics, Teacher s Training College, Nyíregyháza, Hungary. 1989-1993: Assistant, Institute of Mathematics and Informatics, University of Debrecen, Debrecen, Hungary. 1993-1996: Assistant Professor, Institute of Mathematics and Informatics, University of Debrecen, Debrecen, Hungary. 1996-2007: Associate Professor, Institute of Mathematics and Informatics, University of Debrecen, Debrecen, Hungary. 2007- : Full Professor, Institute of Mathematics, University of Debrecen, Debrecen, Hungary. 2010-2013: Head of Department of Analysis, Institute of Mathematics, University of Debrecen, Debrecen, Hungary. 2012 Spring: Visiting Full Professor, Department of Mathematical Sciences, University of Memphis, Memphis, USA. 2015- : Full Professor, Bolyai Institute, University of Szeged, Szeged, Hungary. 2015- : Chair of Department of Analysis, University of Szeged, Szeged, Hungary. Research Interest In general: Functional Analysis, Operator Theory More specifically: Operator algebras: Function algebras: Quantum structures: Inner product structures: isomorphisms, isometries, derivations, preservers, reflexivity. isomorphisms, isometries. algebraic structures of operators in quantum mechanics and their transformations. H -algebras, Hilbert modules. Visiting Researcher for Longer Period 1996: March-May, University of Maribor, Maribor, Slovenia, Scholarship of Soros Foundation.
1996: October-December, University of Maribor, Maribor, Slovenia, Hungarian State Eötvös Scholarship. 1997: March-August, University of Paderborn, Paderborn, Germany, Scholarship of the Konferenz der Deutschen Akademien der Wissenschaften. 2002: July-June, 2003, University of Dresden, Dresden, Germany, Research Fellowship of Alexander von Humboldt Foundation. 2008: June-August, University of Dresden, Dresden, Germany, Alexander von Humboldt Foundation. 2010: June-August, University of Dresden, Dresden, Germany, Alexander von Humboldt Foundation. 2011: June-September, University of Ljubljana, Ljubljana, Slovenia, Research grant by the Slovenian Research Agency (ARRS) for renowned researchers from abroad. 2012: January-May, University of Memphis, Visiting Full Professor. 2013: September (1 month), University of Calabria and Instituto Nazionale di Fisica Nucleare (INFN), Cosenza, Italy. 2015: July (1 month), University of Calabria and Instituto Nazionale di Fisica Nucleare (INFN), Cosenza, Italy. 3 Host of Visiting Researcher for Longer Period 2004: February-April, Gregor Dolinar, University of Ljubljana. Grants, Research Projects 1991-1994: Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. 1652. Team member. 1995-1998: Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. T 016846. Team member. 1996-1999: Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. F 019322. Project leader. 1997-1999: Bilateral research project supported by the Hungarian and Slovene governments. Registration No. OMFB SLO-2/96. Project leader on the Hungarian side. 1997-1999: Grant from the Ministry of Education, Hungary. Registration No. FKFP 0304/1997. Project leader. 1999-2002: Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. T030082. Team member.
4 2000-2002: Grant from the Ministry of Education, Hungary. Registration No. FKFP 0349/2000. Project leader. 2000-2003: Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. T031995. Team member. 2001-2002: Bilateral research project supported by the Hungarian and Slovene governments. Registration No. SLO-3/00. Project leader on the Hungarian side. 2003-2006: Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. T043080. Team member. 2004-2005: Bilateral research project supported by the Hungarian and Slovene governments. Registration No. SLO-10/03. Project leader on the Hungarian side. 2004-2007: Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. T046203. Project leader. 2006-2007: Bilateral research project supported by the Hungarian and Slovene governments. Registration No. SLO-5/05. Project leader on the Hungarian side. 2007-2009: Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. NK68040. Team member. 2008-2009: Bilateral research project supported by the Hungarian and Slovene governments. Registration No. SLO-13/07. Project leader on the Hungarian side. 2010-2014: Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. K81166. Project leader. 2010-2014: Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. NK81402. Team member. 2011: Grant by the Slovenian Research Agency (ARRS) for renowned researchers from abroad. Registration No. 1000-11-780001 2012-2013: Bilateral research project supported by the Hungarian and Slovene governments. Registration No. TÉT 10-1-2011-0617. Project leader on the Hungarian side. 2012-2017: Lendület Research Grant by the Hungarian Academy of Sciences. Head of Research Group. 2015-2016: HAS-MOST Hungarian-Taiwanese bilateral research project. Project leader on the Hungarian side. 2015-2019: Grant from the Hungarian Scientific Research Fund (OTKA), Grant No. K115383. Project leader. Awards, Decorations, Honours, Prizes 1992: Géza Grünwald Award of János Bolyai Mathematical Society, Hungary
1996: Scholarship of the Konferenz der Deutschen Akademien der Wissenschaften. 1997: Széchenyi Professorship for the period 1998-2001, Ministry of Education, Hungary 1998: Award of the International Symposia on Functional Equations for outstanding contribution to the 36th Symposium, 36th ISFE, Brno, Czech Republic 1999: Pál Erdős Award of the Mathematical Section of the Hungarian Academy of Sciences 2002: Research Fellowship of Alexander von Humboldt Foundation for 2002-2003. 2002: Bolyai Scholarship for the period 2002-2005, Hungarian Academy of Sciences, Hungary 2006: Bolyai-Plaquette, Hungarian Academy of Sciences 2008: Publication of the Year gold medal in the category of Science and Technology, University of Debrecen 2011: Grant by the Slovenian Research Agency (ARRS) for renowned foreign researchers for a 3-months research stay 2011: Academy Prize of the Hungarian Academy of Sciences 2012: Winner of the Momentum (Lendület) Program of the Hungarian Academy of Sciences 2015: Decoration called Knight s Cross of the Order of Merit of the Republic of Hungary given by the President of Hungary. 5 Organizing Conferences 1999: Functional Analysis and Applications: Memorial Conference for Béla Szőkefalvi-Nagy, August 2 August 6, 1999, Szeged, Hungary. Local organizer. 2003: Von Neumann Centennial Conference: Linear Operators and Foundations of Quantum Mechanics, Budapest, Hungary, 15-20 October, 2003. Member of the Organizing Committee. 2013: Lendület FIFA 13 Workshop, University of Debrecen, April 26-27, 2013, Debrecen, Hungary. Main organizer. 2013: Numbers, Functions, Equations 2013, June 28-30, 2013, Visegrád, Hungary. Member of the Organizing Committee. 2014: Young Functional Analysts Meeting 2014, Institute of Mathematics, April 11-13, 2014, Debrecen, Hungary. Main organizer. 2014: CIMPA Research School on Operator theory and the principles of quantum mechanics University Moulay Ismail, 2014 September 8-17, Meknes, Morocco. Member of the Scientific Committee.
6 Editorial Work Editor of Acta Math. Acad. Paedagog. Nyhaziensis. N.S. Editor of Journal of Linear and Topological Algebra Editor of Journal of Mathematical Analysis Editor of Linear and Multilinear Algebra Editor of Mathematica Slovaca Editor of Operators and Matrices Editor of Periodica Mathematica Hungarica Editor of Publicationes Mathematicae (Debrecen) Previously: Editor of Versita de Gruyter Book Publishing Program in Mathematics Other Scientific Activities 2006-2009: Member of the Mathematical Jury of the Hungarian Scientific Research Fund 2007-2012: Member of the Doctoral Committee of the Section of Mathematics, Hungarian Academy of Sciences 2008-2011: Chairman of the Committee of Mathematics and Physics, Debrecen Branch of the Hungarian Academy of Sciences 2009-2011: Member of the Collegium Natural Sciences and Technology of the Hungarian Scientific Research Fund 2010-2014: Councillor of the International Quantum Structure Association 2011-2014: Member of the Mathematical Committee of the Section of Mathematics, Hungarian Academy of Sciences 2013-: Member of the Advisory Board of János Bolyai Research Fellowship, Hungarian Academy of Sciences 2014-: Member of the Doctoral Committee of the Faculty of Science and Informatics, University of Szeged 2014-: Member of the Doctoral Council of the Hungarian Academy of Sciences Membership in Societies 1989-: Member of János Bolyai Mathematical Society. 1994-: Member of the American Mathematical Society. 2008-: Member of the International Quantum Structure Association.
7 2013-: Member of the International Linear Algebra Society. University Activities 1995-1996: Scientific advisor of the Library of the Institute of Mathematics and Informatics, University of Debrecen. 1995-1997: Member of the Mathematical Committee of the Institute of Mathematics and Informatics, University of Debrecen. 2005-2007: Vice-director of the Institute of Mathematics, University of Debrecen. 2008-2011: Member of the Scientific and Habilitation Council of the Faculty of Science and Technology, University of Debrecen. 2008-2015: Leader of the program Functional Analysis in the Doctoral School Mathematics and Computer Sciences, University of Debrecen. Teaching Activities University of Debrecen: For undergraduates: Linear Algebra, Analysis I, II, III, Differential Equations, Real Variables, Measure and Integration, Complex Variables. Mathematics 3 (in English) for foreign students of physics and electrical engineering, College Math - Functions (in English) for foreign students. For graduates and PhD students: Functional Analysis, Banach Algebras, C -algebras, von Neumann Algebras. Budapest University of Technology and Economics: Selected Topics in Functional Analysis, graduate course in 2014. Teaching Activities Abroad 1996: Wintersemester, University of Maribor, Slovenia. Graduate Course in Real Analysis. 1997: Summersemester, University of Paderborn, Germany. Seminar Funktionentheorie/Zahlentheorie.
8 2012: Springsemester, University of Memphis, Undergraduate Course on Linear Algebra. 2015: Special courses, Niigata University, Niigata, Japan. Undergraduate course on Functional Analysis. Graduate course on Preserver Problems. Lecture Notes [1] Complex Functions, manuscript, in Hungarian, 1992. [2] Spectral Theory and von Neumann Algebras, manuscript, in Hungarian, 1994. [3] Banach Algebras, C -Algebras and von Neumann Algebras, manuscript, in Hungarian, 2001. Thesis Directed 1993: Nóra Kontra: Riesz representation theorems. (in Hungarian) [MSc] 1995: Péter Battyányi: Jordan *-derivations on operator algebras. (in Hungarian) [Competition work, distinguished national first prize] 1996: Péter Battyányi: Jordan *-derivations on operator algebras. (in Hungarian) [MSc] 1996: Tibor Molnár: Calculus in the secondary school. (in Hungarian) [MSc] 1997: Csaba Noszály: Isomorphisms of function algebras. (in Hungarian) [MSc] 1997: Máté Győry: Isometries of function algebras and semigroup isomorphisms of operator ideals. (in Hungarian) [Competition work, national first prize] 1998: Anna Németh: The three fundamental theorems of functional analysis. (in Hungarian) [MSc] 1998: Máté Győry: Isometries of function algebras and semigroup isomorphisms of operator ideals. (in Hungarian) [MSc] 1998: Zsolt Vida: Derivations, Jordan *-derivations and automorphisms. (in Hungarian) [MSc] 1999: Máté Győry: Diameter preserving linear bijection of C 0 (X) and the reflexivity of the isometry group of the suspension of B(H). (in Hungarian) [Competition work, national first prize; Pro Scientia Medal of the Hungarian Academy of Sciences]
2001: Mátyás Barczy and Mariann Tóth: Local automorphisms of the sets of states and effects on a Hilbert space. (in Hungarian) [Competition work, national first prize] 2001: Mariann Tóth: Local maps of operator algebras. (in Hungarian) [MSc] 2008: Emese Tünde Rozsályi: The life and work of Frigyes Riesz (in Hungarian) [MSc] 2010: Patrícia Szokol: Classical and quantum relative entropy [MSc] 2011: Patrícia Szokol: Maps on positive semidefinite operators preserving relative entropy. [Competition work, national special prize] 9 PhD Students Máté Győry; (1998 2001) Preserver problems and reflexivity problems on operator algebras and on function algebras, PhD Dissertation, 2003. Gergő Nagy; (2008 2011) Preserver problems on structures of positive operators, PhD Dissertation, 2013. Patrícia Szokol; (2010 2013) Preserver problems and separation theorems, PhD Dissertation, 2015. Roberto Beneduci; (2013 2014) Mathematical structures of positive operator valued measures and applications, PhD Dissertation, 2014. Membership in PhD Committees Vilmos Prokaj, Eötvös Loránd University, Budapest, April 9, 1999. Károly Nagy, University of Debrecen, Debrecen, May 31, 2001. Bálint Farkas, Eötvös Loránd University, Budapest, May 26, 2004. Zsolt Balogh, University of Debrecen, Debrecen, September 21, 2004. Attila Házy, University of Debrecen, Debrecen, October 7, 2005. Zoltán Kaiser, University of Debrecen, Debrecen, January 27, 2006. Fülöp Ágnes, Eötvös Loránd University, Budapest, May 5, 2006. Tibor Juhász, University of Debrecen, Debrecen, October 19, 2006.
10 Péter Varga, University of Debrecen, Debrecen, December 21, 2006. Ágnes Baran, University of Debrecen, Debrecen, November 27, 2007. Pál Burai, University of Debrecen, Debrecen, January 15, 2008. Árpád Baricz, University of Debrecen, Debrecen, October 2, 2008. Izabella Stuhl, University of Debrecen, Debrecen, March 5, 2009. Endre Iglói, University of Debrecen, Debrecen, March 20, 2009. Zoltán Léka, University of Szeged, Szeged, May 6, 2009. Zita Makó, University of Debrecen, Debrecen, November 13, 2009. Fruzsina Mészáros, University of Debrecen, Debrecen, March 17, 2010. András Bazsó, University of Debrecen, Debrecen, October 15, 2010. István Vajda, University of Debrecen, Debrecen, October 27, 2010. József Korándi, University of Debrecen, Debrecen, June 12, 2012. Ágota Orosz-Kaiser, University of Debrecen, Debrecen, June 27, 2012. Szabolcs Baják, University of Debrecen, Debrecen, July 3, 2012. Zsolt Szűcs, Eötvös Loránd University, Budapest, 2014. András Szántó, Budapest University of Technology and Economics, Budapest, January 23, 2015. Ferenc Várady, University of Debrecen, Debrecen, February 11, 2015. Membership in Habilitation Committees Kálmán Liptai, University of Debrecen, Debrecen, November 24, 2011. Mihály Bessenyei, University of Debrecen, Debrecen, November 25, 2011. István Blahota, University of Debrecen, Debrecen, October 16, 2013. Pál Burai, University of Debrecen, Debrecen, November 20, 2014. Gábor Pusztai, University of Szeged, Szeged, October 9, 2015. Membership in DSc Committees
Gábor Elek, Hungarian Academy of Sciences, Budapest, January 28, 2010. Tamás Keleti, Hungarian Academy of Sciences, Budapest, December 20, 2010. Alice Fialowski, Hungarian Academy of Sciences, Budapest, November 14, 2011. Sándor Fridli, Hungarian Academy of Sciences, Budapest, May 11, 2015. Máté Matolcsi, Hungarian Academy of Sciences, Budapest, June 23, 2015. 11
12 LIST OF PUBLICATIONS Book [MB] L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. MR 2007g:47056, Zbl. 1119.47001 Research papers [1] L. Molnár, J. Pitrik and D. Virosztek, Maps on positive definite matrices preserving Bregman and Jensen divergences, preprint [2] O. Hatori and L. Molnár, Generalized isometries of the special unitary group, preprint. [3] O. Hatori and L. Molnár, Spectral conditions for Jordan *-isomorphisms on operator algebras, preprint. [4] F. Botelho, L. Molnár and G. Nagy, Linear bijections on von Neumann factors commuting with λ-aluthge transform, submitted. [5] L. Molnár and D. Virosztek, Continuous Jordan triple endomorphisms of P 2, submitted. [6] L. Molnár and G. Nagy, Spectral order automorphisms on Hilbert space effects and observables: the 2-dimensional case, submitted. [7] L. Molnár and P. Szokol, Transformations preserving norms of means of positive operators and nonnegative functions, Integral Equations Operator Theory, to appear. [8] L. Molnár Two characterizations of unitary-antiunitary similarity transformations of positive definite operators on a finite dimensional Hilbert space, Annales Univ. Sci. Budapest., Sect. Comp. (special issue dedicated to Prof. Zoltán Sebestyén on the occasion of his 70th birthday), to appear. [9] L. Molnár, General Mazur-Ulam type theorems and some applications, in Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, W.
Arendt, R. Chill, Y. Tomilov (Eds.), Operator Theory: Advances and Applications, Vol. 250, to appear. [10] L. Molnár and D. Virosztek, On algebraic endomorphisms of the Einstein gyrogroup, J. Math. Phys. 56 (2015), 082302. [11] L. Molnár On the nonexistence of order isomorphisms between the sets of all self-adjoint and all positive definite operators, Abstr. Appl. Anal. Volume 2015 (2015), Article ID 434020, 6 pages. IF: 1,274** [12] L. Molnár, P. Šemrl and A.R. Sourour, Bilocal automorphisms, Oper. Matrices 9 (2015), 113 120. IF: 0,529** [13] L. Molnár and P. Szokol, Transformations on positive definite matrices preserving generalized distance measures, Linear Algebra Appl. 466 (2015), 141 159. IF: 0,983** [14] L. Molnár, Jordan triple endomorphisms and isometries of spaces of positive definite matrices, Linear Multilinear Alg. 63 (2015), 12 33. IF: 0,700** [15] L. Molnár and G. Nagy, Transformations on density operators that leave the Holevo bound invariant, Int. J. Theor. Phys. 53 (2014), 3273 3278. IF: 1,188** [16] R. Beneduci and L. Molnár, On the standard K-loop structure of positive invertible elements in a C -algebra, J. Math. Anal. Appl. 420 (2014), 551 562. IF: 1,119** [17] L. Molnár, A few conditions for a C -algebra to be commutative, Abstr. Appl. Anal. Volume 2014 (2014), Article ID 705836, 4 pages. IF: 1,274** [18] L. Molnár and P. Szokol, Kolmogorov-Smirnov isometries of the space of generalized distribution functions, Math. Slovaca 64 (2014), 433 444. IF: 0,451** 13
14 [19] L. Molnár, Bilocal *-automorphisms of B(H), Arch. Math. 102 (2014), 83 89. IF: 0,479** [20] O. Hatori and L. Molnár, Isometries of the unitary groups and Thompson isometries of the spaces of invertible positive elements in C -algebras, J. Math. Anal. Appl. 409 (2014), 158 167. IF: 1,119** [21] L. Molnár, Jordan triple endomorphisms and isometries of unitary groups, Linear Algebra Appl. 439 (2013), 3518 3531. IF: 0,983 [22] F. Botelho, J. Jamison and L. Molnár, Surjective isometries on Grassmann spaces, J. Funct. Anal. 265 (2013), 2226 2238. IF: 1,152 [23] F. Botelho, J. Jamison and L. Molnár, Algebraic reflexivity of isometry groups and automorphism groups of some operator structures, J. Math. Anal. Appl. 408 (2013), 177 195. IF: 1,119 [24] L. Molnár, G. Nagy and P. Szokol, Maps on density operators preserving quantum f-divergences, Quantum Inf. Process. 12 (2013), 2309 2323. IF: 2,960 [25] G. Dolinar and L. Molnár, Automorphisms for the logarithmic product of positive semidefinite operators, Linear Multilinear Algebra 61 (2013), 161 169. IF: 0,700 [26] O. Hatori, G. Hirasawa, T. Miura and L. Molnár, Isometries and maps compatible with inverted Jordan triple products on groups, Tokyo J. Math. 35 (2012), 385 410. IF: 0,258 [27] O. Hatori and L. Molnár, Isometries of the unitary group, Proc. Amer. Math. Soc. 140 (2012), 2141 2154. MR2888199, Zbl. 1244.47032 IF: 0,609 [28] G. Dolinar and L. Molnár, Sequential endomorphisms of finite dimensional Hilbert space effect algebras, J. Phys. A: Math. Theor. 45 (2012) 065207. MR2881058, Zbl.
15 1235.81008 IF: 1,766 [29] L. Molnár and P. Šemrl, Transformations of the unitary group on a Hilbert space, J. Math. Anal. Appl. 388 (2012), 1205 1217. MR2869819, Zbl. 06009629 IF: 1,050 [30] L. Molnár and G. Nagy, Isometries and relative entropy preserving maps on density operators, Linear Multilinear Algebra 60 (2012), 93 108. MR2869675, Zbl 1241.47034 IF: 0,677 [31] L. Molnár, Maps preserving general means of positive operators, Electron. J. Linear Algebra 22 (2011), 864 874. MR2836790, Zbl. 06098828 IF: 0,563 [32] L. Molnár, Continuous maps on matrices transforming geometric mean to arithmetic mean, Annales Univ. Sci. Budapest., Sect. Comp. (special issue dedicated to Prof. Antal Járai on the occasion of his 60th birthday) 35 (2011), 217 222. MR?? Zbl. 1229.47055 [33] L. Molnár and W. Timmermann, Transformations on bounded observables preserving measure of compatibility, Int. J. Theor. Phys. 50 (2011), 3857 3863. MR2860043, Zbl. 1243.81079 IF: 0,845 [34] L. Molnár, Kolmogorov-Smirnov isometries and affine automorphisms of spaces of distribution functions, Cent. Eur. J. Math. 9 (2011), 789 796. MR2805312, Zbl. 1239.46022 IF: 0,440 [35] L. Molnár, Lévy isometries of the space of probability distribution functions, J. Math. Anal. Appl. 380 (2011), 847 852. MR2794437, Zbl. 1229.46019 IF: 1,001 [36] L. Molnár, Order automorphisms on positive definite operators and a few applications, Linear Algebra Appl. 434 (2011), 2158 2169. MR2781684, Zbl. 1220.47051 IF: 0,974
16 [37] L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl. 432 (2010), 3343 3350. MR 2011b:47087, Zbl. 1187.47030 IF: 1,005 [38] L. Molnár and G. Nagy, Thompson isometries on positive operators: the 2-dimensional case, Electron. J. Lin. Alg. 20 (2010), 79 89. MR2596446, Zbl. 1195.46017 IF: 0,808 [39] L. Molnár, Linear maps on observables in von Neumann algebras preserving the maximal deviation, J. London Math. Soc. 81 (2010), 161 174. MR 2010m:46100, Zbl. 1189.47036 IF: 0,828 [40] L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), 3849 3859. MR 2010h:47058, Zbl. 1184.46021 IF: 0,64 [41] L. Molnár, Maps preserving the harmonic mean or the parallel sum of positive operators, Linear Algebra Appl. 430 (2009), 3058 3065. MR 2010e:47077, Zbl. 1182.47035 IF: 1,073 [42] L. Molnár, Maps on positive operators preserving Lebesgue decompositions, Electron. J. Linear Algebra 18 (2009), 222 232. MR 2010i:47079, Zbl. 1181.47040 IF: 0,892 [43] L. Molnár and W. Timmermann, A metric on the space of projections admitting nice isometries, Studia Math. 191 (2009), 271 281. MR 2009m:47097, Zbl. 1168.47030 IF: 0,645 [44] L. Molnár, Maps preserving the geometric mean of positive operators, Proc. Amer. Math. Soc. 137 (2009), 1763 1770. MR 2009m:47096, Zbl. 1183.47032 IF: 0,64 [45] L. Molnár and W. Timmermann, Maps on quantum states preserving the Jensen-Shannon divergence, J. Phys. A: Math. Theor. 42 (2009), 015301. MR 2010f:81033, Zbl. 1156.81349 IF: 1,577 [46] L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2009),
17 13 18. MR 2010i:15003, Zbl. 1160.15004 IF: 0,74 [47] G. Dolinar and L. Molnár, Isometries of the space of distribution functions with respect to the Kolmogorov-Smirnov metric, J. Math. Anal. Appl., 348 (2008), 494 498. MR 2009j:47063, Zbl. 1162.46305 IF: 1,046 [48] L. Molnár, Maps on the n-dimensional subspaces of a Hilbert space preserving principal angles, Proc. Amer. Math. Soc. 136 (2008), 3205 3209. MR 2009f:47056, Zbl. 1143.47025 IF: 0,584 [49] L. Molnár, Maps on states preserving the relative entropy, J. Math. Phys. 49 (2008), 032114. MR 2009c:81025, Zbl. 1153.81407 IF: 1,085 [50] L. Molnár, Isometries of the spaces of bounded frame functions, J. Math. Anal. Appl. 338 (2008), 710 715. MR 2009d:47038, Zbl. 1135.47034 IF: 1,046 [51] G. Dolinar and L. Molnár, Maps on quantum observables preserving the Gudder order, Rep. Math. Phys. 60 (2007), 159 166. MR 2008m:81008, Zbl. 1131.81010 IF: 0,624 [52] L. Molnár and P. Šemrl, Spectral order automorphisms of the spaces of Hilbert space effects and observables, Lett. Math. Phys. 80 (2007), 239 255. MR 2008f:47118, Zbl. 1138.47057 IF: 1,044 [53] L. Molnár and W. Timmermann, Mixture preserving maps on von Neumann algebra effects, Lett. Math. Phys. 79 (2007), 295 302. MR 2008b:46084, Zbl. 1130.46037 IF: 1,044 [54] L. Molnár and P. Šemrl, Elementary operators on selfadjoint operators, J. Math. Anal. Appl. 327 (2007), 302 309. MR 2007g:47052, Zbl. 1117.47024 IF: 0,872
18 [55] L. Molnár, Multiplicative Jordan triple isomorphisms on the self-adjoint elements of von Neumann algebras, Linear Algebra Appl. 419 (2006), 586 600. MR 2007k:47059, Zbl. 1115.47034 IF: 0,585 [56] L. Molnár, Non-linear Jordan triple automorphisms of sets of self-adjoint matrices and operators, Studia Math. 173 (2006), 39 48. MR 2006j:47059, Zbl. 1236.47031 IF: 0,515 [57] L. Molnár and W. Timmermann, Transformations on the sets of states and density operators, Linear Algebra Appl. 418 (2006), 75 84. MR 2007g:81014, Zbl. 1113.47023 IF: 0,585 [58] L. Molnár, A remark to the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices, Proc. Amer. Math. Soc. 134 (2006) 2839 2848. MR 2007b:81018, Zbl. 1094.15010 IF: 0,513 [59] L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math. 56 (2005), 589 595. MR 2006m:47063, Zbl. 1211.47075 IF: 0,868 [60] E. Kovács and L. Molnár, Preserving some numerical correspondences between Hilbert space effects, Rep. Math. Phys. 54 (2004), 201 209. MR 2005m:47077, Zbl. 1100.47032 IF: 0,625 [MDiss] L. Molnár, Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Dissertation for the D.Sc. degree of the Hungarian Academy of Sciences, 241 pages. [61] L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), 755 772. MR 2005d:46128, Zbl. 1049.46048 [62] L. Molnár and E. Kovács, An extension of a characterization of the automorphisms of Hilbert space effect algebras, Rep. Math. Phys. 52 (2003), 141 149. MR 2004i:81015, Zbl. 1052.81007 IF: 0,489
[63] L. Molnár and M. Barczy, Linear maps on the space of all bounded observables preserving maximal deviation, J. Funct. Anal. 205 (2003), 380 400. MR 2004j:47074, Zbl. 1047.47029 IF: 0,993 [64] L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287 300. MR 2004g:81022, Zbl. 1040.47028 IF: 0,656 [65] L. Molnár and W. Timmermann, Preserving the measure of compatibility between quantum states, J. Math. Phys. 44 (2003), 969 973. MR 2004:81010, Zbl. 1061.81001 IF: 1,481 [66] L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), 267 273. MR 2004a:81046, Zbl. 1047.81017 IF: 1,357 [67] L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. MR 2003j:47050, Zbl. 1043.47030 IF: 0,389 [68] L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. MR 2003g:47067, Zbl. 1033.47026 IF: 0,353 [69] L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. MR 2003h:47069, Zbl. 1010.46023 IF: 0,924 [70] F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. MR 2003j:47046, Zbl. 1050.47028 IF: 0,525 [71] L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), 349 352. MR 2003e:47067, Zbl. 1027.46062 IF: 0,386 19
20 [72] L. Molnár, Conditionally multiplicative maps on the set of all bounded observables preserving compatibility, Linear Algebra Appl. 349 (2002), 197 201. MR 2003c:47070, Zbl. 998.81002 IF: 0,462 [73] L. Molnár, On certain automorphisms of sets of partial isometries, Arch. Math. 78 (2002), 43 50. MR 2002k:47078, Zbl. 1037.47025 IF: 0,326 [74] L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. MR 2002m:47047, Zbl. 983.47024 IF: 0,334 [75] L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. MR 2003e:47068, Zbl. 1004.46044 [76] L. Molnár, On some functional equations on operator algebras, in Hungarian, Assembly Lectures, May 2000, vol. II, Hungarian Academy of Sciences, Budapest, 2001, pp. 457 464. [77] L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), 91 100. MR 2002k:47077, Zbl. 1002.46044 IF: 0,819 [78] L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001), 299 303. MR 2003a:81081, Zbl. 1002.46044 IF: 0,475 [79] L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), 5904 5909. MR 2002m:81012, Zbl. 1019.81005 IF: 1,151 [80] L. Molnár, *-semigroup endomorphisms of B(H), in I. Gohberg et al. (Edt.), Operator Theory: Advances and Applications, Vol. 127, pp. 465 472, Birkhäuser, 2001. MR1902817, Zbl. 991.47019
[81] L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450. MR 2003a:81013, Zbl. 1029.81008 IF: 1,729 [82] L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907 1912. MR 2001m:47141, Zbl. 1025.47045 IF: 1,151 [83] L. Molnár, Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421. MR 2002b:81008, Zbl. 1026.81006 IF: 1,729 [84] L. Molnár, A reflexivity problem concerning the C -algebra C(X) B(H), Proc. Amer. Math. Soc. 129 (2001), 531 537. MR 2001e:46101, Zbl. 959.47022 IF: 0,369 [85] L. Molnár, A Wigner-type theorem on symmetry transformations in Banach spaces, Publ. Math. (Debrecen) 58 (2000), 231 239. MR 2001j:47092, Zbl. 973.47058 IF: 0,171 [86] M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. MR 2002h:47053, Zbl. 973.47028 [87] L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. MR 2001g:47124, Zbl. 1049.47503 IF: 0,477 [88] L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), 1463 1466. MR 2001i:46098, Zbl. 1090.46510 IF: 0,598 [89] L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. MR 2001g:81109, Zbl. 1072.81535 IF: 0,966 21
22 [90] L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), 231 238. MR 2001a:47083, Zbl. 963.46044 [91] L. Molnár, Generalization of Wigner s unitary-antiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), 785 791. MR 2001g:47064, Zbl. 957.46106 IF: 1,721 [92] L. Molnár, Reflexivity of the automorphism and isometry groups of C -algebras in BDF theory, Arch. Math. 74 (2000), 120 128. MR 2001k:47049, Zbl. 1023.47021 IF: 0,305 [93] L. Molnár, Automatic surjectivity of ring homomorphisms on H -algebras and algebraic differences among some group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 125 134. MR 2000c:46103, Zbl. 945.46034 IF: 0,394 [94] L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. MR 2000f:43002, Zbl. 930.43002 IF: 0,394 [95] L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), 727 736. MR 2000k:47045, Zbl. 993.47031 [96] L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), 1 13. MR 2000h:47060, Zbl. 974.47031 IF: 0,385 [97] L. Molnár, A generalization of Wigner s unitary-antiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. MR 2000j:46112, Zbl. 953.46030 IF: 0,976 [98] L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. MR 2000b:47094, Zbl. 930.47015 IF: 0,225 [99] L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999),
23 311-321. MR 2000b:47089, Zbl. 963.47028 IF: 0,385 [100] L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. MR 99k:46031, Zbl. 943.46033 IF: 0,330 [101] L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. MR 99h:15003, Zbl. 974.15001 [102] V. Mascioni and L. Molnár, Linear maps on factors which preserve the extreme points of the unit ball, Canad. Math. Bull. 41 (1998), 434 441. MR 99m:46145, Zbl. 919.47024 IF: 0,265 [103] L. Molnár, The automorphism and isometry groups of l (N, B(H)) are topologically reflexive, Acta Sci. Math. (Szeged) 64 (1998), 671 680. MR 99k:47083, Zbl. 937.47039 [104] L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), 568 586. MR 2000h:47110, Zbl. 933.46064 IF: 0,760 [105] M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. MR 99h:46098, Zbl. 928.46034 IF: 0,216 [106] M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *-semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), 253 266. MR 2000k:47044, Zbl. 940.46012 IF: 0,392 [107] L. Molnár, Stability of the surjectivity of Jordan *- homomorphisms of B(H), J. Nat. Geom. 14 (1998), 149 154. MR 99g:46102, Zbl. 932.46040 [108] L. Molnár, Characterization of additive *-homomorphisms and Jordan *-homomorphisms on operator ideals, Aequationes Math. 55 (1998), 259 272. MR: 99m:47042, Zbl. 912.47017
24 [109] L. Molnár, A proper standard C -algebra whose automorphism and isometry groups are topologically reflexive, Publ. Math. (Debrecen) 52 (1998), 563 574. MR 99e:46082, Zbl. 918.46055 IF: 0,098 [110] L. Molnár, Stability of the surjectivity of endomorphisms and isometries of B(H), Proc. Amer. Math. Soc. 126 (1998), 853 861. MR 98e:47055, Zbl. 890.47022 IF: 0,363 [111] L. Molnár and P. Šemrl, Order isomorphisms and triple isomorphisms of operator ideals and their reflexivity, Arch. Math. 69 (1997), 497 506. MR 99a:47054, Zbl. 910.47027 IF: 0,281 [112] L. Molnár, Jordan *-derivation pairs on a complex *-algebra, Aequationes Math. 54 (1997), 44 55. MR 98j:46053, Zbl. 887.16021 [113] L. Molnár and B. Zalar, Three-variable *-identities and homomorphisms of Schatten classes, Publ. Math. (Debrecen) 50 (1997), 121 133. MR 98h:46054, Zbl. 880.46042 IF: 0,089 [114] L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. MR 98e:47068, Zbl. 871.47030 IF: 0,452 [115] L. Molnár and P. Šemrl, Local Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 125 (1997), 447 454. MR 97d:47038, Zbl. 861.47020 IF: 0,273 [116] L. Molnár, On rings of differentiable functions, Grazer Math. Ber. 327 (1996), 13 16. MR 98e:46035, Zbl. 887.46009 [117] L. Molnár, Bijectivity of *-endomorphisms of B(H) and the unilateral shift, Monatsh. Math. 122 (1996), 377 387. MR 97m:47047, Zbl. 862.46032 IF: 0,299 [118] C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), 415 421. MR 97f:47034, Zbl.
25 866.47027 IF: 0,170 [119] L. Molnár, The range of a Jordan *-derivation, Math. Japon. 44 (1996), 353 356. MR 97m:47046, Zbl. 886.47019 [120] L. Molnár, The range of a Jordan *-derivation on an H -algebra, Acta Math. Hung. 72 (1996), 261 267. MR 98g:46078, Zbl. 902.46027 IF: 0,139 [121] L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), 137 148. MR 97i:46038, Zbl. 858.46019 [122] L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. MR 97c:47042, Zbl. 879.46030 IF: 0,163 [123] L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), 1789 1794. MR 96h:46090, Zbl. 857.46032 IF: 0,300 [124] L. Molnár, Locally inner derivations of standard operator algebras, Math. Bohem. 121 (1996), 1 7. MR 97i:47069, Zbl. 863.46039 [125] L. Molnár, Algebraic difference between p-classes of an H*- algebra, Proc. Amer. Math. Soc. 124 (1996), 169-175. MR 96d:46072, Zbl. 840.46035 IF: 0,300 [126] L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. MR 96m:47092, Zbl. 852.46021 IF: 0,341 [127] L. Molnár and B. Zalar, On automatic surjectivity of Jordan homomorphisms, Acta Sci. Math. (Szeged) 61 (1995), 413 424. MR 97a:46097, Zbl. 842.46046 [128] L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. MR 96a:46102, Zbl. 860.46037 IF: 0,101
26 [129] L. Molnár, Conditions for a function to be a centralizer on an H*-algebra, Acta Math. Hung. 67 (1995), 171 174. MR 96b:46074, Zbl. 888.46037 IF: 0,145 [130] L. Molnár, On the range of a normal Jordan *-derivation, Comment. Math. Univ. Carolinae 35 (1994), 691 695. MR 95k:47054, Zbl. 821.47028 [131] L. Molnár, A condition for a function to be a bounded linear operator, Indian J. Math. 35 (1993), 1 4. MR 94k:47061, Zbl. 811.47032 [132] L. Molnár, p-classes of an H*-algebra and their representations, Acta Sci. Math. (Szeged) 58 (1993), 411 423. MR 95c:46081, Zbl. 811.46056 [133] L. Molnár, On A-linear operators on a Hilbert A-module, Period. Math. Hung. 26 (1993), 219 222. MR 94i:46062, Zbl. 816.46042 [134] L. Molnár, On Saworotnow s Hilbert A-modules, Glasnik Mat. 28 (1993), 259 267. MR 95m:46076, Zbl. 818.46056 [135] L. Molnár, Modular bases in a Hilbert A-module, Czech. Math. J. 42 (1992), 649 656. MR 93i:46095, Zbl. 809.46039 IF: 0,132 [136] L. Molnár, -representations of the trace-class of an H - algebra, Proc. Amer. Math. Soc. 115 (1992), 167 170. MR 92i:46064, Zbl. 789.46044 IF: 0,263 [137] L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), 323 325. MR 93i:46094, Zbl. 804.46056 IF: 0,038 [138] L. Molnár, A note on Saworotnow s representation theorem on positive definite functions, Houston J. Math. 17 (1991), 89 99. MR 92j:46097, Zbl. 780.46035 IF: 0,198 [139] L. Molnár, Reproducing kernel Hilbert A-modules, Glasnik Mat. 25 (1990), 335 345. MR 94k:46103, Zbl. 773.46026
[140] Y. Kakihara and L. Molnár, A remark on HS operator valued c.a.g.o.s. measures, Res. Act. Fac. Sci. Engrg. Tokyo Denki Univ. 12 (1990), 13 19. MR 91h:46082 [141] L. Molnár, Two applications of the theory of weakly stationary stochastic processes to harmonic analysis, Glasnik Mat. 25 (1990), 209 219. MR 92h:60055, Zbl. 825.60027 27
28 LIST OF INDEPENDENT CITATIONS (without self- or co-authors citations) ordered according to the cited work [1] L. Molnár, Reproducing kernel Hilbert A-modules, Glasnik Mat. 25 (1990), 335 345. (1) B. Zalar, Theory of Hilbert triple systems, Yokohama Math. J. 41 (1994), 94 126. (2) B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995), 301 325. (3) B. Zalar, Connections between Hilbert triple systems and involutive H -triples, Acta Sci. Math. (Szeged) 62 (1996), 127 143. [2] L. Molnár, A note on Saworotnow s representation theorem on positive definite functions, Houston J. Math. 17 (1991), 89 99. (4) B. Zalar, Theory of Hilbert triple systems, Yokohama Math. J. 41 (1994), 94 126. (5) B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995), 301 325. (6) B. Zalar, Connections between Hilbert triple systems and involutive H -triples, Acta Sci. Math. (Szeged) 62 (1996), 127 143. [3] L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), 323 325. (7) S. Banić, D. Ilišević and S. Varošanec, Bessel and Grüss type inequalities in inner product modules, Proc. Edinburgh Math. Soc. 50 (2007), 23 36. (8) A.G. Ghazanfari and S.S. Dragomir Bessel and Grüss type inequalities in inner product modules over Banach *-algebras, J. Inequal. Appl. Volume 2011, Article ID 562923, 16 pages. (9) D. Ilišević, Molnár-dependence in a pre-hilbert module over an H -algebra, Acta Math. Hungar. 101 (2003), 69 78. (10) D. Ilišević and S. Varošanec, Grüss type inequalities in inner product modules, Proc. Amer. Math. Soc. 133 (2005), 3271 3280. (11) T.W. Palmer, Banach Algebras and the General Theory of *-Algebras, vol. II., Cambridge University Press, 2001. (12) B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995), 301 325.
(13) B. Zalar, Connections between Hilbert triple systems and involutive H -triples, Acta Sci. Math. (Szeged) 62 (1996), 127 143. [4] L. Molnár, -representations of the trace-class of an H -algebra, Proc. Amer. Math. Soc. 115 (1992), 167 170. (14) T.W. Palmer, Banach Algebras and the General Theory of *-Algebras, vol. II., Cambridge University Press, 2001. (15) B. Zalar, Theory of Hilbert triple systems, Yokohama Math. J. 41 (1994), 94 126. (16) B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995), 301 325. [5] L. Molnár, Modular bases in a Hilbert A-module, Czech. Math. J. 42 (1992), 649 656. (17) D. Bakič and B. Guljaš, Operators on Hilbert H -modules, J. Operator Theory 46 (2001), 123 141. (18) D. Bakič and B. Guljaš, Hilbert C -modules over C - algebras of compact operators, Acta Sci. Math. (Szeged) 68 (2002), 249 269. (19) T.W. Palmer, Banach Algebras and the General Theory of *-Algebras, vol. II., Cambridge University Press, 2001. (20) B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995), 301 325. (21) B. Zalar, Connections between Hilbert triple systems and involutive H -triples, Acta Sci. Math. (Szeged) 62 (1996), 127 143. [6] L. Molnár, On Saworotnow s Hilbert A-modules, Glasnik Mat. 28 (1993), 259 267. (22) B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995), 301 325. (23) B. Zalar, Connections between Hilbert triple systems and involutive H -triples, Acta Sci. Math. (Szeged) 62 (1996), 127 143. [7] L. Molnár, On A-linear operators on a Hilbert A-module, Period. Math. Hung. 26 (1993), 219 222. (24) B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995), 301 325. 29
30 (25) B. Zalar, Connections between Hilbert triple systems and involutive H -triples, Acta Sci. Math. (Szeged) 62 (1996), 127 143. [8] L. Molnár, p-classes of an H*-algebra and their representations, Acta Sci. Math. (Szeged) 58 (1993), 411 423. (26) B. Zalar, Theory of Hilbert triple systems, Yokohama Math. J. 41 (1994), 94 126. [9] L. Molnár, On the range of a normal Jordan *-derivation, Comment. Math. Univ. Carolinae 35 (1994), 691 695. (27) P. Battyányi, On the range of a Jordan *-derivation, Comment. Math. Univ. Carolinae 37 (1996), 659 665. (28) P. Battyányi, Jordan *-derivations with respect to the Jordan-product, Publ. Math. (Debrecen) 48 (1996), 327 338. (29) M.A. Chebotar, Y. Fong and P.H. Lee, On maps preserving zeros of the polynomial xy yx, Linear Algebra Appl. 408 (2005), 230 243. (30) J. Cui and C. Park, Maps preserving strong skew Lie product on factor Von Neumann algebras, Acta Math. Sci. (Ser. B Engl. Ed.) 32 (2012), 531 538. (31) A. Taghavi, When is a subspace of B(X ) ideal?, Southeast Asian Bull. Math. 26 (2002), 153 158. [10] L. Molnár, Conditions for a function to be a centralizer on an H*-algebra, Acta Math. Hung. 67 (1995), 171 174. (32) B. Zalar, Theory of Hilbert triple systems, Yokohama Math. J. 41 (1994), 94 126. [11] L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. (33) S. Ali and N.A. Dar, On left centralizers of prime rings with involution, Palestine Journal of Mathematics 3 (2014), 505 511. (34) S. Ali and C. Haetinger, On Jordan α-centralizers in rings and some applications, Bol. Soc. Paran. Mat. 26 (2008), 71 80. (35) M. Ashraf and S. Ali, On (α, β) -derivations in H - algebras, Adv. Algebra 2 (2009), 23 31. (36) M. Ashraf and M.R. Mozumder, On Jordan α - centralizers in semiprime rings with involution, Int. J. Contemp. Math. Sciences 7 (2012), 1103 1112. (37) M. Ashraf, N. Rehman, S. Ali and M.R. Mozumder, On generalized (θ, φ)-derivations in semiprime rings with involution, Math. Slovaca 62 (2012), 451 460. (38) M.J. Atteya, On generalized derivations of semiprime rings, Int. J. Algebra 4 (2010), 591 598.
(39) M.J. Atteya, A note on generalized Jordan derivations in semiprime rings, Mathematics and Statistics 3 (2015), 7 9. (40) M.J. Atteya and D.I. Resan, Commuting derivations of semiprime rings, Int. J. Contemp. Math. Sciences 6 (2011), 1151 1158. (41) D. Benkovič and D. Eremita, Characterizing left centralizers by their action on a polynomial, Publ. Math. (Debrecen) 64 (2004), 343 351. (42) M.N. Daif and M.S. Tammam El-Sayiad, An identity related to generalized derivations, Internat. J. Algebra 1 (2007), 547 550. (43) M.N. Daif and M.S. Tammam El-Sayiad, On generalized derivations of semiprime rings with involution, Internat. J. Algebra 1 (2007), 551 555. (44) A.K. Faraj and A.H. Majeed, On Left σ-centralizers of Jordan ideals and generalized Jordan left (σ, τ)-derivations of prime rings, Eng. and Tech. Journal 29 (2011), 544 553. (45) A. Fošner and N. Peršin, On certain functional equation related to two-sided centralizers, Aeq. Math. 85 (2013), 329 346. (46) A. Fošner and J. Vukman, Some functional equations on standard operator algebras, Acta Math. Hung. 118 (2008), 299 306. (47) M. Fošner and J. Vukman, An equation related to twosided centralizers in prime rings, Rocky Mountain J. Math. 41 (2011), 765 776. (48) O. Gölbaşi and E. Koç, Notes on Jordan (σ, τ) - derivations and Jordan triple (σ, τ) -derivations, Aeq. Math. Aeq. Math. 85 (2013), 581 591. (49) M. Hongan, N.U. Rehman and R.M. Al-Omary On Lie Ideals and Jordan triple derivations in rings, Rend. Sem. Mat. Univ. Padova 125 (2011), 147 156. (50) I. Kosi-Ulbl and J. Vukman, An identity related to derivations of standard operator algebras and semisimple H -algebras, CUBO A Math. J. 12 (2010), 95 102. (51) X.F. Qi, Characterization of centralizers on rings and operator algebras, Acta Math. Sin. 56 (2013), 459 468. (52) X.F. Qi, S.P. Du and J.C. Hou, Two kinds of additive maps on operator algebras, J. Shanxi Normal Univ. Nat. Sci. Ed. 20 (2006), 1 3. (53) X. Qi, S. Du and J. Hou, Characterization of centralizers, Acta Math. Sin., Chin. Ser. 51 (2008), 509 516. (54) X. Qi and J. Hou, Characterizing centralizers and generalized derivations on triangular algebras by acting on zero product, Acta Math. Sin., Eng. Ser. 29 (2013), 1245 1256. 31
32 (55) N. ur Rehman, Jordan triple (α, β) -derivations on semiprime rings with involution, Hacettepe J. Math. Stat. 42 (2013), 641 651. (56) N. Širovnik and J. Vukman, A result concerning twosided centralizers on algebras with involution, Oper. Matrices 7 (2013), 687 693. (57) N. Širovnik and J. Vukman, On derivations of operator algebras with involution, Demonstr. Math. 47 (2014), 784 790. (58) Z. Ullah and M.A. Chaudhry, θ-centralizers of rings with involution, Int. J. Algebra 4 (2010), 843 850. (59) J. Vukman, An equation on operator algebras and semisimple H -algebras, Glasnik Math. 40 (2005), 201 206. (60) J. Vukman, On derivations of algebras with involution, Acta Math. Hung. 112 (2006), 181 186. (61) J. Vukman, On derivations of standard operator algebras and semisimple H -algebras, Studia Sci. Math. Hungar. 44 (2007), 57 63. (62) J. Vukman, Identities related to derivations and centralizers on standard operator algebras, Taiwanese J. Math. 11 (2007), 255 265. (63) J. Vukman, A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11 (2007), 367 370. (64) J. Vukman, On (m, n)-jordan centralizers in rings and algebras, Glasnik Math. 45 (2010), 43 53. (65) J. Vukman, Some remarks on derivations in semiprime rings and standard operator algebras, Glasnik Math. 46 (2011), 43 48. (66) J. Vukman and M. Fošner, A characterization of twosided centralizers on prime rings, Taiwanese J. Math. 11 (2007), 1431 1441. (67) J. Vukman and I. Kosi-Ulbl, Centralisers on rings and algebras, Bull. Austral. Math. Soc. 71 (2005), 225 234. (68) J. Vukman and I. Kosi-Ulbl, A remark on a paper of L. Molnár, Publ. Math. (Debrecen) 67 (2005), 419 421. (69) J. Vukman and I. Kosi-Ulbl, On centralizers of standard operator algebras and semisimple H -algebras, Acta Math. Hung. 110 (2006), 217 223. (70) J. Vukman and I. Kosi-Ulbl, On centralizers of semiprime rings with involution, Studia Sci. Math. Hung. 43 (2006), 61 67. (71) J. Vukman and I. Kosi-Ulbl, On centralizers of semisimple H -algebras, Taiwanese J. Math. 11 (2007), 1063 1074. (72) J. Vukman and I. Kosi-Ulbl, On two-sided centralizers of rings and algebras, CUBO A Math. J. 10 (2008), 211-222.
(73) J. Vukman, I. Kosi-Ulbl and D. Eremita, On certain equations in rings, Bull. Austral. Math. Soc. 71 (2005), 53 60. [12] L. Molnár and B. Zalar, On automatic surjectivity of Jordan homomorphisms, Acta Sci. Math. (Szeged) 61 (1995), 413 424. (74) F. Botelho and J. Jamison, Algebraic and topological reflexivity properties of l p (X) spaces, J. Math. Anal. Appl., 346 (2008), 141-144. [13] L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. (75) R.L. An and. J.C. Hou, A characterization of *- automorphism on B(H), Acta Math. Sin. 26 (2010), 287 294. (76) Z. Bai and S. Du, Maps preserving products XY Y X on von Neumann algebras, J. Math. Anal. Appl. 386 (2012), 103 109. (77) P. Battyányi, On the range of a Jordan *-derivation, Comment. Math. Univ. Carolinae 37 (1996), 659 665. (78) P. Battyányi, Jordan *-derivations with respect to the Jordan-product, Publ. Math. (Debrecen) 48 (1996), 327 338. (79) M. Brešar and M. Fošner, On rings with involution equipped with some new product, Publ. Math. (Debrecen) 57 (2000), 121 134. (80) M.A. Chebotar, Y. Fong and P.H. Lee, On maps preserving zeros of the polynomial xy yx, Linear Algebra Appl. 408 (2005), 230 243. (81) J. Cui and C.K. Li, Maps preserving product XY Y X on factor von Neumann algebras, Linear Algebra Appl. 431 (2009), 833 842. (82) J. Cui, Q. Li, J. Hou and X. Qi, Some unitary similarity invariant sets preservers of skew Lie products, Linear Algebra Appl. 457 (2014), 76 92. (83) J. Cui and C. Park, Maps preserving strong skew Lie product on factor Von Neumann algebras, Acta Math. Sci. (Ser. B Engl. Ed.) 32 (2012), 531 538. (84) L. Dai and F. Lu, Nonlinear maps preserving Jordan *- products, J. Math. Anal. Appl. 409 (2014), 180 188. (85) M. Fošner, Prime rings with involution equipped with some new product, Southeast Asian Bull. Math. 26 (2002), 27 31. (86) L. Gong, X. Qi, J. Shao and F. Zhang, Strong (skew) ξ-lie commutativity preserving maps on algebras, Cogent Mathematics (2015), 2: 1003175. 33
34 (87) D. Huo, B. Zheng, J. Xua and H. Liu, Nonlinear mappings preserving Jordan multiple? product on factor von Neumann algebras, Linear Multilinear Alg. 63 (2015), 1026 1036. (88) C. Li, F. Lu and X. Fang, Nonlinear mappings preserving product XY + Y X on factor von Neumann algebras, Linear Algebra Appl. 438 (2013) 2339-2345. (89) C. Li, F. Lu and X. Fang, Non-linear ξ-jordan *- derivations on von Neumann algebras, Linear Multilinear Alg. 62 (2014), 466 473. (90) X. Qi and J. Hou, Strong skew commutativity preserving maps on von Neumann algebras, J. Math. Anal. Appl. 397 (2012), 362 370. (91) A. Taghavi, When is a subspace of B(X ) ideal?, Southeast Asian Bull. Math. 26 (2002), 153 158. (92) A. Taghavi, V. Darvish, H. Rohi, Additivity of maps preserving products AP ± P A on C -algebras, Math. Slovaca, to appear. (93) A. Taghavi, H. Rohi and V. Darvish, Non-linear *-Jordan derivations on von Neumann algebras, Linear Multilinear Alg., to appear. [14] L. Molnár, Locally inner derivations of standard operator algebras, Math. Bohem. 121 (1996), 1 7. (94) M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Royal Soc. Edinburgh 137 (2007), 9 21. (95) A. Fošner and M. Fošner, On superderivations and local superderivations, Taiwanese J. Math. 11 (2007), 1383 1396. (96) A. Fošner and M. Fošner, On ɛ-derivations and local ɛ- derivations, Acta Math. Sin. 26 (2010), 1555-1566. [15] L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), 1789 1794. (97) O. Hatori, T. Ishii, T. Miura and S. Takahasi, Characterizations and automatic linearity for ring homomorphisms on algebras of functions, in Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 328, American Mathematical Society, 2003, pp. 201 215. (98) T. Miura, A representation of ring homomorphisms on commutative Banach algebras, Scient. Math. Japon. 53 (2001), 515 523. (99) T. Miura, A representation of ring homomorphisms on unital regular commutative Banach algebras, Math. J. Okoyama Univ. 44 (2002), 143 153.
(100) T. Miura and S. Takahasi, Ring homomorphisms on real Banach algebras, Int. J. Math. Math. Sci. 48 (2003), 3025 3030. (101) T. Miura, S.E. Takahasi and N. Niwa Prime ideals and complex ring homomorphisms on a commutative algebra, Publ. Math. (Debrecen) 70 (2006), 453 460. (102) T. Miura, S.E. Takahasi and N. Niwa Ring homomorphisms on commutative regular Banach algebras, Nihonkai Math. J. 19 (2008), 61 74. (103) T. Miura, S.E. Takahasi, N. Niwa and H. Oka, On surjective ring homomorphisms between semi-simple commutative Banach algebras, Publ. Math. (Debrecen), 73 (2008), 119 131. (104) K. Seddighi and Y. Taghavi, Mappings on spaces of continuous functions, Southeast Asian Bull. Math. 24 (2000), 287 295. (105) S.E. Takahasi and O. Hatori, A structure of ring homomorphisms on commutative Banach algebras, Proc. Amer. Math. Soc. 127 (1999), 2283 2288. [16] L. Molnár, Two characterizations of additive *-automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. (106) Z. Bai and J. Hou The additive maps on operator algebras, J. Shanxi Teacher s Univ. Nat. Sci. Ed. 15 (2001), 1 6. (107) Z. Bai and J. Hou, Linear maps and additive maps that preserve operators annihilated by a polynomial, J. Math. Anal. Appl. 271 (2002), 139 154. (108) Z. Bai and J. Hou, Additive maps preserving orthogonality or commuting with. k, Acta Mathematica Sinica 45 (2002), 863 870. (109) M. Burgos, J.J. Garcés and A.M. Peralta, Automatic continuity of biorthogonality preservers between compact C - algebras and von Neumann algebras, J. Math. Anal. Appl. 376 (2011), 221 230. (110) J. Cui and J. Hou, Linear maps preserving indefinite orthogonality on C -algebras, Chinese Ann. Math., Ser. A 25 (2004), 437 444. (111) J. Cui and J. Hou, Linear maps preserving elements annihilated by a polynomial XY Y X, Studia Math. 174 (2006), 183 199. (112) J. Cui, J. Hou and C-G. Park, Indefinite orthogonality preserving additive maps, Arch. Math. 83 (2004), 548 557. (113) M. Radjabalipour, Additive mappings on von Neumann algebras preserving absolute values, Linear Algebra Appl. 368 (2003), 229 241. 35
36 (114) M. Radjabalipour, K. Seddighi and Y. Taghavi, Additive mappings on operator algebras preserving absolute values, Linear Algebra Appl. 327 (2001), 197 206. (115) M. Radjabalipour and Y. Taghavi, Characterisations of *-homomorphisms of B(H) into B(K), Proceedings of the 31st Iranian Mathematics Conference (Tehran, 2000), 275 281, Univ. Tehran, Tehran, 2000. (116) A. Taghavi, Additive mappings on operator algebras preserving square absolute values, Honam Math. J. 23 (2001), 51 57. (117) A. Taghavi, Additive mappings on C -algebras preserving absolute values, Linear Multilinear Algebra 60 (2012), 33-38. (118) A. Taghavi, Additive mappings on C -algebras subpreserving absolute values of products, Journal of Inequalities and Applications 2012, Article ID 161, 6 p., electronic only (2012). (119) A. Turnšek, On operators preserving James orthogonality, Linear Algebra Appl. 407 (2005), 189 195. (120) J. Wu, Additive mappings preserving zero products, Acta Math. Sinica 42 (1999), 1125 1128. (121) F.J. Zhang and G.X. Ji, Additive maps preserving orthogonality on B(H), J. Shaanxi Normal Univ. Nat. Sci. Ed. 33 (2005), 21 25. [17] L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), 137 148. (122) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), 429-475. (123) C. Dryzun and D. Avnir, Chirality measures for vectors, matrices, operators and functions, ChemPhysChem 12 (2011), 197 205. (124) Gy.P. Gehér, An elementary proof for the non-bijective version of Wigner?s theorem, Phys. Lett. A 378 (2014), 2054 2057. (125) Gy.P. Gehér, Maps on real Hilbert spaces preserving the area of parallelograms and a preserver problem on self-adjoint operators, J. Math. Anal. Appl. 422 (2015), 1402 1413. (126) M. Győry, A new proof of Wigner s theorem, Rep. Math. Phys. 54 (2004), 159 167. (127) J. Hamhalter, Quantum Measure Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.
(128) Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012), 243 249. (129) R. Simon, N. Mukunda, S. Chaturvedi and V. Srinivasan Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics, Phys. Lett. A 372 (2008), 6847 6852. [18] L. Molnár, The range of a Jordan *-derivation on an H - algebra, Acta Math. Hung. 72 (1996), 261 267. (130) P. Battyányi, On the range of a Jordan *-derivation, Comment. Math. Univ. Carolinae 37 (1996), 659 665. (131) T.W. Palmer, Banach Algebras and the General Theory of *-Algebras, vol. II., Cambridge University Press, 2001. [19] L. Molnár, The range of a Jordan *-derivation, Math. Japon. 44 (1996), 353 356. (132) P. Battyányi, On the range of a Jordan *-derivation, Comment. Math. Univ. Carolinae 37 (1996), 659 665. (133) P. Battyányi, Jordan *-derivations with respect to the Jordan-product, Publ. Math. (Debrecen) 48 (1996), 327 338. (134) M.A. Chebotar, Y. Fong and P.H. Lee, On maps preserving zeros of the polynomial xy yx, Linear Algebra Appl. 408 (2005), 230 243. (135) A. Taghavi, When is a subspace of B(X ) ideal?, Southeast Asian Bull. Math. 26 (2002), 153 158. [20] C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), 415 421. (136) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), 289 298. (137) A. Ben Ali Essaleh, A.M. Peralta, M.I. Ramírez, Weaklocal derivations and homomorphisms on C*-algebras, Linear Multilinear Alg., to appear. (138) F. Botelho and J. Jamison, Algebraic and topological reflexivity of spaces of Lipschitz functions, Rev. Roumaine Math. Pures Appl. 56 (2011), 105-114. (139) M. Burgos, F.J. Fernandez-Polo, J.J. Garces, A.M. Peralta, 2-local triple homomorphisms on von Neumann algebras and JBW -triples, J. Math. Anal. Appl. 426 (2015), 43 63. (140) M. Burgos, A. Jiménez-Vargas and M. Villegas- Vallecillos, Automorphisms on algebras of operator-valued Lipschitz maps, Publ. Math. (Debrecen) 81 (2012), 127 144. (141) F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004), 19 32. 37
38 (142) M. Győry, On the topological reflexivity of the isometry group of the suspension of B(H), Studia Math. 166 (2005), 287 303. (143) D. Hadwin and J.K. Li, Local derivations and local automorphisms, J. Math. Anal. Appl. 290 (2004), 702 714. (144) K. Jarosz and T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), 449 469. (145) W. Jing and S.J. Lu, Topological reflexivity of the spaces of (α, β)-derivations on operator algebras, Studia Math. 156 (2003), 121 131. (146) W. Jing, S. Lu and G. Han, On topological reflexivity of the spaces of derivations on operator algebras, Appl. Math. J. Chinese Univ. Ser. A 17 (2002), 75 79. (147) S.O. Kim and J.S. Kim, Local automorphisms and derivations on certain C -algebras, Proc. Amer. Math. Soc. 133 (2005), 3303-3307. (148) A.M. Peralta, A note on 2-local representations of C - algebras, Operators and Matrices, to appear. [21] L. Molnár, On rings of differentiable functions, Grazer Math. Ber. 327 (1996), 13 16. (149) J. Araujo, Linear biseparating maps between spaces of vector-valued differentiable functions and automatic continuity, Adv. Math. 187 (2004), 488-520. [22] L. Molnár and P. Šemrl, Local Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 125 (1997), 447 454. (150) J. Zhu and C. Xiong, Generalized derivable maps at zero point on some reflexive operator algebras, Linear Algebra Appl. 397 (2005), 367 379. (151) J. Zhu and C. Xiong, Characterization of generalized Jordan *-left derivations on real nest algebras, Linear Algebra Appl. 404 (2005), 325 344. (152) J. Zhu and C. Xiong, Generalized Jordan *-left derivations on real nest algebras, Acta Math. Sinica 48 (2005), 299 310. [23] L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (153) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), 289 298. (154) F. Botelho and J. Jamison, Algebraic and topological reflexivity of spaces of Lipschitz functions, Rev. Roumaine Math. Pures Appl. 56 (2011), 105-114.
(155) M. Burgos, A. Jiménez-Vargas and M. Villegas- Vallecillos, Automorphisms on algebras of operator-valued Lipschitz maps, Publ. Math. (Debrecen) 81 (2012), 127 144. (156) F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004), 19 32. (157) M.A. Chebotar, W. Ke and P. Lee, Maps preserving zero Jordan products on Hermitian operators, Illinois J. Math. 49 (2005), 445 452. (158) R.J. Fleming and J.E. Jamison, Isometries on Banach spaces: Vector-valued function spaces. Vol. 2. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 138, Boca Raton, 2007. (159) M. Győry, 2-local isometries of C 0 (X), Acta Sci. Math. (Szeged) 67 (2001), 735 746. (160) M. Győry, On the topological reflexivity of the isometry group of the suspension of B(H), Studia Math. 166 (2005), 287 303. (161) K. Jarosz and T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), 449 469. (162) P. Ji and J. Yu, Maps on AF C -algebras, J. Math. (Wuhan) 26 (2006), 53 57. (163) A. Jimenéz-Vargas, A.M. Campoy and M. Villegas- Vallecillos, Algebraic reflexivity of the isometry group of some spaces of Lipschitz functions, J. Math. Anal. Appl. 366 (2010), 195 201. (164) W. Jing and S.J. Lu, Topological reflexivity of the spaces of (α, β)-derivations on operator algebras, Studia Math. 156 (2003), 121 131. (165) W. Jing, S. Lu and G. Han, On topological reflexivity of the spaces of derivations on operator algebras, Appl. Math. J. Chinese Univ. Ser. A 17 (2002), 75 79. (166) S.O. Kim, Automorphisms of Hilbert space effect algebras, Linear Algebra Appl. 402 (2005), 193 198. (167) Q. Meng, Z. Xu, Automorphisms and local automorphisms of positive cones, J. Qufu Norm. Univ. Nat. Sci. Ed. 1 (2010), 41 43. (168) F.F. Pan, The characterization of the local linear mappings on the subalgebra of matrix algebra M 3 (C), J. Xi an Univ. Post and Telecomm., 11 (2006), 121 124. (169) T.S.S.R.K. Rao, Some generalizations of Kadison s theorem: A survey, Extracta Math. 19 (2004), 319 334. (170) T.S.S.R.K. Rao, Local isometries of L(X, C(K)), Proc. Amer. Math. Soc. 133 (2005), 2729-2732. 39
40 (171) J.H. Zhang, S. Feng and R.H. Wu, Local 2-cocycles of nest subalgebras of factor von Neumann algebras, Linear Algebra Appl. 416 (2006), 908-916. (172) J.H. Zhang, G.X. Ji and H.X. Cao, Local derivations of nest subalgebras of von Neumann algebras, Linear Algebra Appl. 392 (2004), 61 69. (173) J.H. Zhang, A.L. Yang and F.F. Pan, Local automorphisms on nest subalgebras of factor von Neumann algebras, Linear Algebra Appl. 402 (2005), 335 344. [24] L. Molnár and B. Zalar, Three-variable *-identities and homomorphisms of Schatten classes, Publ. Math. (Debrecen) 50 (1997), 121 133. (174) W. Timmermann, Remarks on automorphism and derivation pairs in ternary rings of unbounded operators, Arch. Math. 74 (2000), 379 384. [25] L. Molnár, Jordan *-derivation pairs on a complex *-algebra, Aequationes Math. 54 (1997), 44 55. (175) D. Bakič and B. Guljaš, Wigner s theorem in a class of Hilbert C -modules, J. Math. Phys. 44 (2003), 2186 2191. (176) P. Battyányi, On the range of a Jordan *-derivation, Comment. Math. Univ. Carolinae 37 (1996), 659 665. (177) P. Battyányi, Jordan *-derivations with respect to the Jordan-product, Publ. Math. (Debrecen) 48 (1996), 327 338. (178) A. Bodaghi, S.Y. Jang and C. Park, On the stability of Jordan *-derivation pairs, Results. Math. 64 (2013), 289 303. (179) D. Ilišević, Equations arising from Jordan *-derivation pairs, Aequationes Math. 67 (2004), 236 240. (180) D. Ilišević, Quadratic functionals on modules over complex Banach *-algebras with an approximate identity, Studia Math. 171 (2005), 103 123. (181) D. Ilišević, Quadratic functionals on modules over alternative *-rings, Studia Sci. Math. Hung. 42 (2005), 459 469. (182) Abdul-Rahman H. Majeed and A.H. Mahmood, Dependent elements of biadditive mappings on semiprime rings, Journal of Al-Nahrain University 18 (2015),141 148. (183) D. Yang, Jordan *-derivation pairs on standard operator algebras and related results, Colloq. Math. 102 (2005), 137 145. (184) J. Vukman, A note on Jordan *-derivations in semiprime rings with involution, Int. Math. Forum 1 (2006), 617 622. [26] L. Molnár and P. Šemrl, Order isomorphisms and triple isomorphisms of operator ideals and their reflexivity, Arch. Math. 69 (1997), 497 506.
(185) A.T. Jelodar, M.S. Moslehian and A. Sanami, A ternary characterization of automorphisms of B(H), Nihonkai Math. J. 21 (2010), 1 9. (186) D. Ilisevič, Generalized bicircular projections via the operator equation αx 2 AY 2 + βxay + A = 0, Linear Algebra Appl. 429 (2008), 2025 2029. (187) W. Timmermann, Remarks on automorphism and derivation pairs in ternary rings of unbounded operators, Arch. Math. 74 (2000), 379 384. [27] L. Molnár, A proper standard C -algebra whose automorphism and isometry groups are topologically reflexive, Publ. Math. (Debrecen) 52 (1998), 563 574. (188) M. Győry, On the topological reflexivity of the isometry group of the suspension of B(H), Studia Math. 166 (2005), 287 303. [28] L. Molnár, Characterization of additive *-homomorphisms and Jordan *-homomorphisms on operator ideals, Aequationes Math. 55 (1998), 259 272. (189) W. Timmermann, Zero product preservers and orthogonality preservers in algebras of unbounded operators, Math. Pannon. 16 (2005), 165-172. [29] M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *-semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), 253 266. (190) D. Ilisevič, Generalized bicircular projections via the operator equation αx 2 AY 2 + βxay + A = 0, Linear Algebra Appl. 429 (2008), 2025 2029. (191) M. Radjabalipour, Additive mappings on von Neumann algebras preserving absolute values, Linear Algebra Appl. 368 (2003), 229 241. (192) M. Marciniak, On extremal positive maps acting between type I factors, M. Bożejko (ed.) et al., Noncommutative harmonic analysis with applications to probability. II: Banach Center Publ. 89 (2010), 201 221. (193) W. Timmermann, Zero product preservers and orthogonality preservers in algebras of unbounded operators, Math. Pannon. 16 (2005), 165-172. (194) A. Turnšek, On operators preserving James orthogonality, Linear Algebra Appl. 407 (2005), 189 195. (195) L. Zhao and J. Hou, Additive Maps Preserving Indefinite Semi-Orthogonality, J. Systems Sci. Math. Sci. 27 (2007), 697-702. 41
42 [30] M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. (196) A. Aizpuru and F. Rambla, There s something about the diameter, J. Math. Anal. Appl. 330 (2007), 949 962. (197) A. Aizpuru and F. Rambla, Diameter preserving linear bijections and C 0 (L) spaces, Bull. Belgian Math. Soc. 17 (2010), 377 383. (198) A. Aizpuru and M. Tamayo, On diameter preserving linear maps, J. Korean Math. Soc. 45 (2008), 197 204. (199) A. Aizpuru and M. Tamayo, Linear bijections which preserve the diameter of vector-valued maps, Linear Algebra Appl. 424 (2007), 371 377. (200) B.A. Barnes and A.K. Roy, Diameter preserving maps on various classes of function spaces, Studia Math. 153 (2002), 127 145. (201) F. Cabello Sánchez, Diameter preserving linear maps and isometries, Arch. Math. 73 (1999), 373 379. (202) F. Cabello Sánchez, Diameter preserving linear maps and isometries II, Proc. Indian Acad. Sci. 110 (2000), 205 211. (203) F. Cabello Sánchez, Convex transitive norms on spaces of continuous functions, Bull. London. Math. Soc. 37 (2005), 107 118. (204) A. Cabello Sánchez and F. Cabello Sánchez, Maximal norms on Banach spaces of continous functions, Math. Proc. Camb. Philos. Soc. 129 (2000), 325 330. (205) R.J. Fleming and J.E. Jamison, Isometries on Banach spaces: Vector-valued function spaces. Vol. 2. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 138, Boca Raton, 2007. (206) J.J. Font and M. Hosseini, Diameter preserving mappings between function algebras, Taiwanese J. Math. 15 (2011), 1487 1495. (207) J.J. Font and M. Sanchis, A characterization of locally compact spaces with homeomorphic one-point compactifications, Topology Appl., 121 (2002), 91 104. (208) J.J. Font and M. Sanchis, Extreme points and the diameter norm, Rocky Mountain J. Math. 34 (2004), 1325 1332. (209) F. González and V.V. Uspenskij, On homomorphisms of groups of integer-valued functions, Extracta Math. 14 (1999), 19 29. (210) J. Hamhalter, Linear maps preserving maximal deviation and the Jordan structure of quantum systems, J. Math. Phys. 53 (2012), 122208.
(211) A. Jiménez-Vargas, Linear bijections preserving the Hölder seminorm, Proc. Amer. Math. Soc. 135 (2007), 2539 2547. (212) A. Jiménez-Vargas and M.A. Navarro, Hölder seminorm preserving linear bijections and isometries, Proc. Indian Acad. Sci. (Math. Sci.) 119 (2009), 53-62. (213) J.C. Navarro Pascual and M.G. Sanchez Lirola, Diameter, extreme points and topology, Studia Math. 191 (2009), 203 209. (214) T.S.S.R.K. Rao and A.K. Roy, Diameter preserving linear bijections of functions spaces, J. Austral. Math. Soc. 70 (2001), 323 335. [31] L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), 568 586. (215) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), 289 298. (216) M. Burgos, A. Jiménez-Vargas and M. Villegas- Vallecillos, Automorphisms on algebras of operator-valued Lipschitz maps, Publ. Math. (Debrecen) 81 (2012), 127 144. (217) F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004), 19 32. (218) F. Cabello Sánchez, Local isometries on spaces of continuous functions, Math. Z. 251 (2005), 735 749. (219) F. Cabello Sánchez, Automorphisms of algebras of smooth functions and equivalent functions, Differ. Geom. Appl. 30 (2012), 216-221. (220) M.A. Chebotar, W.F. Ke and P.H. Lee, Maps characterized by action on zero products, Pacific J. Math. 216 (2004), 217 228. (221) M.A. Chebotar, W.F. Ke, P.H. Lee and L.S. Shiao, On maps preserving certain algebraic properties, Canad. Math. Bull. 48 (2005), 355 369. (222) K. Jarosz and T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), 449 469. (223) W. Jing and S.J. Lu, Topological reflexivity of the spaces of (α, β)-derivations on operator algebras, Studia Math. 156 (2003), 121 131. (224) J.H. Zhang, A.L. Yang and F.F. Pan, Local automorphisms on nest subalgebras of factor von Neumann algebras, Linear Algebra Appl. 402 (2005), 335 344. 43
44 [32] L. Molnár, The automorphism and isometry groups of l (N, B(H)) are topologically reflexive, Acta Sci. Math. (Szeged) 64 (1998), 671 680. (225) N. Boudi and M. Mbekhta, Additive maps preserving strongly generalized inverses, J. Operator Theory 64 (2010), 117-130. (226) F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004), 19 32. (227) R. El Harti and M Mabrouk, Maps compressing and expanding the numerical range on C -algebras, Linear Multilinear Alg., to appear. [33] V. Mascioni and L. Molnár, Linear maps on factors which preserve the extreme points of the unit ball, Canad. Math. Bull. 41 (1998), 434 441. (228) J. Cui and J. Hou, A characterization of indefiniteunitary invariant linear maps and relative results, Northeast. Math. J. 22(2006), 89 98. (229) D. Ilisevič, Generalized bicircular projections via the operator equation αx 2 AY 2 + βxay + A = 0, Linear Algebra Appl. 429 (2008), 2025 2029. (230) T.S.S.R.K. Rao, Nice surjections on spaces of operators, Proc. Indian Acad. Sci. (Math. Sci.) 116 (2006), 401 409. [34] L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. (231) Z. Bai, J. Hou and S. Du, Additive maps preserving rankone operators on nest algebras, Linear and Multilinear Algebra 58 (2010), 269 283. (232) K.I. Beidar, M. Brešar, M.A. Chebotar, Jordan isomorphisms of triangular matrix algebras over a connected commutative ring, Linear Algebra Appl. 312 (2000), 197 201. (233) K.I. Beidar, M. Brešar and M.A. Chebotar, Functional identities on upper triangular matrix algebras, J. Math. Sci. 102 (2000), 4557 4565. (234) D. Benkovič, Jordan derivations and antiderivations on triangular matrices, Linear Algebra Appl. 397 (2005), 235 244. (235) C. Boboc, S. Dăscălescu and L. van Wyk, Jordan isomorphisms of 2-torsionfree triangular rings, Linear and Multilinear Alg., to appear. (236) W.S. Cheung and C.K. Li, Linear operators preserving generalized numerical ranges and radii on certain triangular algebras of matrices, Canad. Math. Bull. 44 (2001), 270 281.
(237) W.L. Chooi, Rank-one non-increasing additive maps between block triangular matrix algebras, Linear and Multilinear Algebra 58 (2010), 715 740. (238) W.L. Chooi and M.H. Lim, Rank-one nonincreasing mappings on triangular matrices and some related preserver problems, Linear Multilinear Alg. 49 (2001), 305 336. (239) W.L. Chooi and M.H. Lim, Coherence invariant mappings on block triangular matrix spaces, Linear Algebra Appl. 346 (2002), 199 238. (240) W.L. Chooi and M.H. Lim, Some linear preserver problems on block triangular matrix algebras, Linear Algebra Appl. 370 (2003), 25 39. (241) W.L. Chooi and M.H. Lim, Additive rank-one preserver on block triangular matrix spaces, Linear Algebra Appl. 416 (2006), 588-607. (242) J. Cui and J. Hou, Linear maps on von Neumann algebras preserving zero products or tr-rank, Bull. Austral. Math. Soc. 65 (2002), 79 91. (243) J. Cui and J. Hou, Linear maps preserving idempotence on nest algebras, Acta Math. Sinica 20 (2004), 807 820. (244) J. Cui, J. Hou and B. Li, Linear preservers on upper triangular operator matrix algebras, Linear Algebra Appl. 336 (2001), 29 50. (245) S. Dăscălescu, S. Preduţ, L. van Wyk, Jordan isomorphisms of generalized structural matrix rings, Linear Multilinear Alg. 61 (2013), 369 376. (246) Y. Du and Y. Wang, Additivity of Jordan maps on triangular algebras, Linear Multiliear Alg. 60 (2012), 933 940. (247) Y. Du and Y. Wang, Jordan homomorphisms of upper triangular matrix rings over a prime ring, Linear Algebra Appl. 458 (2014), 197 206. (248) A. Fošner, Order preserving maps on the poset of upper triangular idempotent matrices, Linear Algebra Appl. 403 (2005), 248 262. (249) A. Fošner, Automorphisms of the poset of upper triangular idempotent matrices, Linear Multilinear Algebra 53 (2005), 27 44. (250) J. Hou and J. Cui, Rank-1 preserving linear maps on nest algebras, Linear Algebra Appl. 369 (2003), 263 277. (251) J. Hou and J. Cui, Completely rank nonincreasing linear maps on nest algebras, Proc. Amer. Math. Soc. 132 (2004), 1419 1428. (252) C.K. Liu and W.Y. Tsai, Jordan isomorphisms of upper triangular matrix rings, Linear Algebra Appl. 426 (2007), 143 148. 45
46 (253) T. Petek, Spectrum and commutativity preserving mappings on triangular matrices, Linear Algebra Appl. 357 (2002), 107 122. (254) J. Qi, G. Ji, Linear maps preserving idempotency of products of matrices on upper triangular matrix algebras, Commun. Math. Res. 25 (2009), 253 264. (255) M. Radjabalipour, Additive mappings on von Neumann algebras preserving absolute values, Linear Algebra Appl. 368 (2003), 229 241. (256) R. Slowik, Maps on infinite triangular matrices preserving idempotents, Linear Multilinear Alg. 62 (2014), 938 964. (257) R. Slowik, Linear minimal rank preservers on infinite triangular matrices, Kyushu J. Math. 69 (2015), 63 68. (258) X.M. Tang, C.G. Cao and X. Zhang, Modular automorphisms preserving idempotence and Jordan isomorphisms of triangular matrices over commutative rings, Linear Algebra Appl. 338 (2001), 145 152. (259) J.L. Xu, C.G. Cao and X.M. Tang Linear preservers of idempotence on triangular matrix spaces over any field, Internat. Math. Forum 2 (2007), 2305 2319. (260) A. Yang, Jordan isomorphisms on nest subalgebras, Advances in Mathematical Physics, Volume 2015, Article ID 864792, 6 pages. (261) A.L. Yang and J.H. Zhang, Jordan isomorphisms on nest subalgebras of factor von Neumann algebras, Acta Math. Sinica 51 (2008), 219 224. (262) Y. Wang and Y. Wang, Jordan homomorphisms of upper triangular matrix rings, Linear Algebra Appl. 439 (2013), 4063 4069. (263) T.L. Wong, Jordan isomorphisms of triangular rings, Proc. Amer. Math. Soc. 133 (2005), 3381 3388. (264) X. Zhang, X.M. Tang and C.G. Cao, Preserver Problems on Spaces of Matrices, Science Press, Beijing, 2007. (265) J.H. Zhang, A.L. Yang and F.F. Pan, Linear maps preserving zero products on nest subalgebras of von Neumann algebras, Linear Algebra Appl. 412 (2006), 348 361. (266) X.H. Zhang and J.H. Zhang, Characterizations of Jordan isomorphisms of nest algebras, Acta Math. Sin. 56 (2013), 553 560. [35] L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. (267) D. Bakič and B. Guljaš, Wigner s theorem in Hilbert C - modules over C -algebras of compact operators, Proc. Amer. Math. Soc. 130 (2002), 2343 2349.
(268) D. Bakič and B. Guljaš, Wigner s theorem in a class of Hilbert C -modules, J. Math. Phys. 44 (2003), 2186 2191. (269) A. Bonami, G. Garrigos and P. Jaming, Discrete radar ambiguity problems, Appl. Comput. Harmon. Anal. 23 (2007), 388-414. (270) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), 429-475. (271) H. Du and H.X. Cao, Some remarks on Wigner s theorem, Fangzhi Gaoxiao Jichukexue Xuebao 22 (2009), 346 348. (272) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), 1377 1390. (273) Gy.P. Gehér, An elementary proof for the non-bijective version of Wigner?s theorem, Phys. Lett. A 378 (2014), 2054 2057. (274) Gy.P. Gehér, Maps on real Hilbert spaces preserving the area of parallelograms and a preserver problem on self-adjoint operators, J. Math. Anal. Appl. 422 (2015), 1402 1413. (275) M. Győry, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving orthogonality, Publ. Math. (Debrecen) 65 (2004), 233 242. (276) M. Győry, A new proof of Wigner s theorem, Rep. Math. Phys. 54 (2004), 159 167. (277) D. Ilišević and A. Turněk, A quantitative version of Herstein??s theorem for Jordan *-isomorphisms, Linear Multilinear Alg., to appear. (278) D.L.W. Kuo, M.C. Tsai, N.C. Wong and J. Zhang, Maps preserving Schatten p-norms of convex combinations, Abstr. Appl. Anal. (2014), Article ID 520795, 5 pp. (279) J. Li, Applications of Wigner s theorem to positive maps preserving norm of operator products, J. Math. Study 37 (2004), 11 16. (280) J. Li, Applications of Wigner s theorem to positive maps preserving norm of operator products, Front. Math. China 1 (2006), 582 588. (281) D. Ilisevič and A. Turnšek, Stability of the Wigner equation - a singular case, J. Math. Anal. Appl. 429 (2015), 273 287. (282) Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012), 243 249. (283) P. Šemrl, Maps on idempotents, Studia Math. 169 (2005), 21 44. 47
48 (284) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), 289 301. (285) R. Simon, N. Mukunda, S. Chaturvedi and V. Srinivasan Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics, Phys. Lett. A 372 (2008), 6847 6852. (286) A. Turnšek, A variant of Wigner?s functional equation, Aequat. Math., to appear. [36] L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), 311-321. (287) J. Cui and J. Hou, Linear maps on von Neumann algebras preserving zero products or tr-rank, Bull. Austral. Math. Soc. 65 (2002), 79 91. (288) J. Cui and J. Hou, Linear maps preserving ideals of C - algebras, Proc. Amer. Math. Soc. 131 (2003), 3441 3446. (289) W. Jing, P. Li and S. Lu, Additive mappings that preserve rank one nilpotent operators, Linear Algebra Appl. 367 (2003), 213 224. (290) S.O. Kim, Linear maps preserving ideals of C -algebras, Proc. Amer. Math. Soc. 129 (2001), 1665 1668. (291) C.W. Leung, C.W. Tsai and N.C. Wong, Linear disjointness preservers of W -algebras, Math. Z. 270 (2012), 699 708. (292) C. Yan, G. Zhang and C. Gao, The form of finite rank idempotent operators of B(H) and its application, Natur. Sci. J. Harbin Normal Univ. 22 (2006), 34 36. (293) H. You, S. Liu and G. Zhang, Rank one preserving R-linear maps on spaces of self-adjoint operators on complex Hilbert spaces, Linear Algebra Appl. 416 (2006) 568-579. (294) G. Zhang and S. Liu, Rank one preserving linear maps on spaces of symmetric operators, J. Heilongjiang Univ. Natur. Sci. 23 (2006), 235 238. (295) X. Zhang, H. Cui and J. Hou, Jordan semi-triple mappings preserving rank and minimal rank, Proceedings of the Third International Workshop on Matrix Analysis and Applications, vol 3., World Academic Union, 273 276, 2009. (296) X. Zhang, X.M. Tang and C.G. Cao, Preserver Problems on Spaces of Matrices, Science Press, Beijing, 2007. [37] L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (297) H. Al-Halees and R.J. Fleming, On 2-local isometries on continuous vector-valued function spaces, J. Math. Anal. Appl. 354 (2009), 70-77.
(298) F. Cabello Sánchez, Automorphisms of algebras of smooth functions and equivalent functions, Differ. Geom. Appl. 30 (2012), 216-221. (299) F. Botelho and J. Jamison, Algebraic and topological reflexivity properties of l p (X) spaces, J. Math. Anal. Appl., 346 (2008), 141-144. (300) F. Botelho and J. Jamison, Algebraic reflexivity of C(X, E) and Cambern s theorem, Studia Math. 186 (2008), 295-302. (301) F. Botelho and J. Jamison, Topological reflexivity of spaces of analytic functions, Acta Sci. Math. (Szeged) 75 (2009), 91 102. (302) F. Botelho and J. Jamison, Algebraic reflexivity of sets of bounded operators on vector valued Lipschitz functions, Linear Algebra Appl. 432 (2010), 3337-3342. (303) F. Botelho and J. Jamison, Homomorphisms on algebras of Lipschitz functions, Studia Math. 199 (2010), 95 106. (304) F. Botelho and J. Jamison, Algebraic reflexivity of tensor product spaces, Houston J. Math. 36 (2010), 1133 1137. (305) F. Botelho and J. Jamison, Algebraic and topological reflexivity of spaces of Lipschitz functions, Rev. Roumaine Math. Pures Appl. 56 (2011), 105-114. (306) F. Botelho and J. Jamison, Homomorphisms of noncommutative Banach *-algebrs of Lipschitz functions, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp. 73 78. (307) F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004), 19 32. (308) F. Cabello Sánchez, Local isometries on spaces of continuous functions, Math. Z. 251 (2005), 735 749. (309) R.J. Fleming and J.E. Jamison, Isometries on Banach spaces: Vector-valued function spaces. Vol. 2. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 138, Boca Raton, 2007. (310) M. Győry, 2-local isometries of C 0 (X), Acta Sci. Math. (Szeged) 67 (2001), 735 746. (311) M. Győry, On the topological reflexivity of the isometry group of the suspension of B(H), Studia Math. 166 (2005), 287 303. (312) O. Hatori, T. Miura, H. Oka and H. Takagi, 2-local isometries and 2-local automorphisms on uniform algebras, Int. Math. Forum 2 (2007), 2491 2502. (313) A. Jimenéz-Vargas, A.M. Campoy and M. Villegas- Vallecillos, Algebraic reflexivity of the isometry group of some 49
50 spaces of Lipschitz functions, J. Math. Anal. Appl. 366 (2010), 195 201. (314) P. Ji and J. Yu, Maps on AF C -algebras, J. Math. (Wuhan) 26 (2006), 53 57. (315) T.S.S.R.K. Rao, Some generalizations of Kadison s theorem: A survey, Extracta Math. 19 (2004), 319 334. (316) T.S.S.R.K. Rao, Local isometries of L(X, C(K)), Proc. Amer. Math. Soc. 133 (2005), 2729-2732. (317) T.S.S.R.K. Rao, A note on the algebraic reflexivity of the group of surjective isometries of K(C(K)), Expo. Math. 26 (2008), 79-83. [38] L. Molnár, A generalization of Wigner s unitary-antiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. (318) D. Bakič and B. Guljaš, Hilbert C -modules over C - algebras of compact operators, Acta Sci. Math. (Szeged) 68 (2002), 249 269. (319) D. Bakič and B. Guljaš, Wigner s theorem in Hilbert C - modules over C -algebras of compact operators, Proc. Amer. Math. Soc. 130 (2002), 2343 2349. (320) D. Bakič and B. Guljaš, Wigner s theorem in a class of Hilbert C -modules, J. Math. Phys. 44 (2003), 2186 2191. (321) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), 429-475. (322) J. Chmieliński, D. Ilišević, M.S. Moslehian and G.H. Sadeghi, Perturbation of the Wigner equation in inner product C -modules, J. Math. Phys. 49 (2008), 033519. (323) H. Du and H.X. Cao, Some remarks on Wigner s theorem, Fangzhi Gaoxiao Jichukexue Xuebao 22 (2009), 346 348. (324) C. Dryzun and D. Avnir, Chirality measures for vectors, matrices, operators and functions, ChemPhysChem 12 (2011), 197 205. (325) M. Győry, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving orthogonality, Publ. Math. (Debrecen) 65 (2004), 233 242. (326) J. Hamhalter, Quantum Measure Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003. (327) K. He and J. Hou, A generalization of Wigners theorem, Acta Math. Sci. (Ser. A) 31 (2011), 1633-1636. (328) K. He and J. Hou, A generalization of Uhlhorn s version of Wigners theorem, J. Math. Study 45 (2012), 107 114.
(329) J. Li, Applications of Wigner s theorem to positive maps preserving norm of operator products, J. Math. Study 37 (2004), 11 16. (330) J. Li, Applications of Wigner s theorem to positive maps preserving norm of operator products, Front. Math. China 1 (2006), 582 588. (331) Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012), 243 249. (332) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), 289 301. (333) R. Simon, N. Mukunda, S. Chaturvedi and V. Srinivasan Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics, Phys. Lett. A 372 (2008), 6847 6852. (334) W. Zhang and J. Hou, Maps preserving numerical radius or cross norms of products on 2 2 matrix algebras, Journal of North University of China (Natural Science Edition) 30 (2009), 506 511. [39] L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), 1 13. (335) G. An and J. Hou, Characterizations of isomorphisms by multiplicative maps on operator algebras, Northeast. Math. J. 17 (2001), 438 448. (336) G. An and J. Hou, Rank-preserving multiplicative maps on B(X), Linear Algebra Appl. 342 (2002), 59 78. (337) G. An and J. Hou, Multiplicative maps on matrix algebras, J. Shanxi Teacher s Univ. Nat. Sci. Ed. 16 (2002), 1 4. (338) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), 289 298. (339) F. Botelho and J. Jamison, Homomorphisms on algebras of Lipschitz functions, Studia Math. 199 (2010), 95 106. (340) W.S. Cheung, S. Fallat and C.K. Li, Multiplicative preservers on semigroups of matrices, Linear Algebra Appl. 355 (2002), 173 186. (341) F.G. Hu, Multiplicative maps on matrices preserving the Frobenius norm, J. Hubei Inst. National. Nat. Sci. 25 (2007), 268 271. (342) L. Huang, L. Chen and F. Lu, Characterizations of automorphisms of operator algebras on Banach spaces, J. Math. Anal. Appl. 430 (2015), 144 151. (343) F. Lu, Multiplicative mappings of operator algebras, Linear Algebra Appl. 347 (2002), 283 291. (344) F. Lu and J. Xie, Multiplicative mappings of rings, Acta Math. Sinica 22 (2006), 1017 1020. 51
52 (345) L.W. Marcoux, H. Radjavi and A.R. Sourour, Multiplicative maps that are close to an automorphism on algebras of linear transformations, Studia Math. 214 (2013), 279 296. [40] L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), 727 736. (346) G. An and J. Hou, Characterizations of isomorphisms by multiplicative maps on operator algebras, Northeast. Math. J. 17 (2001), 438 448. (347) G. An and J. Hou, Rank-preserving multiplicative maps on B(X), Linear Algebra Appl. 342 (2002), 59 78. (348) G. An and J. Hou, Multiplicative maps on matrix algebras, J. Shanxi Teacher s Univ. Nat. Sci. Ed. 16 (2002), 1 4. (349) F.G. Hu, Multiplicative maps on matrices preserving the Frobenius norm, J. Hubei Inst. National. Nat. Sci. 25 (2007), 268 271. (350) F. Lu, Multiplicative mappings of operator algebras, Linear Algebra Appl. 347 (2002), 283 291. (351) F. Lu and J. Xie, Multiplicative mappings of rings, Acta Math. Sinica 22 (2006), 1017 1020. [41] L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. (352) H. Al-Halees and R.J. Fleming, On 2-local isometries on continuous vector-valued function spaces, J. Math. Anal. Appl. 354 (2009), 70-77. (353) F. Botelho and J. Jamison, Algebraic and topological reflexivity of spaces of Lipschitz functions, Rev. Roumaine Math. Pures Appl. 56 (2011), 105-114. (354) M. Burgos, A. Jiménez-Vargas and M. Villegas- Vallecillos, Automorphisms on algebras of operator-valued Lipschitz maps, Publ. Math. (Debrecen) 81 (2012), 127 144. (355) F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004), 19 32. (356) M.A. Chebotar, W.F. Ke and P.H. Lee, Maps characterized by action on zero products, Pacific J. Math. 216 (2004), 217 228. (357) S. Dutta and T.S.S.R.K. Rao, Algebraic reflexivity of some subsets of the isometry group, Linear Algebra Appl. 429 (2008), 1522 1527. (358) M. Győry, On the topological reflexivity of the isometry group of the suspension of B(H), Studia Math. 166 (2005), 287 303.
(359) K. Jarosz and T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), 449 469. (360) J.H. Liu, N.C. Wong, Local automorphisms of operator algebras, Taiwanese J. Math. 11 (2007), 611 619. (361) Y.F. Lin and T.L. Wong, A note on 2-local maps, Proc. Edinburgh Math. Soc. 49 (2006), 701 708. (362) T.S.S.R.K. Rao, Local surjective isometries of function spaces, Expositiones Math. 18 (2000), 285 296. (363) T.S.S.R.K. Rao, Some generalizations of Kadison s theorem: A survey, Extracta Math. 19 (2004), 319 334. (364) T.S.S.R.K. Rao, Local isometries of L(X, C(K)), Proc. Amer. Math. Soc. 133 (2005), 2729-2732. (365) J. Zhu and C. Xiong, Generalized derivable maps at zero point on some reflexive operator algebras, Linear Algebra Appl. 397 (2005), 367 379. (366) J. Zhu and C. Xiong, Characterization of generalized Jordan *-left derivations on real nest algebras, Linear Algebra Appl. 404 (2005), 325 344. (367) J. Zhu and C. Xiong, Generalized Jordan *-left derivations on real nest algebras, Acta Math. Sinica 48 (2005), 299 310. [42] L. Molnár, Automatic surjectivity of ring homomorphisms on H -algebras and algebraic differences among some group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 125 134. (368) O. Hatori, T. Ishii, T. Miura and S. Takahasi, Characterizations and automatic linearity for ring homomorphisms on algebras of functions, in Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 328, American Mathematical Society, 2003, pp. 201 215. (369) T. Miura, S.E. Takahasi and N. Niwa Ring homomorphisms on commutative regular Banach algebras, Nihonkai Math. J. 19 (2008), 61 74. [43] L. Molnár, Reflexivity of the automorphism and isometry groups of C -algebras in BDF theory, Arch. Math. 74 (2000), 120 128. (370) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), 289 298. (371) M. Burgos, A. Jiménez-Vargas and M. Villegas- Vallecillos, Automorphisms on algebras of operator-valued Lipschitz maps, Publ. Math. (Debrecen) 81 (2012), 127 144. (372) F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004), 19 32. 53
54 (373) M. Győry, On the topological reflexivity of the isometry group of the suspension of B(H), Studia Math. 166 (2005), 287 303. (374) K. Jarosz and T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), 449 469. [44] L. Molnár, Generalization of Wigner s unitary-antiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), 785 791. (375) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), 429-475. (376) M. Győry, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving orthogonality, Publ. Math. (Debrecen) 65 (2004), 233 242. (377) C.W Leung, C.K. Ng and N.C. Wong, Linear orthogonality preservers of Hilbert C -modules, J. Operator Theory 71 (2014), 571 584. (378) Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012), 243 249. (379) L. Rodman and P. Šemrl, Orthogonality preserving bijective maps on real and complex projective spaces, Linear and Multilinear Alg. 54 (2006), 355 367. (380) L. Rodman and P. Šemrl, Orthogonality preserving bijective maps on finite dimensional projective spaces over division rings, Linear and Multilinear Alg. 56 (2008), 647-664. (381) L. Rodman and P. Šemrl, Preservers of generalized orthogonality on finite dimensional real vector and projective spaces, Linear and Multilinear Alg. 57 (2009), 839 858. (382) P. Šemrl, Generalized symmetry transformations on quaternionic indefinite inner product spaces: An extension of quaternionic version of Wigner s theorem, Commun. Math. Phys. 242 (2003), 579 584. (383) P. Šemrl, Applying projective geometry to transformations on rank one idempotents, J. Funct. Anal. 210 (2004), 248 257. (384) P. Šemrl, Maps on idempotents, Studia Math. 169 (2005), 21 44. (385) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), 364 393. (386) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), 289 301.
(387) R. Simon, N. Mukunda, S. Chaturvedi and V. Srinivasan Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics, Phys. Lett. A 372 (2008), 6847 6852. [45] L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), 231 238. (388) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), 289 298. (389) M. Burgos, F.J. Fernandez-Polo, J.J. Garces, A.M. Peralta, 2-local triple homomorphisms on von Neumann algebras and JBW -triples, J. Math. Anal. Appl. 426 (2015), 43 63. (390) M.A. Chebotar, W.F. Ke and P.H. Lee, Maps characterized by action on zero products, Pacific J. Math. 216 (2004), 217 228. (391) M. Győry, 2-local isometries of C 0 (X), Acta Sci. Math. (Szeged) 67 (2001), 735 746. (392) A. Jiménez Vargas and M. Villegas Vallecillos, 2-local isometries on spaces of Lipschitz functions, Canad. Math. Bull. 54 (2011), 680 692. (393) Y.F. Lin and T.L. Wong, A note on 2-local maps, Proc. Edinburgh Math. Soc. 49 (2006), 701 708. (394) A.M. Peralta, A note on 2-local representations of C - algebras, Operators and Matrices, to appear. (395) F. Pop, On local representations of von Neumann algebras, Proc. Amer. Math. Soc. 132 (2004), 3569 3576. [46] L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. (396) Z. Bai and S. Du, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A: Math. Theor. 43 (2010), 165210. (397) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), 289 298. (398) S. Gudder and R. Greechie, Sequential products on effect algebras, Rep. Math. Phys. 49 (2002), 87 111. (399) K. He, J. Hou and C.K. Li, A geometric characterization of invertible quantum measurement maps, J. Funct. Anal. 264 (2013), 464 478. (400) K. He, F. Sun and J. Hou, Separability of sequential isomorphisms on quantum effects in multipartite systems, J. Phys. A: Math. Theor. 48 (2015), 075302 (9pp). 55
56 (401) J. Hou, K. He and X. Qi, Characterizing sequential isomorphisms on Hilbert-space effect algebras, J. Phys. A: Math. Theor. 43 (2010), 315206. (402) S.O. Kim, Automorphisms of Hilbert space effect algebras, Linear Algebra Appl. 402 (2005), 193 198. (403) J. Marovt, Affine bijections of C(X, I), Studia Math. 173 (2006), 295 309. (404) J. Marovt and T. Petek, Automorphisms of Hilbert space effect algebras equipped with Jordan triple product, the twodimensional case, Publ. Math. (Debrecen) 66 (2005), 245-250. (405) J. Marovt, Order preserving bijections of C + (X), Taiwanese J. Math. 14 (2010), 667 673. (406) Q. Meng, Z. Xu, Automorphisms and local automorphisms of positive cones, J. Qufu Norm. Univ. Nat. Sci. Ed. 1 (2010), 41 43. (407) F. Qu, A class of bijective maps preserving *- multiplicativity on B(H), J. Baoji College Arts Sci. Nat. Sci. 29 (2009), 13 15. (408) P. Šemrl Symmetries on bounded observables - a unified approach based on adjacency preserving maps, Integral Equations Operator Theory 72 (2012), 7-66. (409) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), 417 436. (410) Q. Yuan and K. He, Generalized Jordan semitriple maps on Hilbert space effect algebras, Adv. Math. Phys., Volume 2014, Article ID 216713, 5 pages. [47] L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), 1463 1466. (411) G. Chevalier, Lattice approach to Wigner-type theorems, Int. J. Theor. Phys. 44 (2005), 1905 1915. (412) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), 429-475. (413) G. Chevalier, Wigner-type theorems for projections, Int. J. Theor. Phys. 47 (2008), 69 80. (414) M. Győry, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving orthogonality, Publ. Math. (Debrecen) 65 (2004), 233 242. (415) K. He and J. Hou, A generalization of Wigners theorem, Acta Math. Sci. (Ser. A) 31 (2011), 1633-1636. (416) Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012), 243 249.
(417) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), 364 393. (418) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), 289 301. [48] L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (419) R.L. An and J.C. Hou, Characterizations of Jordan - skew multiplicative maps on operator algebras of indefinite inner product spaces, Chinese Ann. Math. 26 (2005), 569 582. (420) R.L. An and J.C. Hou, Additivity of Jordan multiplicative maps on Jordan operator algebras, Taiwanese J. Math. 10 (2006), 45 64. (421) R.L. An and J.C. Hou, Jordan ring isomorphism on the space of symmetric operators, Acta Math. Sin. 55 (2012), 991 1000. (422) J. Araujo and K. Jarosz, Biseparating maps between operator algebras, J. Math. Anal. Appl. 282 (2003), 48 55. (423) Z. Bai and S. Du, Maps preserving products XY Y X on von Neumann algebras, J. Math. Anal. Appl. 386 (2012), 103 109. (424) M. Dobovišek, Maps from M n (F) to F that are multiplicative with respect to Jordan triple product, Publ. Math. (Debrecen) 73 (2008), 89 100. (425) M. Dobovišek, Maps from M 2 (F) to M 3 (F) that are multiplicative with respect to the Jordan triple product, Aequationes Math. 85 (2013), 539 552. (426) H. Gao, Jordan-triple multiplicative surjective maps on B(H), J. Math. Anal. Appl. 401 (2013), 397 403. (427) R.J. Gu and P.S. Ji, Jordan triple maps of triangular algebras, J. Qingdao Univ. (Nat. Sci. Ed.) 20 (2007), 8 11. (428) X. Hao, P. Ren and R.L. An, Jordan semi-triple multiplicative maps on symmetric matrices, Advances in Linear Algebra and Matrix Theory 3 (2013), 11 16. (429) A.T. Jelodar, M.S. Moslehian and A. Sanami, A ternary characterization of automorphisms of B(H), Nihonkai Math. J. 21 (2010), 1 9. (430) S.O. Kim and C. Park, Additivity of Jordan triple product homomorphisms on generalized matrix algebras, Bull. Korean Math. Soc. 50 (2013), 2027 2034. (431) G. Lešnjak and N.S. Sze, On injective Jordan semi-triple maps of matrix algebras, Linear Algebra Appl. 414 (2006), 383 388. (432) P. Li and W. Jing, Jordan elementary maps on rings, Linear Algebra Appl. 382 (2004), 237 245. 57
58 (433) P. Li and F. Lu, Additivity of Jordan elementary maps on nest algebras, Linear Algebra Appl. 400 (2005), 327 338. (434) F. Lu, Jordan triple maps, Linear Algebra Appl. 375 (2003), 311 317. (435) F. Lu, Jordan derivable maps of prime rings, Commun. Algebra 38 (2010), 4430 4440. (436) F. Lu and B. Liu, Lie derivable maps on B(X), J. Math. Anal. Appl. 372 (2010), 369-376. (437) H.A. Mahdi and A.H. Majeed, Derivable maps of prime rings, Iraqi J. Sci. 54 (2013), 191 194. (438) X. Qi and J. Hou, Additivity of Lie multiplicative maps on triangular algebras Linear Multilinear Algebra 59 (2011), 391 397. (439) J. Qian and P. Li, Additivity of Lie maps on operator algebras, Bull. Korean Math. Soc. 44 (2007), 271 279. (440) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), 364 393. (441) A. Taghavi, V. Darvish, H. Rohi, Additivity of maps preserving products AP ± P A on C -algebras, Math. Slovaca, to appear. (442) A. Taghavi, H. Rohi and V. Darvish, Non-linear *- Jordan derivations on von Neumann algebras, Linear Multilinear Alg., to appear. (443) X.P. Yu and F.Y. Lu, Maps preserving Lie product on B(X), Taiwanese J. Math. 12 (2008), 793 806. (444) H. Zhang and Y. Li, Jordan triple multiplicative maps on the symmetric matrices, Lecture Notes in Computer Science, 2011, Volume 6987/2011, 27 34. [49] M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. (445) D.A.A. Ahmed and R. Tribak, Additivity of elementary maps on generalized matrix algebras, Journal of Algebra, Number Theory: Advances and Applications 13 (2015), 1 12. (446) R. An and J. Hou, Jordan elementary map on operator algebras, Adv. in Math. (China) 41 (2012), 63 72. (447) P. Ara and M. Mathieu, Local multipliers of C*-algebras, Springer Monographs in Mathematics. Springer-Verlag, London, 2003. (448) X.H. Cheng and W. Jing, Additivity of maps on triangular algebras, Electr. J. Lin. Alg. 17 (2008), 597 615. (449) S. Feng, Additivity of elementary maps on nest subalgebras of von Neumann algebra, J. Baoji College Arts Sci. Nat. Sci. 28 (2008), 177 181.
(450) P. Li, Elementary maps on nest algebras, J. Math. Anal. Appl. 320 (2006), 174 191. (451) P. Li and W. Jing, Jordan elementary maps on rings, Linear Algebra Appl. 382 (2004), 237 245. (452) P. Li and F. Lu, Elementary operators on J -subspace lattice algebras, Bull. Austral Math. Soc. 68 (2003), 395 404. (453) P. Li and F. Lu, Additivity of elementary maps on rings, Commun. Alg. 32 (2004), 3725-3737. (454) P. Li and F. Lu, Additivity of Jordan elementary maps on nest algebras, Linear Algebra Appl. 400 (2005), 327 338. (455) P. Li and F. Lu, Jordan elementary operators on J - subspace lattice algebras algebras, Linear Algebra Appl., 428 (2008), 2675 2687. (456) M. Mathieu, Elementary operators on Calkin algebras, Irish Math. Soc. Bulletin 46 (2001), 33 42. (457) Y. Pang and W. Yang, Elementary operators on strongly double triangle subspace lattice algebras, Linear Algebra Appl. 433 (2010), 1678-1685. (458) W. Timmermann, Elementary operators on algebras of unbounded operators, Acta Math. Hung. 107 (2005) 149 160. (459) L. Wang, Additivity of Jordan triple elementary maps on triangular algebras, J. Qingdao Univ. Nat. Sci. Ed. 33 (2012). (460) M. Wei, J. Zhang Elementary maps on triangular algebra, J. Northwest Univ. 45 (2009), 13 15. [50] L. Molnár, A Wigner-type theorem on symmetry transformations in Banach spaces, Publ. Math. (Debrecen) 58 (2000), 231 239. (461) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), 429-475. (462) Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012), 243 249. (463) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), 364 393. (464) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), 289 301. [51] L. Molnár, A reflexivity problem concerning the C -algebra C(X) B(H), Proc. Amer. Math. Soc. 129 (2001), 531 537. (465) F. Botelho and J. Jamison, Homomorphisms on algebras of Lipschitz functions, Studia Math. 199 (2010), 95 106. 59
60 (466) F. Botelho and J. Jamison, Homomorphisms of noncommutative Banach *-algebrs of Lipschitz functions, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp. 73 78. [52] L. Molnár, Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421. (467) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), 289 298. (468) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), 429-475. (469) J. Dauxois, G.M. Nkiet, Y. Romain, Canonical analysis relative to a closed subspace, Linear Algebra Appl. 388 (2004) 119 145. (470) A. Galántai, Subspaces, angles and pairs of orthogonal projections, Linear and Multilinear Algebra, 56 (2008), 227 260. (471) M. Győry, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving orthogonality, Publ. Math. (Debrecen) 65 (2004), 233 242. (472) K. He and J. Hou, A generalization of Uhlhorn s version of Wigners theorem, J. Math. Study 45 (2012), 107 114. (473) T. Heinosaari and M. Ziman, Guide to mathematical concepts of quantum theory, Acta Phys. Slov. 58 (2008), 487 674. (474) J. Hou, C.K. Li and N.C. Wong, Jordan isomorphisms and maps preserving spectra of certain operator products, Studia Math. 184 (2008), 31 47. (475) P. Šemrl, Orthogonality preserving transformations on the set of n-dimensional subspaces of a Hilbert space, Illinois J. Math. 48 (2004), 567 573. (476) P. Šemrl, Maps on idempotents, Studia Math. 169 (2005), 21 44. (477) P. Šemrl, Maps on idempotent matrices over division rings, J. Algebra 298 (2006), 142 187. (478) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), 364 393. (479) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), 289 301.
(480) L. Wang, J. Hou and K. He, Fidelity, sub-fidelity, superfidelity and their preservers, Int. J. Quantum Inf. 13 (2015), 1550027, 11 pp. (481) J. Xu, B. Zheng and H. Yao, Linear transformations between multipartite quantum systems that map the set of tensor product of idempotent matrices into idempotent matrix set, J. Funct. Space Appl. Volume 2013, Article ID 182569, 7 pages. (482) X. Zhang, X.M. Tang and C.G. Cao, Preserver Problems on Spaces of Matrices, Science Press, Beijing, 2007. [53] L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907 1912. (483) Z. Bai and S. Du, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A: Math. Theor. 43 (2010), 165210. (484) G. Cassinelli, E. De Vito, P.J. Lahti and A. Levrero, The Theory of Symmetry Actions in Quantum Mechanics, Lecture Notes in Physics 654, Springer, 2004. (485) D.J. Foulis, Observables, states, and symmetries in the context of CB-effect algebras, Rep. Math. Phys. 60 (2007), 329 346. (486) S.O. Kim, Automorphisms of Hilbert space effect algebras, Linear Algebra Appl. 402 (2005), 193 198. (487) P. Lahti, M. M aczynski and K. Ylinen, Unitary and antiunitary operators mapping vectors to paralell or to orthogonal ones, with applications to symmetry transformations, Lett. Math. Phys. 55 (2001), 43 51. (488) M. Maczynski and E. Scheffold, On elementary operators of length 1 and some order intervals in B s (H), Acta Sci. Math. (Szeged) 70 (2004), 405 417. (489) J. Marovt, Order preserving bijections of C(X, I), J. Math. Anal. Appl. 311 (2005), 567 581. (490) J. Marovt, Affine bijections of C(X, I), Studia Math. 173 (2006), 295 309. (491) Q. Meng, Z. Xu, Automorphisms and local automorphisms of positive cones, J. Qufu Norm. Univ. Nat. Sci. Ed. 1 (2010), 41 43. (492) S. Pulmannová, Tensor products of Hilbert space effect algebras, Rep. Math. Phys. 53 (2004), 301 316. (493) P. Šemrl, Comparability preserving maps on Hilbert space effect algebras, Comm. Math. Phys. 313 (2012), 375 384. (494) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), 417 436. 61
62 (495) P. Šemrl Automorphisms of Hilbert space effect algebras, J. Phys. A: Math. Theor. 48 (2015) 195301. [54] L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450. (496) Z. Bai and S. Du, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A: Math. Theor. 43 (2010), 165210. (497) G. Cassinelli, E. De Vito, P.J. Lahti and A. Levrero, The Theory of Symmetry Actions in Quantum Mechanics, Lecture Notes in Physics 654, Springer, 2004. (498) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), 1377 1390. (499) J. Hamhalter, Spectral order of operators and range projections, J. Math. Anal. Appl. 331 (2007), 1122-1134. (500) K. He, J. Hou and C.K. Li, A geometric characterization of invertible quantum measurement maps, J. Funct. Anal. 264 (2013), 464 478. (501) H. Heinosaari, A simple sufficient condition for the coexistence of quantum effects, J. Phys. A: Math. Theor. 46 (2013), 152002. (502) H. Heinosaari, D. Reitzner and P. Stano, Notes on joint measurability of quantum observables, Found. Phys. 38 (2008), 1133 1147. (503) T. Heinosaari and M. Ziman, Guide to mathematical concepts of quantum theory, Acta Phys. Slov. 58 (2008), 487 674. (504) J. Marovt, Order preserving bijections of C(X, I), J. Math. Anal. Appl. 311 (2005), 567 581. (505) M. Radjabalipour and P. Torabian, On nonlinear preservers of weak matrix majorization, Bull. Iranian Math. Soc. 32 (2006), 21 30. (506) P. Šemrl, Comparability preserving maps on Hilbert space effect algebras, Comm. Math. Phys. 313 (2012), 375 384. (507) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), 417 436. (508) P. Šemrl Automorphisms of Hilbert space effect algebras, J. Phys. A: Math. Theor. 48 (2015) 195301. (509) P. Stano, D. Reitzner and T. Heinosaari, Coexistence of qubit effects, Phys. Rev. A 78 (2008), 012315. [55] L. Molnár, *-semigroup endomorphisms of B(H), in I. Gohberg et al. (Edt.), Operator Theory: Advances and Applications, Vol. 127, pp. 465 472, Birkhäuser, 2001.
(510) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), 364 393. (511) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), 289 301. [56] L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), 5904 5909. (512) S. Artstein-Avidan and B. A. Slomka, Order isomorphisms in cones and a characterization of duality for ellipsoids, Sel. Math. New Ser. 18 (2012), 391 415. (513) Z. Bai and S. Du, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A: Math. Theor. 43 (2010), 165210. (514) M.A. Chebotar, W. Ke and P. Lee, Maps preserving zero Jordan products on Hermitian operators, Illinois J. Math. 49 (2005), 445 452. (515) J.L. Cui, Nonlinear preserver problems on B(H), Acta Math. Sin. 27 (2011), 193 202. (516) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), 1377 1390. (517) M. Maczynski and E. Scheffold, On elementary operators of length 1 and some order intervals in B s (H), Acta Sci. Math. (Szeged) 70 (2004), 405 417. (518) P. Šemrl, Linear Preserver Problems, In Handbook of Linear Algebra (L. Hogben edt.) Discrete Mathematics and its Applications, Chapman and Hall, 2007, 22-1. (519) P. Šemrl, Non-linear commutativity preserving maps on hermitian matrices, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 157 168. (520) P. Šemrl, Comparability preserving maps on bounded observables, Integral Equations Operator Theory 62 (2008), 441 454. (521) P. Šemrl Symmetries on bounded observables - a unified approach based on adjacency preserving maps, Integral Equations Operator Theory 72 (2012), 7-66. (522) P. Šemrl, Comparability preserving maps on Hilbert space effect algebras, Comm. Math. Phys. 313 (2012), 375 384. (523) P. Šemrl and A.R. Sourour, Order preserving maps on hermitian matrices, J. Austral. Math. Soc. 95 (2013), 129 132. (524) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), 417 436. [57] L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001), 299 303. 63
64 (525) I. Bengtssone and K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, Cambridge University Press, 2006. (526) L. Maccone, Information-disturbance tradeoff in quantum measurements, Phys. Rev. A 73 (2006), 042307. (527) G. Nagy, Commutativity preserving maps on quantum states, Rep. Math. Phys. 63 (2009), 447 464. (528) A. Rivas, S.F. Huelga and M. Plenio, Quantum non- Markovianity: characterization, quantification and detection, Rep. Progr. Phys. 77 (2014), 094001, 26 pp. (529) T. Tanengtang, K. Paithoonwattanakij, P.P. Yupapin and S. Suchat, Quantum bits generation using correlated photons: Fidelity and error corrections, Optik 121 (2010), 1976-1980. (530) L. Wang, J. Hou and K. He, Fidelity, sub-fidelity, superfidelity and their preservers, Int. J. Quantum Inf. 13 (2015), 1550027, 11 pp. [58] L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), 91 100. (531) M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), 289 298. (532) M.A. Chebotar, W.F. Ke and P.H. Lee, Maps characterized by action on zero products, Pacific J. Math. 216 (2004), 217 228. (533) M.A. Chebotar, W. Ke and P. Lee, Maps preserving zero Jordan products on Hermitian operators, Illinois J. Math. 49 (2005), 445 452. (534) M.A. Chebotar, W.F. Ke, P.H. Lee and L.S. Shiao, On maps preserving certain algebraic properties, Canad. Math. Bull. 48 (2005), 355 369. (535) S.O. Kim, Automorphisms of Hilbert space effect algebras, Linear Algebra Appl. 402 (2005), 193 198. (536) Y.F. Lin and T.L. Wong, A note on 2-local maps, Proc. Edinburgh Math. Soc. 49 (2006), 701 708. (537) J.H. Liu, N.C. Wong, Local automorphisms of operator algebras, Taiwanese J. Math. 11 (2007), 611 619. (538) Q. Meng, Z. Xu, Automorphisms and local automorphisms of positive cones, J. Qufu Norm. Univ. Nat. Sci. Ed. 1 (2010), 41 43. (539) H. Zhang and X. Wang, Local E-automorphisms on effect algebras, Pure Math. 2 (2012), 152 155. (540) X. Zhang, X.M. Tang and C.G. Cao, Preserver Problems on Spaces of Matrices, Science Press, Beijing, 2007.
[59] L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. (541) R.L. An and J.C. Hou, Characterizations of Jordan - skew multiplicative maps on operator algebras of indefinite inner product spaces, Chinese Ann. Math. 26 (2005), 569 582. (542) R.L. An and J.C. Hou, Additivity of Jordan multiplicative maps on Jordan operator algebras, Taiwanese J. Math. 10 (2006), 45 64. (543) R.L. An and J.C. Hou, A characterization of *- automorphism on B(H), Acta Math. Sin. 26 (2010), 287 294. (544) R.L. An and J.C. Hou, Jordan ring isomorphism on the space of symmetric operators, Acta Math. Sin. 55 (2012), 991 1000. (545) G. Dolinar, Maps on M n preserving Lie products, Publ. Math. (Debrecen) 71 (2007), 467 478. (546) S. Feng and J.H. Zhang, Additivity of elementary maps on nest subalgebra of von Neumann algebra, J. Xi an Univ. Art. Sci. Nat. Sci. Ed. 9 (2006), 29 32. (547) A. Fošner, B. Kuzma, T. Kuzma, S.S. Sze, Maps preserving matrix pairs with zero Jordan product, Linear and Multilinear Algebra 59 (2011), 507 529. (548) H. Gao, Jordan-triple multiplicative surjective maps on B(H), J. Math. Anal. Appl. 401 (2013), 397 403. (549) X. Hao, P. Ren and R.L. An, Jordan semi-triple multiplicative maps on symmetric matrices, Advances in Linear Algebra and Matrix Theory 3 (2013), 11 16. (550) P. Ji, Additivity of Jordan maps on Jordan algebras, Linear Algebra Appl. 431 (2009), 179-188. (551) P. Ji and Z. Liu, Additivity of Jordan maps on standard Jordan operator algebras, Linear Algebra Appl. 430 (2009), 335 343. (552) P. Ji, L. Sun, J. Chen, Jordan multiplicative isomorphisms on spin factors, J. Shandong Univ. Nat. Sci. Ed. 46 (2011), 1 3. (553) W. Jing and F. Lu, Additivity of Jordan (triple) derivations on rings, Linear and Multilinear Algebra 40 (2012), 2700 2719. (554) P. Li and F. Lu, Additivity of Jordan elementary maps on nest algebras, Linear Algebra Appl. 400 (2005), 327 338. (555) Y. Li and Z. Xiao, Additivity of maps on generalized matrix algebras, Electron. J. Linear Algebra 22 (2011), 743 757. 65
66 (556) Z. Ling and F. Lu, Jordan maps of nest algebras, Linear Algebra Appl. 387 (2004), 361 368. (557) F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), 121 131. (558) F. Lu, Jordan maps on associative algebras, Commun. Algebra 31 (2003), 2273 2286. (559) F. Lu, Jordan triple maps, Linear Algebra Appl. 375 (2003), 311 317. (560) F. Lu and B. Liu, Lie derivable maps on B(X), J. Math. Anal. Appl. 372 (2010), 369-376. (561) J. Qian and P. Li, Additivity of Lie maps on operator algebras, Bull. Korean Math. Soc. 44 (2007), 271 279. (562) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), 364 393. (563) X.P. Yu and F.Y. Lu, Maps Preserving Lie Product on B(X), Taiwanese J. Math. 12 (2008), 793 806. (564) H. Zhang and Y. Li, Jordan triple multiplicative maps on the symmetric matrices, Lecture Notes in Computer Science, 2011, Volume 6987/2011, 27 34. [60] L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (565) Z. Abdelali, A. Achchi and R. Marzouki, Maps preserving the local spectrum ofskew-product of operators, Linear Algebra Appl. 485 (2015), 58 71. (566) T. Abe, S. Akiyama, and O. Hatori, Isometries of the special orthogonal group, Linear Algebra Appl. 439 (2013), 174 188. (567) Z. Bai and J. Hou, Characterizing isomorphisms between standard operator algebras by spectral functions, J. Oper. Theo. 54 (2005), 291 303. (568) M. Bendaoud, Preservers of local spectrum of matrix Jordan triple products, Linear Algebra Appl. 471 (2015), 604 614. (569) M. Bendaoud, M. Jabbar and M. Sarih Preservers of local spectra of operator products, Linear and Multilinear Algebra 63 (2015), 806 819. (570) A. Bourhim, M. Mabrouk, Maps preserving the local spectrum of Jordan product of matrices, Linear Algebra Appl. 484 (2015), 379 395. (571) A. Bourhim, J. Mashreghi, and A. Stepanyan, Nonlinear maps preserving the minimum and surjectivity moduli, Linear Algebra Appl. 463 (2014), 171 189. (572) A. Bourhim and J. Mashreghi, Maps preserving the local spectrum of product of operators, Glasgow Math. J. 57 (2015), 709 718.
(573) M. Brešar and Š. Špenko Determining elements in Banach algebras through spectral properties, J. Math. Anal. Appl. 393 (2012), 144 150. (574) M. Burgos, A. Jiménez-Vargas and M. Villegas- Vallecillos, Nonlinear conditions for weighted composition operators between Lipschitz algebras, J. Math. Anal. Appl. 359 (2009), 1 14. (575) J.T. Chan, C.K. Li and N.S. Sze, Mappings on Matrices: Invariance of Functional Values of Matrix Products, J. Austral. Math. Soc. 81 (2006), 165 184. (576) J.T. Chan, C.K. Li and N.S. Sze, Mappings preserving spectra of product of matrices, Proc. Amer. Math. Soc. 135 (2007), 977 986. (577) M.A. Chebotar, W.F. Ke and P.H. Lee, Maps characterized by action on zero products, Pacific J. Math. 216 (2004), 217 228. (578) J. Cui and C.K. Li, Maps preserving peripheral spectrum of Jordan products of operators, Oper. Matrices 6 (2012), 129 146. (579) J. Cui, C.K. Li and Y.T. Poon, Pseudospectra of special operators and pseudospectrum preservers, J. Math. Anal. Appl. 419 (2014), 1261 1273. (580) Q. Di and J. Hou, Maps preserving numerical range of products of operators, J. Shanxi Teacher s Univ. Nat. Sci. Ed. 19 (2005), 1 4. (581) D. Ethier, T. Lindberg, and A. Luttman, Polynomial identification in uniform and operator algebras, Ann. Funct. Anal. 1 (2010), 105 122. (582) H.L Gau and C.K. Li, C -isomorphisms, Jordan isomorphisms, and numerical range preserving maps, Proc. Amer. Math. Soc. 135 (2007), 2907 2914. (583) S.A. Grigoryan and T.V. Tonev, Shift-invariant Uniform Algebras on Groups, Monografie Matematyczne, Vol. 68, Birkhäuser Verlag, 2006. (584) O. Hatori, K. Hino, T. Miura and H. Oka, Peripherally monomial-preserving maps between uniform algebras, Mediterr. J. Math. 6 (2009), 47-59. (585) O. Hatori, G. Hirasawa and T. Miura, Additively spectralradius preserving surjections between unital semisimple commutative Banach algebras, Cent. Eur. J. Math. 8 (2010), 597 601. (586) O. Hatori, A. Jimenez-Vargas and M. Villegas- Vallecillos, Maps which preserve norms of non-symmetrical quotients between groups of exponentials of Lipschitz functions, J. Math. Anal. Appl. 415 (2014), 825 845. 67
68 (587) O. Hatori, S. Lambert, A. Luttman, T. Miura, T. Tonev, and R. Yates Spectral preservers in commutative Banach algebras, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp. 103 124. (588) O. Hatori, T. Miura and H. Oka, An example of multiplicatively spectrum-preserving maps between non-isomorphic semi-simple commutative Banach algebras, Nihonkai Math. J. 18 (2007), 11 15. (589) O. Hatori, T. Miura, H. Oka and H. Takagi, 2-local isometries and 2-local automorphisms on uniform algebras, Int. Math. Forum 2 (2007), 2491 2502. (590) O. Hatori, T. Miura, H. Oka and H. Takagi, Peripheral multiplicativity of maps on uniformly closed algebras of continuous functions which vanish at infinity, Tokyo J. of Math. 32 (2009), 91 104. (591) O. Hatori, T. Miura, R. Shindo and H. Takagi, Generalizations of spectrally multiplicative surjections between uniform algebras, Rend. Circ. Mat. Palermo 59 (2010), 161 183. (592) O. Hatori, T. Miura and H. Takagi, Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving properties, Proc. Amer. Math. Soc. 134 (2006), 2923 2930. (593) O. Hatori, T. Miura and H. Takagi, Unital and multiplicatively spectrum-preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative, J. Math. Anal. Appl. 326 (2007), 281 296. (594) G. Hirasawa, T. Miura and R. Shindo, A generalization of the Banach-Stone theorem for commutative Banach algebras, Nihonkai Math. J. 21 (2010), 105 114. (595) G. Hirasawa, T. Miura and H. Takagi, Spectral radii conditions for isomorphisms between unital semisimple commutative Banach algebras, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp. 125 134. (596) G. Hirasawa and H. Oka, A polynomially spectrum preserving map between uniform algebras, Nihonkai Math. J. 21 (2010), 115 119. (597) D. Honma, Surjections on the algebras of continuous functions which preserve peripheral spectrum, in Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 435, American Mathematical Society, 2007, pp. 199 206. (598) D. Honma, Norm-preserving surjections on the algebras of continuous functions, Rocky Mount. J. Math. 39 (2009), 1517 1531.
(599) M. Hosseini and M. Amini, Peripherally multiplicative maps between Figa-Talamanca-Herz algebras, Publ. Math. (Deberecen) 86 (2015), 71 88. (600) M. Hosseini and J.J. Font, Norm-additive in modulus maps between function algebras, Banach J. Math. Anal. 8 (2014), 79 92. (601) M. Hosseini and F. Sady, Multiplicatively rangepreserving maps between Banach function algebras, J. Math. Anal. Appl. 357 (2009), 314-322. (602) M. Hosseini and F. Sady, Multiplicatively and nonsymmetric multiplicatively norm-preserving maps, Cent. Eur. J. Math. 8 (2010), 878 889. (603) M. Hosseini and F. Sady, Weighted composition operators on C(X) and Lip c (X, α), Tokyo J. of Math. 35 (2012), 71 84. (604) M. Hosseini and F. Sady, Banach function algebras and certain polynomially norm-preserving maps, Banach J. Math. Anal. 6 (2012), 1 18. (605) M. Hosseini and F. Sady, Maps between Banach function algebras satisfying certain norm conditions, Cent. Eur. J. Math. 11 (2013), 1020 1033. (606) J. Hou and Q. Di, Maps preserving numerical ranges of operator products, Proc. Amer. Math. Soc. 134 (2006), 1435 1446. (607) J. Hou, C.K. Li and N.C. Wong, Jordan isomorphisms and maps preserving spectra of certain operator products, Studia Math. 184 (2008), 31 47. (608) A.T. Jelodar, M.S. Moslehian and A. Sanami, A ternary characterization of automorphisms of B(H), Nihonkai Math. J. 21 (2010), 1 9. (609) A. Jiménez-Vargas, K. Lee, A. Luttman and M. Villegas- Vallecillos, Generalized weak peripheral multiplicativity in algebras of Lipschitz functions, Cent. Eur. J. Math. 11 (2013), 1197 1211. (610) A. Jiménez-Vargas, A. Luttman and M. Villegas- Vallecillos, Weakly peripherally multiplicative surjections of pointed Lipschitz algebras, Rocky Mountain J. Math. 40 (2010), 1903 1922. (611) A. Jiménez-Vargas and M. Villegas-Vallecillos, Lipschitz algebras and peripherally-multiplicative maps, Acta Math. Sinica 24 (2008), 1233 1242. (612) S. Lambert, A. Luttman and T. Tonev, Weakly peripherally-multiplicative mappings between uniform algebras, in Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 435, American Mathematical Society, 2007, pp. 265 282. 69
70 (613) K. Lee, Characterizations of peripherally multiplicative mappings between real function algebras, Publ. Math. (Debrecen) Math. Debrecen 84 (2014), 379 397. (614) K. Lee, A multiplicative Banach-Stone theorem, in Function Spaces in Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 645, American Mathematical Society, 2015, pp. 191 198. (615) K. Lee and A. Luttman, Generalizations of weakly peripherally multiplicative maps between uniform algebras, J. Math. Anal. Appl. 375 (2011), 108 117. (616) C.K. Li and E. Poon, Schur product of matrices and numerical radius (range) preserving maps, Linear Alg. Appl. 424 (2007), 8 24. (617) C.K. Li, P. Šemrl and N.S. Sze, Maps preserving the nilpotency of products of operators, Linear Alg. Appl. 424 (2007), 222-239. (618) Y.F. Lin and T.L. Wong, A note on 2-local maps, Proc. Edinburgh Math. Soc. 49 (2006), 701 708. (619) A. Luttman and S. Lambert, Norm conditions for uniform algebra isomorphisms, Cent. Europ. J. Math., 6 (2008), 272 280. (620) A. Luttman and T. Tonev, Uniform algebra isomorphisms and peripheral multiplicativity, Proc. Amer. Math. Soc. 135 (2007), 3589 3598. (621) A. Maouche, Spectrum preserving mappings in Banach algebras, Far East J. Math. Sci. 21 (2006), 27 31. (622) T. Miura, D. Honma A generalization of peripherallymultiplicative surjections between standard operator algebras, Cent. Eur. J. Math. 7 (2009), 479 486. (623) T. Miura, D. Honma and R. Shindo, Divisibly normpreserving maps between commutative Banach algebras, Rocky Mountain J. Math. 41 (2011), 1675 1699. (624) T. Miura and T. Tonev, Mappings onto multiplicative subsets of function algebras and spectral properties of their products, Ark. Mat. 53 (2015), 329 358. (625) M. Najafi Tavani, Peripherally multiplicative operators on unital commutative Banach algebras, Banach J. Math. Anal. 9 (2015), 75 84. (626) N.V. Rao and A.K. Roy, Multiplicatively spectrumpreserving maps of function algebras, Proc. Amer. Math. Soc. 133 (2005), 1135 1142. (627) N.V. Rao and A.K. Roy, Multiplicatively spectrumpreserving maps of function algebras II, Proc. Edinb. Math. Soc. 48 (2005), 219 229.
(628) N.V. Rao, T.V. Tonev and E.T. Toneva, Uniform algebra isomorphisms and peripheral spectra, In: Topological Algebras (Eds. A. Malios and M. Haralampidu), Contemporary Math. 427 (2007), 401 416. (629) R. Shindo, Norm conditions for real-algebra isomorphisms between uniform algebras, Centr. Eur. Math. J. 8 (2010), 135 147. (630) R. Shindo, Maps between uniform algebras preserving norms of rational functions, Mediterr. J. Math. 8 (2011), 81 95. (631) R. Shindo, Weakly-peripherally multiplicative conditions and isomorphisms between uniform algebras, Publ. Math. (Debrecen) 78 (2011), 675 685. (632) A. Taghavi and E. Dadar, Range-preserving maps on operator algebras, Int. J. Contemp. Math. Sci. 3 (2008), 311 317. (633) T. Tonev, Weak multiplicative operators on function algebras without units, Banach Cent. Publ. 91 (2010), 411 421. (634) T. Tonev, Spectral conditions for almost composition operators between algebras of functions, Proc. Amer. Math. Soc. 142 (2014), 2721 2732. - See more at: http://www.ams.org/journals/proc/2014-142- 08/S0002-9939-2014-12005-3/sthash.R7f2ogZX.dpuf (635) T. Tonev and A. Luttman, Algebra isomorphisms between standard operator algebras, Studia Math. 191 (2009), 163 170. (636) T. Tonev and R. Yates, Norm-linear and norm-additive operators between uniform algebras, J. Math. Anal. Appl. 357 (2009), 45 53. (637) W. Zhang and J. Hou, Maps preserving peripheral spectrum of Jordan semi-triple products of operators, Linear Algebra Appl. 435 (2011), 1326-1335. (638) W. Zhang and J. Hou, Maps preserving peripheral spectrum of generalized Jordan products of self-adjoint operators, Abstr. Appl. Anal. Volume 2014, Article ID 192040, 8 pages. (639) W. Zhang and J. Hou, Maps preserving peripheral spectrum of generalized products of operators, Linear Algebra Appl. 468 (2015), 87 106. (640) W. Zhang, J. Hou and X. Qi, Maps preserving peripheral spectrum of generalized Jordan products of operators, Acta Math. Sin. 31 (2015), 953 972. [61] L. Molnár, Conditionally multiplicative maps on the set of all bounded observables preserving compatibility, Linear Algebra Appl. 349 (2002), 197 201. 71
72 (641) M.A. Chebotar, W. Ke and P. Lee, Maps preserving zero Jordan products on Hermitian operators, Illinois J. Math. 49 (2005), 445 452. (642) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), 1377 1390. [62] L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), 349 352. (643) H. Al-Halees and R.J. Fleming, On 2-local isometries on continuous vector-valued function spaces, J. Math. Anal. Appl. 354 (2009), 70-77. (644) M. Burgos, F.J. Fernandez-Polo, J.J. Garces, A.M. Peralta, 2-local triple homomorphisms on von Neumann algebras and JBW -triples, J. Math. Anal. Appl. 426 (2015), 43 63. (645) M.A. Chebotar, W.F. Ke and P.H. Lee, Maps characterized by action on zero products, Pacific J. Math. 216 (2004), 217 228. (646) R.J. Fleming and J.E. Jamison, Isometries on Banach spaces: Vector-valued function spaces. Vol. 2. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 138, Boca Raton, 2007. (647) M. Győry, 2-local isometries of C 0 (X), Acta Sci. Math. (Szeged) 67 (2001), 735 746. (648) O. Hatori, T. Miura, H. Oka and H. Takagi, 2-local isometries and 2-local automorphisms on uniform algebras, Int. Math. Forum 2 (2007), 2491 2502. (649) P. Ji and J. Yu, Maps on AF C -algebras, J. Math. (Wuhan) 26 (2006), 53 57. (650) P.S. Ji and C.P. Wei, Isometries and 2-local isometries on Cartan bimodule algebras in hyperfinite factors of type II 1, Acta Math. Sinica. 49 (2006), 51 58. (651) A. Jiménez Vargas and M. Villegas Vallecillos, 2-local isometries on spaces of Lipschitz functions, Canad. Math. Bull. 54 (2011), 680 692. (652) S.O. Kim and J.S. Kim, Local automorphisms and derivations on M n, Proc. Amer. Math. Soc. 132 (2004), 1389 1392. (653) Y.F. Lin and T.L. Wong, A note on 2-local maps, Proc. Edinburgh Math. Soc. 49 (2006), 701 708. (654) A.M. Peralta, A note on 2-local representations of C - algebras, Operators and Matrices, to appear.
[63] F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. (655) H. Al-Halees and R.J. Fleming, On 2-local isometries on continuous vector-valued function spaces, J. Math. Anal. Appl. 354 (2009), 70-77. (656) F. Botelho and J. Jamison, Algebraic reflexivity of C(X, E) and Cambern s theorem, Studia Math. 186 (2008), 295-302. (657) F. Botelho and J. Jamison, Topological reflexivity of spaces of analytic functions, Acta Sci. Math. (Szeged) 75 (2009), 91 102. (658) F. Botelho and J. Jamison, Algebraic reflexivity of sets of bounded operators on vector valued Lipschitz functions, Linear Algebra Appl. 432 (2010), 3337-3342. (659) F. Botelho and J. Jamison, Homomorphisms on algebras of Lipschitz functions, Studia Math. 199 (2010), 95 106. (660) F. Botelho and J. Jamison, Algebraic reflexivity of tensor product spaces, Houston J. Math. 36 (2010), 1133 1137. (661) F. Botelho and J. Jamison, Algebraic and topological reflexivity of spaces of Lipschitz functions, Rev. Roumaine Math. Pures Appl. 56 (2011), 105-114. (662) F. Botelho and J. Jamison, Homomorphisms of noncommutative Banach *-algebrs of Lipschitz functions, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp. 73 78. (663) M. Burgos, A. Jiménez-Vargas and M. Villegas- Vallecillos, Automorphisms on algebras of operator-valued Lipschitz maps, Publ. Math. (Debrecen) 81 (2012), 127 144. (664) R.J. Fleming and J.E. Jamison, Isometries on Banach spaces: Vector-valued function spaces. Vol. 2. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 138, Boca Raton, 2007. (665) M. Győry, 2-local isometries of C 0 (X), Acta Sci. Math. (Szeged) 67 (2001), 735 746. (666) O. Hatori, T. Miura, H. Oka and H. Takagi, 2-local isometries and 2-local automorphisms on uniform algebras, Int. Math. Forum 2 (2007), 2491 2502. (667) K. Jarosz and T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), 449 469. (668) A. Jimenéz-Vargas, A.M. Campoy and M. Villegas- Vallecillos, Algebraic reflexivity of the isometry group of some spaces of Lipschitz functions, J. Math. Anal. Appl. 366 (2010), 195 201. 73
74 (669) T.S.S.R.K. Rao, Some generalizations of Kadison s theorem: A survey, Extracta Math. 19 (2004), 319 334. (670) T.S.S.R.K. Rao, Local isometries of L(X, C(K)), Proc. Amer. Math. Soc. 133 (2005), 2729-2732. (671) T.S.S.R.K. Rao, A note on the algebraic reflexivity of the group of surjective isometries of K(C(K)), Expo. Math. 26 (2008), 79-83. [64] L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. (672) R. An and J. Hou, Characterizations of Lie-skew multiplicative maps on operator algebras of indefinite inner product spaces, Publ. Math. (Debrecen) 77 (2010), 101 113. (673) R. An, C. Xue and J. Hou, Equivalent characterization of derivations on operator algebras, Linear Multilinear Algebra, to appear. (674) Z. Bai and J. Hou, Characterizing isomorphisms between standard operator algebras by spectral functions, J. Oper. Theo. 54 (2005), 291 303. (675) Z. Bai, J. Hou and S. Du, Additive maps preserving rankone operators on nest algebras, Linear and Multilinear Algebra 58 (2010), 269 283. (676) A. Blanco and A. Turnšek, On maps that preserve orthogonality in normed spaces, Proc. Roy. Soc. Edinb. 136 (2006), 709 716. (677) J.T. Chan, C.K. Li and N.S. Sze, Mappings on Matrices: Invariance of Functional Values of Matrix Products, J. Austral. Math. Soc. 81 (2006), 165 184. (678) G. Chevalier, Lattice approach to Wigner-type theorems, Int. J. Theor. Phys. 44 (2005), 1905 1915. (679) G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), 429-475. (680) G. Chevalier, Wigner-type theorems for projections, Int. J. Theor. Phys. 47 (2008), 69 80. (681) J. Cui, Linear maps leaving zeros of a polynomial invariant, Acta Math. Sinica 50 (2007), 493 496. (682) J. Cui and J. Hou, Linear maps preserving indefinite orthogonality on C -algebras, Chinese Ann. Math., Ser. A 25 (2004), 437 444. (683) J. Cui and J. Hou, Linear maps preserving elements annihilated by a polynomial XY Y X, Studia Math. 174 (2006), 183 199.
(684) J. Cui and J. Hou, A characterization of indefiniteunitary invariant linear maps and relative results, Northeast. Math. J. 22(2006), 89 98. (685) J. Cui and J. Hou, Maps leaving functional values of operator products invariant, Linear Algebra Appl. 428 (2008), 1649 1663. (686) J. Cui, J. Hou and C-G. Park, Indefinite orthogonality preserving additive maps, Arch. Math. 83 (2004), 548 557. (687) G. Dolinar and B. Kuzma, General preservers of quasicommutativity, Canad. J. Math. 62 (2010), 758 786. (688) C. Dryzun and D. Avnir, Chirality measures for vectors, matrices, operators and functions, ChemPhysChem 12 (2011), 197 205. (689) H. Du and H.X. Cao, Generalization of Uhlhorn s theorem, J. Yanan Univ. Nat. Sci. 24 (2005), 7 8. (690) S.P. Du, J.C. Hou and Z.F. Bai, Additive maps preserving similarity or asymptotic similarity on B(H), Linear and Multilinear Algebra 55 (2007), 209 218. (691) A. Duma and C. Vladimirescu, Non-decomposable inner product spaces, Math. Sci. Res. J. 8 (2004), 67 84. (692) A. Fošner, Automorphisms of the poset of upper triangular idempotent matrices, Linear and Multilinear Algebra 53 (2005), 27 44. (693) A. Fošner, Order preserving maps on the poset of upper triangular idempotent matrices, Linear Algebra Appl. 403 (2005), 248 262. (694) A. Fošner, B. Kuzma, T. Kuzma, S.S. Sze, Maps preserving matrix pairs with zero Jordan product, Linear and Multilinear Algebra 59 (2011), 507 529. (695) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), 1377 1390. (696) K. He and J. Hou, A generalization of Wigners theorem, Acta Math. Sci. (Ser. A) 31 (2011), 1633-1636. (697) K. He and J. Hou, A generalization of Uhlhorn s version of Wigners theorem, J. Math. Study 45 (2012), 107 114. (698) K. He, Q. Yuan and J. Hou, Entropy-preserving maps on quantum states, Linear Algebra Appl. 467 (2015), 243 253. (699) J. Hou, K. He and X. Qi, Characterizing sequential isomorphisms on Hilbert-space effect algebras, J. Phys. A: Math. Theor. 43 (2010), 315206. (700) J. Hou and L. Huang, Maps completely preserving idempotents and maps completely preserving square-zero operators, Israel J. Math. 176 (2010), 363-380. 75
76 (701) J. Hou, C.K. Li and N.C. Wong, Jordan isomorphisms and maps preserving spectra of certain operator products, Studia Math. 184 (2008), 31 47. (702) J. Hou, C.K. Li and N.C. Wong, Maps preserving the spectrum of generalized Jordan product of operators, Linear Algebra Appl. 432 (2010), 1049 1069. (703) J. Hou and X. Zhang, Ring isomorphisms and linear or additive maps preserving zero products on nest algebras, Linear Algebra Appl. 387 (2004), 343 360. (704) L. Huang, Y. Liu, Maps completely preserving commutativity and maps completely preserving Jordan zero-product, Linear Algebra Appl. 462 (2014), 233 249. (705) L. Huang, Z.F. Lu and J.L. Li, Additive maps completely preserving skew idempotency between standard operator algebras, Zhongbei Daxue Xuebao (Ziran Kexue Ban)/Journal of North University of China (Natural Science Edition) 32 (2011), 71 73. (706) L. Jian, K. He, Q. Yuan and F. Wang, On partially trace distance preserving maps and reversible quantum channels, J. Applied Math. (2013), Article ID 474291, 5 pages (707) M. Jiao, Maps preserving commutativity up to a factor on standard operator algebras, Journal of Mathematical Research with Applications 33 (2013), 708 716. (708) B. Kuzma, Additive mappings preserving rank-one idempotents, Acta Math. Sin. 21 (2005), 1399 1406. (709) P. Legiša, Automorphisms of M n partially ordered by the star order, Linear Multilinear Alg. 54 (2006), 157 188. (710) Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012), 243 249. (711) L. Rodman and P. Šemrl, Orthogonality preserving bijective maps on real and complex projective spaces, Linear and Multilinear Alg. 54 (2006), 355 367. (712) L. Rodman and P. Šemrl, Orthogonality preserving bijective maps on finite dimensional projective spaces over division rings, Linear and Multilinear Alg. 56 (2008), 647-664. (713) L. Rodman and P. Šemrl, Preservers of generalized orthogonality on finite dimensional real vector and projective spaces, Linear and Multilinear Alg. 57 (2009), 839 858. (714) P. Šemrl, Generalized symmetry transformations on quaternionic indefinite inner product spaces: An extension of quaternionic version of Wigner s theorem, Commun. Math. Phys. 242 (2003), 579 584. (715) P. Šemrl, Order-preserving maps on the poset of idempotent matrices, Acta Sci. Math. (Szeged) 69 (2003), 481 490.
(716) P. Šemrl, Applying projective geometry to transformations on rank one idempotents, J. Funct. Anal. 210 (2004), 248 257. (717) P. Šemrl, Non-linear commutativity preserving maps, Acta Sci. Math. (Szeged) 71 (2005), 781 819. (718) P. Šemrl, Maps on idempotents, Studia Math. 169 (2005), 21 44. (719) P. Šemrl, Maps on idempotent matrices over division rings, J. Algebra 298 (2006), 142 187. (720) P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), 364 393. (721) P. Šemrl, Maps on matrix and operator algebras, Jahresber. Deutsch. Math.-Verein. 108 (2006), 91 103. (722) P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), 289 301. (723) R. Simon, N. Mukunda, S. Chaturvedi and V. Srinivasan Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics, Phys. Lett. A 372 (2008), 6847 6852. (724) A. Turnšek, On operators preserving James orthogonality, Linear Algebra Appl. 407 (2005), 189 195. (725) J. Xu, B. Zheng and H. Yao, Linear transformations between multipartite quantum systems that map the set of tensor product of idempotent matrices into idempotent matrix set, J. Funct. Space Appl., to appear. (726) H. Zhang and Y. Li, Jordan triple multiplicative maps on the symmetric matrices, Lecture Notes in Computer Science, 2011, Volume 6987/2011, 27 34. (727) W. Zhang, J. Hou and X. Qi, Maps preserving peripheral spectrum of generalized Jordan products of operators, Acta Math. Sin. 31 (2015), 953 972. (728) X. Zhang, X.M. Tang and C.G. Cao, Preserver Problems on Spaces of Matrices, Science Press, Beijing, 2007. [65] L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. (729) D.A.A. Ahmed and R. Tribak, Additivity of elementary maps on generalized matrix algebras, Journal of Algebra, Number Theory: Advances and Applications 13 (2015), 1 12. (730) R. An and J. Hou, Jordan elementary map on operator algebras, Adv. in Math. (China) 41 (2012), 63 72. (731) X.H. Cheng and W. Jing, Additivity of maps on triangular algebras, Electr. J. Lin. Alg. 17 (2008), 597 615. 77
78 (732) S.O. Kim and C. Park, Additivity of Jordan triple product homomorphisms on generalized matrix algebras, Bull. Korean Math. Soc. 50 (2013), 2027 2034. (733) P. Li, Elementary maps on nest algebras, J. Math. Anal. Appl. 320 (2006), 174 191. (734) P. Li and W. Jing, Jordan elementary maps on rings, Linear Algebra Appl. 382 (2004), 237 245. (735) P. Li and F. Lu, Elementary operators on J -subspace lattice algebras, Bull. Austral Math. Soc. 68 (2003), 395 404. (736) P. Li and F. Lu, Additivity of elementary maps on rings, Commun. Alg. 32 (2004), 3725-3737. (737) P. Li and F. Lu, Additivity of Jordan elementary maps on nest algebras, Linear Algebra Appl. 400 (2005), 327 338. (738) P. Li and F. Lu, Jordan elementary operators on J - subspace lattice algebras algebras, Linear Algebra Appl., 428 (2008), 2675 2687. (739) J. Qian and P. Li, Additivity of Lie maps on operator algebras, Bull. Korean Math. Soc. 44 (2007), 271 279. (740) Y. Pang and W. Yang, Elementary operators on strongly double triangle subspace lattice algebras, Linear Algebra Appl. 433 (2010), 1678-1685. (741) W. Timmermann, Elementary operators on algebras of unbounded operators, Acta Math. Hung. 107 (2005) 149 160. (742) L. Wang, Additivity of Jordan triple elementary maps on triangular algebras, J. Qingdao Univ. Nat. Sci. Ed. 33 (2012). (743) Y. Wang, The additivity of multiplicative maps on rings, Commun. Algebra 37 (2009), 2351 2356. (744) Y. Wang, Additivity of multiplicative maps on triangular rings, Linear Algebra Appl. 434 (2011), 625-635. (745) M. Wei, J. Zhang, Elementary maps on triangular algebra, J. Northwest Univ. 45 (2009), 13 15. (746) M. Wei M, J.H. Zhang, Jordan-triple elementary maps and Jordan isomorphisms on triangular algebras, Fangzhi Gaoxiao Jichukexue Xuebao 22 (2009), 193 197. [66] L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. (747) SH.A. Ayupov and K.K. Kudaybergenov, 2-local derivations and automorphisms on B(H), J. Math. Anal. Appl. 395 (2012), 15 18. (748) S. Ayupov, K. Kudaybergenov and A. Alauadinova, 2- Local derivations on matrix algebras over commutative regular algebras, Linear Algebra Appl. 439 (2013), 1294 1311.
(749) SH.A. Ayupov, K.K. Kudaybergenov, B.O. Nurjanov and A.A. Alauadinov, Local and 2-local derivations on noncommutative Arens algebras, Math. Slovaca 64 (2014), 423 432. (750) J. Bračič, Algebraic reflexivity for semigroups of operators, Electr. J. Lin. Alg. 18 (2009), 745 760. (751) M. Burgos, F.J. Fernandéz-Polo, J.J. Garcés and A.M. Peralta, A Kowalski-Slodkowski theorem for 2-local *- homomorphisms on von Neumann algebras, RACSAM, to appear. (752) M. Burgos, F.J. Fernandez-Polo, J.J. Garces, A.M. Peralta, 2-local triple homomorphisms on von Neumann algebras and JBW -triples, J. Math. Anal. Appl. 426 (2015), 43 63. (753) J.T. Chan, C.K. Li and N.S. Sze, Mappings on Matrices: Invariance of Functional Values of Matrix Products, J. Austral. Math. Soc. 81 (2006), 165 184. (754) J.T. Chan, C.K. Li and N.S. Sze, Mappings preserving spectra of product of matrices, Proc. Amer. Math. Soc. 135 (2007), 977 986. (755) M.A. Chebotar, W.F. Ke, P.H. Lee and L.S. Shiao, On maps preserving certain algebraic properties, Canad. Math. Bull. 48 (2005), 355 369. (756) L. Chen, F. Lu and T. Wang, Local and 2-local Lie derivations of operator algebras on Banach spaces, Integr. Equ. Oper. Theory 77 (2013), 109 121. (757) Z. Chen and D. Wang, 2-Local automorphisms of finitedimensional simple Lie algebras, Linear Algebra Appl. 486 (2015) 335 344. (758) M. Dobovišek, B. Kuzma, G. Lešnjak, C.K. Li and T. Petek, Mappings that preserve pairs of operators with zero triple Jordan product, Linear Algebra Appl. 426 (2007), 255 279. (759) A. Jiménez Vargas and M. Villegas Vallecillos, 2-local isometries on spaces of Lipschitz functions, Canad. Math. Bull. 54 (2011), 680 692. (760) S.O. Kim and J.S. Kim, Local automorphisms and derivations on M n, Proc. Amer. Math. Soc. 132 (2004), 1389 1392. (761) S.O. Kim and J.S. Kim, Local automorphisms and derivations on certain C -algebras, Proc. Amer. Math. Soc. 133 (2005), 3303-3307. (762) C.K. Li, P. Šemrl and N.S. Sze, Maps preserving the nilpotency of products of operators, Linear Alg. Appl. 424 (2007), 222-239. (763) Y.F. Lin and T.L. Wong, A note on 2-local maps, Proc. Edinburgh Math. Soc. 49 (2006), 701 708. 79
80 (764) J.H. Liu and N.C. Wong, 2-local automorphisms of operator algebras, J. Math. Anal. Appl. 321 (2006), 741 750. (765) F. Pop, On local representations of von Neumann algebras, Proc. Amer. Math. Soc. 132 (2004), 3569 3576. (766) A.M. Peralta, A note on 2-local representations of C - algebras, Operators and Matrices, to appear. (767) D. Wang, Q. Guan and D. Zhang, Local automorphisms of semisimple algebras and group algebras, Acta Math. Sci. 38 (2011), 1600-1612. (768) X. Wang, Local derivations of a matrix algebra over a commutative ring, J. Math. Res. Expo. 31 (2011), 781 790. (769) J. Xie and F. Lu, A note on 2-local automorphisms of digraph algebras Linear Algebra Appl. 378 (2004), 93 98. (770) J.H. Zhang and H.X. Li, 2-local derivations on digraph algebras, Acta Math. Sin. 49 (2006), 1411 1416. [67] L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), 267 273. (771) O. Hatori, Isometries of the unitary groups in C - algebras, Studia Math. 221 (2014), 61 86. (772) K. He and J. Hou, Distance preserving maps and completely distance preserving maps on the Schatten p-class, J. Shanxi Univ. Nat. Sci. Ed. 32 (2009), 502 506. (773) K. He and J. Hou, A generalization of Uhlhorn s version of Wigners theorem, J. Math. Study 45 (2012), 107 114. (774) K. He and Q. Yuan, Non-linear isometries on Schatten-p class in atomic nest algebras, Abstr. Appl. Anal. Volume 2014, Article ID 810862. (775) L. Jian, K. He, Q. Yuan and F. Wang, On partially trace distance preserving maps and reversible quantum channels, J. Applied Math. (2013), Article ID 474291, 5 pages (776) G. Nagy, Isometries on positive operators of unit norm, Publ. Math. (Debrecen) 82 (2013), 183 192. (777) G. Nagy, Preservers for the p-norm of linear combinations of positive operators, Abstr. Appl. Anal., Volume 2014, Article ID 434121, 9 pages. (778) P.B. Slater, Quantum and Fisher information from the Husimi and related distributions, J. Math. Phys. 47 (2006), Art. No. 022104. (779) F. Ticozzi and L. Viola, Quantum information encoding, protection, and correctionfrom trace-norm isometries, Phys. Rev. A 81 (2010), 032313. [68] L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287 300.
(780) H.K. Du, C.Y. Deng and Q.H. Li, On the infimum problem of Hilbert space effects, Sci. China Ser. A 49 (2006), 545 556. (781) W. Feldman, Lattice preserving maps on lattices of continuous functions, J. Math. Anal. Appl. 404 (2013), 310 316. (782) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), 1377 1390. (783) S. Gudder and F. Latrémolière, Characterization of the sequential product on quantum effects, J. Math. Phys. 49 (2008), 052106. (784) T. Heinosaari and M. Ziman, Guide to mathematical concepts of quantum theory, Acta Phys. Slov. 58 (2008), 487 674. (785) J. Hou, K. He and X. Qi, Characterizing sequential isomorphisms on Hilbert-space effect algebras, J. Phys. A: Math. Theor. 43 (2010), 315206. (786) S.O. Kim, Automorphisms of Hilbert space effect algebras, Linear Algebra Appl. 402 (2005), 193 198. (787) J. Marovt, Order preserving bijections of C(X, I), J. Math. Anal. Appl. 311 (2005), 567 581. (788) J. Marovt, Affine bijections of C(X, I), Studia Math. 173 (2006), 295 309. (789) J. Marovt, Order preserving bijections of C + (X), Taiwanese J. Math. 14 (2010), 667 673. (790) L. Yuan and H.K. Du, A note on the infimum problem of Hilbert space effects, J. Math. Phys. 47 (2006), Art. No. 102103. (791) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), 417 436. (792) Q. Yuan and K. He, Generalized Jordan semitriple maps on Hilbert space effect algebras, Adv. Math. Phys., Volume 2014, Article ID 216713, 5 pages. [69] L. Molnár and M. Barczy, Linear maps on the space of all bounded observables preserving maximal deviation, J. Funct. Anal. 205 (2003), 380 400. (793) M.A. Chebotar, W. Ke and P. Lee, Maps preserving zero Jordan products on Hermitian operators, Illinois J. Math. 49 (2005), 445 452. (794) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), 1377 1390. (795) J. Hamhalter, Linear maps preserving maximal deviation and the Jordan structure of quantum systems, J. Math. Phys. 53 (2012), 122208. 81
82 (796) G. Nagy, Isometries of the spaces of self-adjoint traceless operators, Linear Algebra Appl. 484 (2015), 1 12. [70] L. Molnár and E. Kovács, An extension of a characterization of the automorphisms of Hilbert space effect algebras, Rep. Math. Phys. 52 (2003), 141 149. (797) G. Dolinar, A. Guterman and J. Marovt, Monotone transformations on B(H) with respect to the left-star and the right-star order, Math. Inequal. Appl. 17 (2014), 573 589. (798) J. Marovt, Affine bijections of C(X, I), Studia Math. 173 (2006), 295 309. (799) P. Šemrl, Comparability preserving maps on Hilbert space effect algebras, Comm. Math. Phys. 313 (2012), 375 384. (800) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), 417 436. [71] L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), 755 772. (801) J. Araujo, Multiplicative bijections of semigroups of interval-valued continuous functions, Proc. Amer. Math. Soc., 137 (2009), 171 178. (802) F. Cabello Sánchez, J. Cabello Sánchez, Z. Ercan and S. Önal, Memorandum on multiplicative bijections and order, Semigroup Forum 79 (2009), 193 209. (803) W. Feldman, Lattice preserving maps on lattices of continuous functions, J. Math. Anal. Appl., to appear. (804) D.J. Foulis, Square roots and inverses in E-rings, Rep. Math. Phys. 58 (2006), 357 373. (805) J. Marovt, Order preserving bijections of C(X, I), J. Math. Anal. Appl. 311 (2005), 567 581. (806) J. Marovt, Multiplicative bijections of C(X, I), Proc. Amer. Math. Soc. 134 (2006), 1065 1075. (807) J. Marovt, Affine bijections of C(X, I), Studia Math. 173 (2006), 295 309. (808) J. Marovt, Order preserving bijections of C + (X), Taiwanese J. Math. 14 (2010), 667 673. (809) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), 417 436. (810) H. Zhang and X. Wang, Local E-automorphisms on effect algebras, Pure Math. 2 (2012), 152 155. [72] E. Kovács and L. Molnár, Preserving some numerical correspondences between Hilbert space effects, Rep. Math. Phys. 54 (2004), 201 209.
(811) J. Marovt, Order preserving bijections of C(X, I), J. Math. Anal. Appl. 311 (2005), 567 581. (812) J. Marovt, Affine bijections of C(X, I), Studia Math. 173 (2006), 295 309. [73] L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. (813) Z. Bai and S. Du, Strong commutativity preserving maps on rings, Rocky Mountain J. Math. 44 (2014), 733 742. (814) J. Cui, Q. Li, J. Hou and X. Qi, Some unitary similarity invariant sets preservers of skew Lie products, Linear Algebra Appl. 457 (2014), 76 92. (815) G. Dolinar and B. Kuzma, General preservers of quasicommutativity, Canad. J. Math. 62 (2010), 758 786. (816) G. Dolinar and B. Kuzma, General preservers of quasicommutativity on self-adjoint operators, J. Math. Anal. Appl. 364 (2010), 567 575. (817) A. Fošner, Non-linear commutativity preserving maps on M n (R), Linear and Multilinear Algebra 53 (2005), 323 344. (818) A. Fošner, Non-linear commutativity preserving maps on symmetric matrices, Publ. Math. (Debrecen), 71 (2007), 375 396. (819) A. Fošner, A note on commutativity preservers on real matrices, Proceedings of the 5th Asian Mathematical Conference, Malaysia 2009, pp. 373 379. (820) Gy.P. Gehér, Maps on real Hilbert spaces preserving the area of parallelograms and a preserver problem on self-adjoint operators, J. Math. Anal. Appl. 422 (2015), 1402 1413. (821) Gy. P. Gehér and G. Nagy, Maps on classes of Hilbert space operators preserving measure of commutativity, Linear Algebra Appl. 463 (2014), 205 227. (822) K. He and J. Hou, Non-linear maps on self-adjoint operators preserving numerical radius and numerical range of Lie product, Linear Multilinear Alg., to appear. (823) L. Huang, Y. Liu, Maps completely preserving commutativity and maps completely preserving Jordan zero-product, Linear Algebra Appl. 462 (2014), 233 249. (824) G. Ji and Y. Gao, Maps preserving operator pairs whose products are projections, Linear Algebra Appl. 433 (2010), 1348 1364. (825) P.K. Liau, W.L. Huang and C.K. Liu, Nonlinear strong commutativity preserving maps on skew elements of prime rings with involution, Linear Algebra Appl. 436 (2012), 3099-3108. 83
84 (826) J.S Lin and C.K Liu, Strong commutativity preserving maps in prime rings with involution, Linear Algebra Appl. 432 (2010), 14 23. (827) L. Liu, Strong commutativity preserving maps on von Neumann algebras, Linear Multilinear Alg. 63 (2015), 490 496. (828) G. Nagy, Commutativity preserving maps on quantum states, Rep. Math. Phys. 63 (2009), 447 464. (829) X.F. Qi and J.C. Hou, Nonlinear strong commutativity preserving maps on prime rings, Comm. Algebra 38 (2010), 2790 2796. (830) X.F. Qi and J.C. Hou, Strong commutativity preserving maps on triangular rings, Oper. Matrices 6 (2012), 147 158. (831) F.J. Zhang, Nonlinear strong *-commutativity preserving maps on factor von Neumann algebras, Fangzhi Gaoxiao Jichukexue Xuebao 25 (2012), 21 24. (832) J.H. Zhang and F.J. Zhang, Nonlinear maps preserving Lie products on factor von Neumann algebras, Linear Algebra Appl. 429 (2008), 18 30. (833) X. Zhang, X.M. Tang and C.G. Cao, Preserver Problems on Spaces of Matrices, Science Press, Beijing, 2007. [74] L. Molnár, A remark to the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices, Proc. Amer. Math. Soc., 134 (2006) 2839 2848. (834) M. Dobovišek, Maps from M n (F) to F that are multiplicative with respect to Jordan triple product, Publ. Math. (Debrecen) 73 (2008), 89 100. (835) E. Gselmann, Jordan triple mappings on positive de?nite matrices, Aeq. Math., to appear. (836) B. Kolodziejek, The Lukacs-Olkin-Rubin theorem on symmetric cones through Gleason s theorem, Studia Math. 217 (2013), 1 17. (837) B. Kolodziejek, Multiplicative Cauchy functional equation on symmetric cones, Aequat. Math. 89 (2015), 1075 1094. (838) B. Kolodziejek, Lukacs-Olkin-Rubin theorem on symmetric cones without invariance of the quotient, J. Theor. Probab., to appear. [75] L. Molnár and W. Timmermann, Transformations on the sets of states and density operators, Linear Algebra Appl. 418 (2006), 75 84. (839) J. Marovt, Order preserving bijections of C + (X), Taiwanese J. Math. 14 (2010), 667 673.
[76] L. Molnár, Non-linear Jordan triple automorphisms of sets of self-adjoint matrices and operators, Studia Math. 173 (2006), 39 48. (840) J. Qian and P. Li, Additivity of Lie maps on operator algebras, Bull. Korean Math. Soc. 44 (2007), 271 279. (841) P. Šemrl Symmetries on bounded observables - a unified approach based on adjacency preserving maps, Integral Equations Operator Theory 72 (2012), 7-66. [77] L. Molnár, Multiplicative Jordan triple isomorphisms on the self-adjoint elements of von Neumann algebras, Linear Algebra Appl. 419 (2006), 586 600. (842) P. Ji, W. Qi, Z. Qin, Multiplicative Jordan triple isomorphisms on Jordan algebras, J. Shandong Univ. Nat. Sci. Ed. 44 (2009), 1 3. (843) A. Taghavi, Additive mappings on C -algebras preserving absolute values, Linear Multilinear Algebra 60 (2012), 33-38. (844) A. Taghavi, Additive mappings on C -algebras subpreserving absolute values of products, Journal of Inequalities and Applications 2012, Article ID 161, 6 p., electronic only (2012). [78] L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. (845) J. Alaminos, M. Brešar, J. Extremera and A.R. Villena, Maps preserving zero products, Studia Math. 193 (2009), 131 159. (846) J. Alaminos, M. Brešar, J. Extremera and A.R. Villena, On bilinear maps determined by rank one idempotents, Linear Algebra Appl. 432 (2009), 738 743. (847) J. Alaminos, J. Extremera and A.R. Villena, Zero product preserving maps on Banach algebras of Lipschitz functions, J. Math. Anal. Appl. 369 (2010), 94 100. (848) J. Alaminos, J. Extremera and A.R. Villena, Approximately spectrum-preserving maps, J. Funct. Anal. 261 (2011), 233 266. (849) J. Alaminos, J. Extremera and A.R. Villena, Operators shrinking the Arveson spectrum, Publ. Math. Debrecen 80 (2012), 235 254. (850) Z. Bai and S. Du, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A: Math. Theor. 43 (2010), 165210. (851) Z. Bai and S. Du, Strong commutativity preserving maps on rings, Rocky Mountain J. Math. 44 (2014), 733 742. 85
86 (852) M. Bessenyei, Functional equations and finite groups of substitutions, Amer. Math. Monthly 117 (2010), 921-927. (853) M. Bohata and J. Hamhalter, Nonlinear maps on von Neumann algebras preserving the star order, Linear Multilinear Algebra 61 (2013), 998 1009. (854) M. Bohata and J. Hamhalter, Star order on JBW algebras, J. Math. Anal. Appl. 417 (2014), 873 888. (855) F. Botelho and J. Jamison, Algebraic reflexivity of sets of bounded operators on vector valued Lipschitz functions, Linear Algebra Appl. 432 (2010), 3337-3342. (856) F. Botelho and J. Jamison, Homomorphisms on algebras of Lipschitz functions, Studia Math. 199 (2010), 95 106. (857) F. Botelho and T.S.S.R.K. Rao, On algebraic reflexivity of sets of surjective isometries between spaces of weak continuous functions, J. Math. Anal. Appl. 432 (2015), 367 373. (858) J. Bračič, Algebraic reflexivity for semigroups of operators, Electr. J. Lin. Alg. 18 (2009), 745 760. (859) M. Burgos, F.J. Fernndez-Polo, J.J. Garcés, J.M. Moreno and A.M. Peralta, Orthogonality preservers in C*- algebras, JB*-algebras and JB*-triples, J. Math. Anal. Appl. 348 (2008), 220-233. (860) M. Burgos, F.J. Fernandez-Polo, J.J. Garces, A.M. Peralta, 2-local triple homomorphisms on von Neumann algebras and JBW -triples, J. Math. Anal. Appl. 426 (2015), 43 63. (861) F. Cabello Sánchez, Automorphisms of algebras of smooth functions and equivalent functions, Differ. Geom. Appl. 30 (2012), 216-221. (862) F. Cabello Sánchez, J. Cabello Sánchez, Z. Ercan and S. Önal, Memorandum on multiplicative bijections and order, Semigroup Forum 79 (2009), 193 209. (863) J. Chmieliński, Orthogonality preserving property and its Ulam stability, in Functional Equations in Mathematical Analysis, Springer Optimization and Its Applications, 2012, Volume 52, Part 1, 33 58. (864) S. Clark, C.K. Li and L. Rodman, Spectral radius preservers of products of nonnegative matrices, Banach J. Math. Anal. 2 (2008), 107-120. (865) S. Dutta and T.S.S.R.K. Rao, Algebraic reflexivity of some subsets of the isometry group, Linear Algebra Appl. 429 (2008), 1522 1527. (866) A.B.A. Essaleh, M. Niazi and A.M. Peralta, Bilocal *- automorphisms of B(H) satisfying the 3-local property, Arch. Math. 104 (2015), 157 164.
(867) D. Ethier, T. Lindberg, and A. Luttman, Polynomial identification in uniform and operator algebras, Ann. Funct. Anal. 1 (2010), 105 122. (868) J.S. Farsani, Zero products preserving maps from the Fourier algebra of amenable groups, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 523 534. (869) A. Fošner, Commutativity preserving maps on M n (R), Glasnik Mat. 44 (2009), 127 140. (870) A. Fošner, A note on commutativity preservers on real matrices, Proceedings of the 5th Asian Mathematical Conference, Malaysia 2009, pp. 373 379. (871) A. Fošner, 2-local Jordan automorphisms on operator algebras, Studia Math. 209 (2012), 235 246. (872) A. Fošner, 2-local mappings on algebras with involution, Ann. Funct. Anal. 5 (2014), 63 69. (873) A. Fošner, Local generalized (α, β)-derivations, The Scientific World J. (2014), Article ID 805780, 5 pp. (874) A. Fošner, B. Kuzma, T. Kuzma, S.S. Sze, Maps preserving matrix pairs with zero Jordan product, Linear and Multilinear Algebra 59 (2011), 507 529. (875) A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), 1377 1390. (876) A. Fošner, Z. Huang, C.K. Li, Y.T. Poon, N.S. Sze, Linear maps preserving the higher numerical ranges of tensor product of matrices, Linear Multilinear Algebra 62 (2014), 776 791. (877) M. Fošner and D. Ilišević, Generalized bicircular projections via rank preserving maps on the spaces of symmetric and antisymmetric operators, Oper. Matrices 5 (2011), 239-260. (878) Gy. P. Gehér and G. Nagy, Maps on classes of Hilbert space operators preserving measure of commutativity, Linear Algebra Appl. 463 (2014), 205 227. (879) J. Hamhalter, Linear maps preserving maximal deviation and the Jordan structure of quantum systems, J. Math. Phys. 53 (2012), 122208. (880) O. Hatori, Isometries of the unitary groups in C - algebras, Studia Math. 221 (2014), 61 86. (881) O. Hatori, S. Lambert, A. Luttman, T. Miura, T. Tonev, and R. Yates Spectral preservers in commutative Banach algebras, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp. 103 124. (882) K. He, F. Sun and J. Hou, Separability of sequential isomorphisms on quantum effects in multipartite systems, J. Phys. A: Math. Theor. 48 (2015), 075302 (9pp). 87
88 (883) K. He, Q. Yuan and J. Hou, Entropy-preserving maps on quantum states, Linear Algebra Appl. 467 (2015), 243 253. (884) C. Heunen and C. Horsman, Matrix multiplication is determined by orthogonality and trace, Linear Algebra Appl. 439 (2013), 4130 4134. (885) Z. Huang, Weakening the conditions in some classical theorems on linear preserver problems, Linear Multilinear Alg., to appear. (886) A.T. Jelodar, M.S. Moslehian and A. Sanami, A ternary characterization of automorphisms of B(H), Nihonkai Math. J. 21 (2010), 1 9. (887) G.K. Kumar and S.H. Kulkarni, Linear maps preserving pseudospectrum and condition spectrum, Banach J. Math. Anal. 6 (2012), 45-60. (888) D.L.W. Kuo, M.C. Tsai, N.C. Wong and J. Zhang, Maps preserving Schatten p-norms of convex combinations, Abstr. Appl. Anal. (2014), Article ID 520795, 5 pp. (889) C.W Leung, C.K. Ng and N.C. Wong, Linear orthogonality preservers of Hilbert C -modules, J. Operator Theory 71 (2014), 571 584. (890) C.K. Li and L. Rodman, Preservers of spectral radius, numerical radius, or spectral norm of the sum on nonnegative matrices, Linear Algebra Appl. 430 (2009), 1739 1761. (891) C.K. Li, P. Šemrl, L. Plevnik, Preservers of matrix pairs with a fixed inner product value, Oper. Matrices 6 (2012), 433 464. (892) J. Marovt, Order preserving bijections of C + (X), Taiwanese J. Math. 14 (2010), 667 673. (893) M. Mbekhta, V. Mller and M. Oudghiri, Additive preservers of the ascent, descent and related subsets, J. Operator Theory 71 (2014), 63 83. (894) T. Miura, D. Honma A generalization of peripherallymultiplicative surjections between standard operator algebras, Cent. Eur. J. Math. 7 (2009), 479 486. (895) G. Nagy, Commutativity preserving maps on quantum states, Rep. Math. Phys. 63 (2009), 447 464. (896) G. Nagy, Isometries on positive operators of unit norm, Publ. Math. (Debrecen) 82 (2013), 183 192. (897) G. Nagy, Preservers for the p-norm of linear combinations of positive operators, Abstr. Appl. Anal., Volume 2014, Article ID 434121, 9 pages. (898) V. Pavlovič, Remarks and comments on some recent results, Filomat 29 (2015), 1039 1041. (899) A.M. Peralta, A note on 2-local representations of C - algebras, Operators and Matrices, to appear.
(900) P. Šemrl, Comparability preserving maps on bounded observables, Integral Equations Operator Theory 62 (2008), 441 454. (901) P. Šemrl, Local automorphisms of standard operator algebras, J. Math. Anal. Appl. 371 (2010), 403 406. (902) P. Šemrl Symmetries on bounded observables - a unified approach based on adjacency preserving maps, Integral Equations Operator Theory 72 (2012), 7-66. (903) P. Šemrl, Comparability preserving maps on Hilbert space effect algebras, Comm. Math. Phys. 313 (2012), 375 384. (904) P. Šemrl and A.R. Sourour, Order preserving maps on hermitian matrices, J. Austral. Math. Soc. 95 (2013), 129 132. (905) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), 417 436. (906) P. Šemrl Automorphisms of Hilbert space effect algebras, J. Phys. A: Math. Theor. 48 (2015) 195301. (907) E. Størmer, Positive Linear Maps of Operator Algebras, Springer-Verlag, Berlin Heidelberg, 2013. (908) A. Tajmouati and A. El Bakkali, Linear maps preserving the Kato spectrum, Int. Journal of Math. Analysis 6 (2012), 253 263. (909) T. Tonev, Weak multiplicative operators on function algebras without units, Banach Cent. Publ. 91 (2010), 411 421. (910) T. Tonev and A. Luttman, Algebra isomorphisms between standard operator algebras, Studia Math. 191 (2009), 163 170. (911) T. Tonev and R. Yates, Norm-linear and norm-additive operators between uniform algebras, J. Math. Anal. Appl. 357 (2009), 45 53. (912) J. Xu, B. Zheng and A. Fošner, Linear maps preserving tensor product of rank-one Hermitian matrices, J. Aust. Math. Soc. 98 (2015), 407 428. (913) L. Yang, W. Zhang and J. Xu, Linear maps on upper triangular matrices spaces preserving idempotent tensor products, Abstr. Appl. Anal. (2014), Article ID 148321, 8 pages (914) Q. Yuan and K. He, Generalized Jordan semitriple maps on Hilbert space effect algebras, Adv. Math. Phys., Volume 2014, Article ID 216713, 5 pages. (915) B. Zheng, J. Xu nd A. Fošner, Linear maps preserving idempotents of tensor products of matrices, Linear Alg. Appl. 470 (2015), 25 39. (916) B. Zheng, J. Xu nd A. Fošner, Linear maps preserving rank of tensor products of matrices, Linear Multilinear Alg. 63 (2015), 366 376. 89
90 [79] L. Molnár and P. Šemrl, Elementary operators on self-adjoint operators, J. Math. Anal. Appl. 327 (2007), 302 309. (917) D.J. Kečkić Cyclic kernels of elementary operators on a reflexive Banach space, Linear Algebra Appl. 438 (2013), 2628 2633. (918) Y. Pang and W. Yang, Elementary operators on strongly double triangle subspace lattice algebras, Linear Algebra Appl. 433 (2010), 1678-1685. [80] L. Molnár and W. Timmermann, Mixture preserving maps on von Neumann algebra effects, Lett. Math. Phys. 79 (2007), 295 302. (919) K. He, J. Hou and C.K. Li, A geometric characterization of invertible quantum measurement maps, J. Funct. Anal. 264 (2013), 464 478. (920) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), 417 436. [81] L. Molnár and P. Šemrl, Spectral order automorphisms of the spaces of Hilbert space effects and observables, Lett. Math. Phys. 80 (2007), 239 255. (921) M. Bohata, Star order on operator and function algebras, Publ. Math. Debrecen 79 (2001), 211 229. (922) J.L. Cui, Nonlinear preserver problems on B(H), Acta Math. Sin. 27 (2011), 193 202. (923) E. Turilova, Automorphisms of spectral lattices of unbounded positive operators, Lobachevskii J. Math. 35 (2014), 259 263. (924) E. Turilova, Automorphisms of spectral lattices of positive contractions on von Neumann algebras, Lobachevskii J. Math. 35 (2014), 355 359. [82] G. Dolinar and L. Molnár, Maps on quantum observables preserving the Gudder order, Rep. Math. Phys. 60 (2007), 159 166. (925) M. Bohata, Star order on operator and function algebras, Publ. Math. Debrecen 79 (2001), 211 229. (926) M. Bohata and J. Hamhalter, Nonlinear maps on von Neumann algebras preserving the star order, Linear Multilinear Algebra 61 (2013), 998 1009. (927) M. Bohata and J. Hamhalter, Star order on JBW algebras, J. Math. Anal. Appl. 417 (2014), 873 888. (928) J.L. Cui, Nonlinear preserver problems on B(H), Acta Math. Sin. 27 (2011), 193 202. (929) X. Fang, N.S. Sze and X.M. Xu, The Cuntz comparison in the standard C -algebra, Abstr. Appl. Anal. 2014, Article ID 623520, 4 pages.
[83] L. Molnár, Isometries of the spaces of bounded frame functions, J. Math. Anal. Appl. 338 (2008), 710 715. (930) K. He and Q. Yuan, Non-linear isometries on Schatten-p class in atomic nest algebras, Abstr. Appl. Anal. Volume 2014, Article ID 810862. [84] L. Molnár, Maps on states preserving the relative entropy, J. Math. Phys. 49 (2008), 032114. (931) Z. Bai and S. Du, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A: Math. Theor. 43 (2010), 165210. (932) K. He, Q. Yuan and J. Hou, Entropy-preserving maps on quantum states, Linear Algebra Appl. 467 (2015), 243 253. (933) G. Ji and Y. Gao, Maps preserving operator pairs whose products are projections, Linear Algebra Appl. 433 (2010), 1348 1364. (934) H. Shi, G. Ji, Maps preserving norms of Jordan products on the space of self-adjoint operators, J. Shandong Univ. Nat. Sci. Ed.45 (2010), 80 84. [85] L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), 13 18. (935) G. Dolinar and B. Kuzma, General preservers of quasicommutativity, Canad. J. Math. 62 (2010), 758 786. (936) G. Dolinar and B. Kuzma, General preservers of quasicommutativity on self-adjoint operators, J. Math. Anal. Appl. 364 (2010), 567 575. (937) G. Dolinar and B. Kuzma, General preservers of quasicommutativity on Hermitian matrices, Electr. J. Lin. Alg. 17 (2008), 436 444. (938) M. Jiao, Maps preserving commutativity up to a factor on standard operator algebras, Journal of Mathematical Research with Applications 33 (2013), 708 716. (939) M. Jiao and X. Qi, Additive maps preserving commutativity up to a factor on nest algebras, Linear Multilinear Alg. 63 (2015), 1242 1256. (940) P.K. Liau, W.L. Huang and C.K. Liu, Nonlinear strong commutativity preserving maps on skew elements of prime rings with involution, Linear Algebra Appl. 436 (2012), 3099-3108. (941) C.K. Liu, Strong commutativity preserving generalized derivations on right ideals, Monatsh. Math. 166 (2012), 453 465. (942) C.K. Liu and P.K Liau, Strong commutativity preserving generalized derivations on Lie ideals, Linear Multilinear Algebra 59 (2011), 905 915. 91
92 (943) H. Radjavi and P. Šemrl, Linear maps preserving quasicommutativity, Studia Math. 184 (2008), 191 204. [86] L. Molnár and W. Timmermann, Maps on quantum states preserving the Jensen-Shannon divergence, J. Phys. A: Math. Theor. 42 (2009), 015301. (944) G. Nagy, Preservers for the p-norm of linear combinations of positive operators, Abstr. Appl. Anal., Volume 2014, Article ID 434121, 9 pages. [87] L. Molnár, Maps preserving the geometric mean of positive operators, Proc. Amer. Math. Soc. 137 (2009), 1763 1770. (945) F. Hiai and D. Petz, Introduction to Matrix Analysis and Applications, Springer and Hindustan Book Agance, New Delhi, India 2014, 332 p. (946) P. Šemrl Symmetries on bounded observables - a unified approach based on adjacency preserving maps, Integral Equations Operator Theory 72 (2012), 7-66. (947) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), 417 436. (948) P. Szokol, M.-C. Tsai and J. Zhang, Preserving problems of geodesic-affine maps and related topics on positive definite matrices, Linear Algebra Appl. 483 (2015), 293 308. [88] L. Molnár, Maps preserving the harmonic mean or the parallel sum of positive operators, Linear Algebra Appl. 430 (2009), 3058 3065. (949) P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), 417 436. [89] L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), 3849 3859. (950) S. Cobzas and M.D. Rus, Normal cones and Thompson metric, Topics in Mathematical Analysis and Applications Springer Optimization and Its Applications Volume 94, 2014, pp 209-258. (951) B. Lemmens and C. Walsh, Isometries of Polyhedral Hilbert geometries, J. Topol. Anal. 3 (2011), 213 241. (952) O. Hatori, Algebraic properties of isometries between groups of invertible elements in Banach algebras, J. Math. Anal. Appl. 376 (2011) 84-93. (953) O. Hatori, Isometries of the unitary groups in C - algebras, Studia Math. 221 (2014), 61 86. (954) O. Hatori, K. Kobayashi, T. Miura and S.E. Takahasi, Reflections and a generalization of the Mazur-Ulam theorem, Rocky Mountain J. Math. 42 (2012), 117 150.
(955) S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014), 152 164. [90] L. Molnár, Linear maps on observables in von Neumann algebras preserving the maximal deviation, J. London Math. Soc. 81 (2010), 161 174. (956) J. Hamhalter, Linear maps preserving maximal deviation and the Jordan structure of quantum systems, J. Math. Phys. 53 (2012), 122208. (957) Z. Léka, A note on central moments in C -algebras, J. Math. Ineq. 9 (2015), 165 175. (958) M.A. Rieffel, Standard deviation is a strongly Leibniz seminorm, New York J. Math., 20 (2014), 35 56. [91] L. Molnár and G. Nagy, Thompson isometries on positive operators: the 2-dimensional case, Electron. J. Lin. Alg. 20 (2010), 79 89. (959) S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014), 152 164. (960) O. Hatori, Isometries of the unitary groups in C - algebras, Studia Math. 221 (2014), 61 86. [92] L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl., 432 (2010), 3343 3350. (961) K. He, Q. Yuan and J. Hou, Entropy-preserving maps on quantum states, Linear Algebra Appl. 467 (2015), 243 253. (962) L. Jian, K. He, Q. Yuan and F. Wang, emphon partially trace distance preserving maps and reversible quantum channels, J. Applied Math. (2013), Article ID 474291, 5 pages (963) Y. Li and P. Busch, Von Neumann entropy and majorization, J. Math. Anal. Appl. 408 (2013), 384 393. (964) A. Sanami, A characterization of the Helmholtz free energy, J. Math. Phys. 54 (2013), 053301. (965) A. Sanami, A characterization of the entropy-gibbs transformations, Iran. J. Math. Chem. 5 (2014), 69 75. (966) X. Xia, Y. Jin, Y. Shang and L. Chen, Improved relativeentropy method for eccentricity filtering in roundness measurement based on information optimization, Research Journal of Applied Sciences, Engineering and Technology (RJASET) 5 (2013), 4649 4655. [93] L. Molnár, Kolmogorov-Smirnov isometries and affine automorphisms of spaces of distribution functions, Cent. Eur. J. Math. 9 (2011), 789 796. 93
94 (967) O. Hatori, Isometries of the unitary groups in C - algebras, Studia Math. 221 (2014), 61 86. [94] L. Molnár and W. Timmermann, Transformations on bounded observables preserving measure of compatibility, Int. J. Theor. Phys. 50 (2011), 3857 3863. (968) Gy.P. Gehér, Maps on real Hilbert spaces preserving the area of parallelograms and a preserver problem on self-adjoint operators, J. Math. Anal. Appl. 422 (2015), 1402 1413. (969) Gy. P. Gehér and G. Nagy, Maps on classes of Hilbert space operators preserving measure of commutativity, Linear Algebra Appl. 463 (2014), 205 227. (970) L. Huang, Y. Liu, Maps completely preserving commutativity and maps completely preserving Jordan zero-product, Linear Algebra Appl. 462 (2014), 233 249. [95] L. Molnár and P. Šemrl, Transformations of the unitary group on a Hilbert space, J. Math. Anal. Appl. 388 (2012), 1205 1217. (971) A. Bourhim, M. Mabrouk, Maps preserving the local spectrum of Jordan product of matrices, Linear Algebra Appl. 484 (2015), 379 395. (972) A. Bourhim, J. Mashreghi, and A. Stepanyan, Maps preserving the local spectrum of triple product of operators, Linear Multilinear Algebra 63 (2015), 765 773. (973) Gy. P. Gehér and G. Nagy, Maps on classes of Hilbert space operators preserving measure of commutativity, Linear Algebra Appl. 463 (2014), 205 227. (974) O. Hatori, Isometries on the spetial unitary group, in Function Spaces in Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 645, American Mathematical Society, 2015, pp. 119 134. [96] L. Molnár and G. Nagy, Isometries and relative entropy preserving maps on density operators, Linear Multilinear Algebra 60 (2012), 93 108. (975) O. Hatori, Isometries of the unitary groups in C - algebras, Studia Math. 221 (2014), 61 86. [97] O. Hatori and L. Molnár, Isometries of the unitary group, Proc. Amer. Math. Soc. 140 (2012), 2141 2154. (976) S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014), 152 164.
[98] O. Hatori, G. Hirasawa, T. Miura and L. Molnár, Isometries and maps compatible with inverted Jordan triple products on groups, Tokyo J. Math. 35 (2012), 385 410. (977) S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014), 152 164. [99] F. Botelho, J. Jamison and L. Molnár, Surjective isometries on Grassmann spaces, J. Funct. Anal. 265 (2013), 2226 2238. (978) Gy.P. Gehér, An elementary proof for the non-bijective version of Wigner?s theorem, Phys. Lett. A 378 (2014), 2054 2057. (979) G. Nagy, Isometries of the spaces of self-adjoint traceless operators, Linear Algebra Appl. 484 (2015), 1 12. [100] L. Molnár, Jordan triple endomorphisms and isometries of unitary groups, Linear Algebra Appl. 439 (2013), 3518 3531. (980) S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014), 152 164. (981) O. Hatori, Isometries on the spetial unitary group, in Function Spaces in Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 645, American Mathematical Society, 2015, pp. 119 134. [101] O. Hatori and L. Molnár, Isometries of the unitary groups and Thompson isometries of the spaces of invertible positive elements in C -algebras, J. Math. Anal. Appl. 409 (2014), 158 167. (982) S. Cobzas and M.D. Rus, Normal cones and Thompson metric, Topics in Mathematical Analysis and Applications Springer Optimization and Its Applications Volume 94, 2014, pp 209-258. (983) S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014), 152 164. (984) P. Szokol, M.-C. Tsai and J. Zhang, Preserving problems of geodesic-affine maps and related topics on positive definite matrices, Linear Algebra Appl. 483 (2015), 293 308. [102] L. Molnár, Bilocal *-automorphisms of B(H), Arch. Math. 102 (2014), 83 89. (985) C. Costara,Automatic continuity for linear surjective maps compressing the point spectrum, Oper. Matrices 9 (2015), 401 405. 95
96 (986) A.B.A. Essaleh, M. Niazi and A.M. Peralta, Bilocal *- automorphisms of B(H) satisfying the 3-local property, Arch. Math. 104 (2015), 157 164. (987) A. Ben Ali Essaleh, A.M. Peralta, M.I. Ramírez, Weaklocal derivations and homomorphisms on C*-algebras, Linear Multilinear Alg., to appear. [103] L. Molnár and G. Nagy, Transformations on density operators that leave the Holevo bound invariant, Int. J. Theor. Phys. 53 (2014), 3273 3278. (988) K. He, Q. Yuan and J. Hou, Entropy-preserving maps on quantum states, Linear Algebra Appl. 467 (2015), 243 253. [104] L. Molnár, Jordan triple endomorphisms and isometries of spaces of positive definite matrices, Linear Multilinear Alg. 63 (2015), 12 33. (989) S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014), 152 164. [105] L. Molnár, P. Šemrl and A.R. Sourour, Bilocal automorphisms, Oper. Matrices 9 (2015), 113 120. (990) C. Costara,Automatic continuity for linear surjective maps compressing the point spectrum, Oper. Matrices 9 (2015), 401 405. [106] L. Molnár, Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Dissertation for the D.Sc. degree of the Hungarian Academy of Sciences, 241 pages, 2004. (991) F. Cabello Sánchez, Local isometries on spaces of continuous functions, Math. Z. 251 (2005), 735 749. (992) O. Hatori, T. Miura, H. Oka and H. Takagi, 2-local isometries and 2-local automorphisms on uniform algebras, Int. Math. Forum 2 (2007), 2491 2502. (993) T.S.S.R.K. Rao, Some generalizations of Kadison s theorem: A survey, Extracta Math. 19 (2004), 319 334. (994) T.S.S.R.K. Rao, Local isometries of L(X, C(K)), Proc. Amer. Math. Soc. 133 (2005), 2729-2732.
97 LIST OF INDEPENDENT CITATIONS (without self- or co-authors citations) ordered according to the citing work [1] Z. Abdelali, A. Achchi and R. Marzouki, Maps preserving the local spectrum ofskew-product of operators, Linear Algebra Appl. 485 (2015), 58 71. (1) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [2] T. Abe, S. Akiyama, and O. Hatori, Isometries of the special orthogonal group, Linear Algebra Appl. 439 (2013), 174 188. (2) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [3] D.A.A. Ahmed and R. Tribak, Additivity of elementary maps on generalized matrix algebras, Journal of Algebra, Number Theory: Advances and Applications 13 (2015), 1 12. (3) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. (4) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. [4] A. Aizpuru and F. Rambla, There s something about the diameter, J. Math. Anal. Appl. 330 (2007), 949 962. (5) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [5] A. Aizpuru and F. Rambla, Diameter preserving linear bijections and C 0 (L) spaces, Bull. Belgian Math. Soc. 17 (2010), 377 383. (6) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [6] A. Aizpuru and M. Tamayo, On diameter preserving linear maps, J. Korean Math. Soc. 45 (2008), 197 204. (7) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [7] A. Aizpuru and M. Tamayo, Linear bijections which preserve the diameter of vector-valued maps, Linear Algebra Appl. 424 (2007), 371 377.
98 (8) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [8] J. Alaminos, M. Brešar, J. Extremera and A.R. Villena, Maps preserving zero products, Studia Math. 193 (2009), 131 159. (9) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [9] J. Alaminos, M. Brešar, J. Extremera and A.R. Villena, On bilinear maps determined by rank one idempotents, Linear Algebra Appl. 432 (2009), 738 743. (10) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [10] J. Alaminos, J. Extremera and A.R. Villena, Zero product preserving maps on Banach algebras of Lipschitz functions, J. Math. Anal. Appl. 369 (2010), 94 100. (11) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [11] J. Alaminos, J. Extremera and A.R. Villena, Approximately spectrum-preserving maps, J. Funct. Anal. 261 (2011), 233 266. (12) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [12] J. Alaminos, J. Extremera and A.R. Villena, Operators shrinking the Arveson spectrum, Publ. Math. Debrecen 80 (2012), 235 254. (13) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [13] H. Al-Halees and R.J. Fleming, On 2-local isometries on continuous vector-valued function spaces, J. Math. Anal. Appl. 354 (2009), 70-77. (14) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. (15) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), 349 352.
(16) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (17) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. [14] S. Ali and N.A. Dar, On left centralizers of prime rings with involution, Palestine Journal of Mathematics 3 (2014), 505 511. (18) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [15] S. Ali and C. Haetinger, On Jordan α-centralizers in rings and some applications, Bol. Soc. Paran. Mat. 26 (2008), 71 80. (19) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [16] G. An and J. Hou, Characterizations of isomorphisms by multiplicative maps on operator algebras, Northeast. Math. J. 17 (2001), 438 448. (20) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), 1 13. (21) L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), 727 736. [17] G. An and J. Hou, Rank-preserving multiplicative maps on B(X), Linear Algebra Appl. 342 (2002), 59 78. (22) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), 1 13. (23) L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), 727 736. [18] G. An and J. Hou, Multiplicative maps on matrix algebras, J. Shanxi Teacher s Univ. Nat. Sci. Ed. 16 (2002), 1 4. (24) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), 1 13. (25) L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), 727 736. [19] R.L. An and J.C. Hou, Characterizations of Jordan -skew multiplicative maps on operator algebras of indefinite inner product spaces, Chinese Ann. Math. 26 (2005), 569 582. 99
100 (26) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (27) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [20] R.L. An and J.C. Hou, Additivity of Jordan multiplicative maps on Jordan operator algebras, Taiwanese J. Math. 10 (2006), 45 64. (28) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (29) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [21] R.L. An and. J.C. Hou, A characterization of *-automorphism on B(H), Acta Math. Sin. 26 (2010), 287 294. (30) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. (31) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [22] R. An and J. Hou, Characterizations of Lie-skew multiplicative maps on operator algebras of indefinite inner product spaces, Publ. Math. (Debrecen) 77 (2010), 101 113. (32) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [23] R. An and J. Hou, Jordan elementary map on operator algebras, Adv. in Math. (China) 41 (2012), 63 72. (33) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. (34) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. [24] R.L. An and J.C. Hou, Jordan ring isomorphism on the space of symmetric operators, Acta Math. Sin. 55 (2012), 991 1000. (35) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302.
101 (36) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [25] R. An, C. Xue and J. Hou, Equivalent characterization of derivations on operator algebras, Linear Multilinear Algebra, to appear. (37) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [26] P. Ara and M. Mathieu, Local multipliers of C*-algebras, Springer Monographs in Mathematics. Springer-Verlag, London, 2003. (38) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. [27] J. Araujo, Linear biseparating maps between spaces of vectorvalued differentiable functions and automatic continuity, Adv. Math. 187 (2004), 488-520. (39) L. Molnár, On rings of differentiable functions, Grazer Math. Ber. 327 (1996), 13 16. [28] J. Araujo, Multiplicative bijections of semigroups of intervalvalued continuous functions, Proc. Amer. Math. Soc., 137 (2009), 171 178. (40) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), 755 772. [29] J. Araujo and K. Jarosz, Biseparating maps between operator algebras, J. Math. Anal. Appl. 282 (2003), 48 55. (41) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. [30] M. Ashraf and S. Ali, On (α, β) -derivations in H -algebras, Adv. Algebra 2 (2009), 23 31. (42) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [31] S. Artstein-Avidan and B. A. Slomka, Order isomorphisms in cones and a characterization of duality for ellipsoids, Sel. Math. New Ser. 18 (2012), 391 415. (43) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), 5904 5909.
102 [32] M. Ashraf and M.R. Mozumder, On Jordan α -centralizers in semiprime rings with involution, Int. J. Contemp. Math. Sciences 7 (2012), 1103 1112. (44) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [33] M. Ashraf, N. Rehman, S. Ali and M.R. Mozumder, On generalized (θ, φ)-derivations in semiprime rings with involution, Math. Slovaca 62 (2012), 451 460. (45) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [34] M.J. Atteya, On generalized derivations of semiprime rings, Int. J. Algebra 4 (2010), 591 598. (46) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [35] M.J. Atteya, A note on generalized Jordan derivations in semiprime rings, Mathematics and Statistics 3 (2015), 7 9. (47) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [36] M.J. Atteya and D.I. Resan, Commuting derivations of semiprime rings, Int. J. Contemp. Math. Sciences 6 (2011), 1151 1158. (48) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [37] SH.A. Ayupov and K.K. Kudaybergenov, 2-local derivations and automorphisms on B(H), J. Math. Anal. Appl. 395 (2012), 15 18. (49) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [38] S. Ayupov, K. Kudaybergenov and A. Alauadinova, 2-Local derivations on matrix algebras over commutative regular algebras, Linear Algebra Appl. 439 (2013), 1294 1311. (50) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [39] SH.A. Ayupov, K.K. Kudaybergenov, B.O. Nurjanov and A.A. Alauadinov, Local and 2-local derivations on noncommutative Arens algebras, Math. Slovaca 64 (2014), 423 432. (51) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874.
103 [40] Z. Bai and S. Du, Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Phys. A: Math. Theor. 43 (2010), 165210. (52) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. (53) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907 1912. (54) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450. (55) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), 5904 5909. (56) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. (57) L. Molnár, Maps on states preserving the relative entropy, J. Math. Phys. 49 (2008), 032114. [41] Z. Bai and S. Du, Maps preserving products XY Y X on von Neumann algebras, J. Math. Anal. Appl. 386 (2012), 103 109. (58) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. (59) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. [42] (1) Z. Bai and S. Du, Strong commutativity preserving maps on rings, Rocky Mountain J. Math. 44 (2014), 733 742. (60) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. (61) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [43] Z. Bai and J. Hou The additive maps on operator algebras, J. Shanxi Teacher s Univ. Nat. Sci. Ed. 15 (2001), 1 6. (62) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. [44] Z. Bai and J. Hou, Linear maps and additive maps that preserve operators annihilated by a polynomial, J. Math. Anal. Appl. 271 (2002), 139 154.
104 (63) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. [45] Z. Bai and J. Hou, Additive maps preserving orthogonality or commuting with. k, Acta Mathematica Sinica 45 (2002), 863 870. (64) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. [46] Z. Bai and J. Hou, Characterizing isomorphisms between standard operator algebras by spectral functions, J. Oper. Theo. 54 (2005), 291 303. (65) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (66) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [47] Z. Bai, J. Hou and S. Du, Additive maps preserving rank-one operators on nest algebras, Linear and Multilinear Algebra 58 (2010), 269 283. (67) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. (68) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [48] D. Bakič and B. Guljaš, Operators on Hilbert H -modules, J. Operator Theory 46 (2001), 123 141. (69) L. Molnár, Modular bases in a Hilbert A-module, Czech. Math. J. 42 (1992), 649 656. [49] D. Bakič and B. Guljaš, Hilbert C -modules over C -algebras of compact operators, Acta Sci. Math. (Szeged) 68 (2002), 249 269. (70) L. Molnár, Modular bases in a Hilbert A-module, Czech. Math. J. 42 (1992), 649 656. (71) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554.
105 [50] D. Bakič and B. Guljaš, Wigner s theorem in Hilbert C - modules over C -algebras of compact operators, Proc. Amer. Math. Soc. 130 (2002), 2343 2349. (72) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. (73) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. [51] D. Bakič and B. Guljaš, Wigner s theorem in a class of Hilbert C -modules, J. Math. Phys. 44 (2003), 2186 2191. (74) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), 44 55. (75) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. (76) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. [52] Banić, D. Ilišević and S Varošanec, Bessel and Grüss type inequalities in inner product modules, Proc. Edinburgh Math. Soc. 50 (2007), 23 36. (77) L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), 323 325. [53] M. Barczy and M. Tóth, Local automorphisms of the sets of states and effects on a Hilbert space, Rep. Math. Phys. 48 (2001), 289 298. (78) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), 415 421. (79) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (80) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), 568 586. (81) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), 1 13. (82) L. Molnár, Reflexivity of the automorphism and isometry groups of C -algebras in BDF theory, Arch. Math. 74 (2000), 120 128. (83) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), 231 238. (84) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45.
106 (85) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421. (86) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), 91 100. [54] B.A. Barnes and A.K. Roy, Diameter preserving maps on various classes of function spaces, Studia Math. 153 (2002), 127 145. (87) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [55] P. Battyányi, On the range of a Jordan *-derivation, Comment. Math. Univ. Carolinae 37 (1996), 659 665. (88) L. Molnár, On the range of a normal Jordan *-derivation, Comment. Math. Univ. Carolinae 35 (1994), 691 695. (89) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. (90) L. Molnár, The range of a Jordan *-derivation on an H - algebra, Acta Math. Hung. 72 (1996), 261 267. (91) L. Molnár, The range of a Jordan *-derivation, Math. Japon. 44 (1996), 353 356. (92) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), 44 55. [56] P. Battyányi, Jordan *-derivations with respect to the Jordanproduct, Publ. Math. (Debrecen) 48 (1996), 327 338. (93) L. Molnár, On the range of a normal Jordan *-derivation, Comment. Math. Univ. Carolinae 35 (1994), 691 695. (94) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. (95) L. Molnár, The range of a Jordan *-derivation, Math. Japon. 44 (1996), 353 356. (96) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), 44 55. [57] K.I. Beidar, M. Brešar, M.A. Chebotar, Jordan isomorphisms of triangular matrix algebras over a connected commutative ring, Linear Algebra Appl. 312 (2000), 197 201. (97) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [58] K.I. Beidar, M. Brešar and M.A. Chebotar, Functional identities on upper triangular matrix algebras, J. Math. Sci. 102 (2000), 4557 4565.
107 (98) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [59] A. Ben Ali Essaleh, A.M. Peralta, M.I. Ramírez, Weak-local derivations and homomorphisms on C*-algebras, Linear Multilinear Alg., to appear. (99) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), 415 421. (100) L. Molnár, Bilocal *-automorphisms of B(H), Arch. Math. 102 (2014), 83 89. [60] M. Bendaoud, Preservers of local spectrum of matrix Jordan triple products, Linear Algebra Appl. 471 (2015), 604 614. (101) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [61] M. Bendaoud, M. Jabbar and M. Sarih Preservers of local spectra of operator products, Linear and Multilinear Algebra 63 (2015), 806 819. (102) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [62] I. Bengtssone and K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, Cambridge University Press, 2006. (103) L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001), 299 303. [63] D. Benkovič, Jordan derivations and antiderivations on triangular matrices, Linear Algebra Appl. 397 (2005), 235 244. (104) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [64] D. Benkovič and D. Eremita, Characterizing left centralizers by their action on a polynomial, Publ. Math. (Debrecen) 64 (2004), 343 351. (105) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [65] M. Bessenyei, Functional equations and finite groups of substitutions, Amer. Math. Monthly 117 (2010), 921-927.
108 (106) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [66] A. Blanco and A. Turnšek, On maps that preserve orthogonality in normed spaces, Proc. Roy. Soc. Edinb. 136 (2006), 709 716. (107) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [67] C. Boboc, S. Dăscălescu and L. van Wyk, Jordan isomorphisms of 2-torsionfree triangular rings, Linear and Multilinear Alg., to appear. (108) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [68] A. Bodaghi, S.Y. Jang and C. Park, On the stability of Jordan *-derivation pairs, Results. Math. 64 (2013), 289 303. (109) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), 44 55. [69] M. Bohata, Star order on operator and function algebras, Publ. Math. Debrecen 79 (2001), 211 229. (110) L. Molnár and P. Šemrl, Spectral order automorphisms of the spaces of Hilbert space effects and observables, Lett. Math. Phys. 80 (2007), 239 255. (111) G. Dolinar and L. Molnár, Maps on quantum observables preserving the Gudder order, Rep. Math. Phys. 60 (2007), 159 166. [70] M. Bohata and J. Hamhalter, Nonlinear maps on von Neumann algebras preserving the star order, Linear Multilinear Algebra 61 (2013), 998 1009. (112) G. Dolinar and L. Molnár, Maps on quantum observables preserving the Gudder order, Rep. Math. Phys. 60 (2007), 159 166. (113) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [71] M. Bohata and J. Hamhalter, Star order on JBW algebras, J. Math. Anal. Appl. 417 (2014), 873 888. (114) G. Dolinar and L. Molnár, Maps on quantum observables preserving the Gudder order, Rep. Math. Phys. 60 (2007), 159 166.
109 (115) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [72] A. Bonami, G. Garrigos and P. Jaming, Discrete radar ambiguity problems, Appl. Comput. Harmon. Anal. 23 (2007), 388-414. (116) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. [73] F. Botelho and J. Jamison, Algebraic and topological reflexivity properties of l p (X) spaces, J. Math. Anal. Appl., 346 (2008), 141-144. (117) L. Molnár and B. Zalar, On automatic surjectivity of Jordan homomorphisms, Acta Sci. Math. (Szeged) 61 (1995), 413 424. (118) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. [74] F. Botelho and J. Jamison, Algebraic reflexivity of C(X, E) and Cambern s theorem, Studia Math. 186 (2008), 295-302. (119) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (120) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. [75] F. Botelho and J. Jamison, Topological reflexivity of spaces of analytic functions, Acta Sci. Math. (Szeged) 75 (2009), 91 102. (121) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (122) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. [76] F. Botelho and J. Jamison, Algebraic reflexivity of sets of bounded operators on vector valued Lipschitz functions, Linear Algebra Appl. 432 (2010), 3337-3342. (123) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (124) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430.
110 (125) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [77] F. Botelho and J. Jamison, Homomorphisms on algebras of Lipschitz functions, Studia Math. 199 (2010), 95 106. (126) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (127) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), 1 13. (128) L. Molnár, A reflexivity problem concerning the C - algebra C(X) B(H), Proc. Amer. Math. Soc. 129 (2001), 531 537. (129) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. (130) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [78] F. Botelho and J. Jamison, Algebraic reflexivity of tensor product spaces, Houston J. Math. 36 (2010), 1133 1137. (131) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (132) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. [79] F. Botelho and J. Jamison, Algebraic and topological reflexivity of spaces of Lipschitz functions, Rev. Roumaine Math. Pures Appl. 56 (2011), 105-114. (133) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), 415 421. (134) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (135) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Soc. 42 (1999), 17 36. (136) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99.
111 (137) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. [80] F. Botelho and J. Jamison, Homomorphisms of noncommutative Banach *-algebrs of Lipschitz functions, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp. 73 78. (138) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Soc. 42 (1999), 17 36. (139) L. Molnár, A reflexivity problem concerning the C - algebra C(X) B(H), Proc. Amer. Math. Soc. 129 (2001), 531 537. (140) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. [81] F. Botelho and T.S.S.R.K. Rao, On algebraic reflexivity of sets of surjective isometries between spaces of weak continuous functions, J. Math. Anal. Appl. 432 (2015), 367 373. (141) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [82] N. Boudi and M. Mbekhta, Additive maps preserving strongly generalized inverses, J. Operator Theory 64 (2010), 117-130. (142) L. Molnár, The automorphism and isometry groups of l (N, B(H)) are topologically reflexive, Acta Sci. Math. (Szeged) 64 (1998), 671 680. [83] A. Bourhim, M. Mabrouk, Maps preserving the local spectrum of Jordan product of matrices, Linear Algebra Appl. 484 (2015), 379 395. (143) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (144) L. Molnár and P. Šemrl, Transformations of the unitary group on a Hilbert space, J. Math. Anal. Appl. 388 (2012), 1205 1217. [84] A. Bourhim and J. Mashreghi, Maps preserving the local spectrum of product of operators, Glasgow Math. J. 57 (2015), 709 718.
112 (145) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [85] A. Bourhim, J. Mashreghi, and A. Stepanyan, Nonlinear maps preserving the minimum and surjectivity moduli, Linear Algebra Appl. 463 (2014), 171 189. (146) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [86] A. Bourhim, J. Mashreghi, and A. Stepanyan, Maps preserving the local spectrum of triple product of operators, Linear Multilinear Algebra 63 (2015), 765 773. (147) L. Molnár and P. Šemrl, Transformations of the unitary group on a Hilbert space, J. Math. Anal. Appl. 388 (2012), 1205 1217. [87] J. Bračič, Algebraic reflexivity for semigroups of operators, Electr. J. Lin. Alg. 18 (2009), 745 760. (148) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. (149) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [88] M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Royal Soc. Edinburgh 137 (2007), 9 21. (150) L. Molnár, Locally inner derivations of standard operator algebras, Math. Bohem. 121 (1996), 1 7. [89] M. Brešar and M. Fošner, On rings with involution equipped with some new product, Publ. Math. (Debrecen) 57 (2000), 121 134. (151) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. [90] M. Brešar and Š. Špenko Determining elements in Banach algebras through spectral properties, J. Math. Anal. Appl. 393 (2012), 144 150. (152) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120.
113 [91] M. Burgos, F.J. Fernndez-Polo, J.J. Garcés, J.M. Moreno and A.M. Peralta, Orthogonality preservers in C*-algebras, JB*- algebras and JB*-triples, J. Math. Anal. Appl. 348 (2008), 220-233. (153) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [92] M. Burgos, F.J. Fernandéz-Polo, J.J. Garcés and A.M. Peralta, A Kowalski-Slodkowski theorem for 2-local *-homomorphisms on von Neumann algebras, RACSAM, to appear. (154) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [93] M. Burgos, F.J. Fernandez-Polo, J.J. Garces, A.M. Peralta, 2-local triple homomorphisms on von Neumann algebras and JBW -triples, J. Math. Anal. Appl. 426 (2015), 43 63. (155) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), 415 421. (156) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), 349 352. (157) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. (158) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. (159) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), 231 238. [94] M. Burgos, J.J. Garcés and A.M. Peralta, Automatic continuity of biorthogonality preservers between compact C -algebras and von Neumann algebras, J. Math. Anal. Appl. 376 (2011), 221 230. (160) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. [95] M. Burgos, A. Jiménez-Vargas and M. Villegas-Vallecillos, Nonlinear conditions for weighted composition operators between Lipschitz algebras, J. Math. Anal. Appl. 359 (2009), 1 14. (161) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120.
114 [96] M. Burgos, A. Jiménez-Vargas and M. Villegas-Vallecillos, Automorphisms on algebras of operator-valued Lipschitz maps, Publ. Math. (Debrecen) 81 (2012), 127 144. (162) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), 415 421. (163) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (164) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), 568 586. (165) L. Molnár, Reflexivity of the automorphism and isometry groups of C -algebras in BDF theory, Arch. Math. 74 (2000), 120 128. (166) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. (167) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. [97] F. Cabello Sánchez, Diameter preserving linear maps and isometries, Arch. Math. 73 (1999), 373 379. (168) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [98] F. Cabello Sánchez, Diameter preserving linear maps and isometries II, Proc. Indian Acad. Sci. 110 (2000), 205 211. (169) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [99] F. Cabello Sánchez, The group of automorphisms of L is algebraically reflexive, Studia Math. 161 (2004), 19 32. (170) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), 415 421. (171) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (172) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), 568 586. (173) L. Molnár, The automorphism and isometry groups of l (N, B(H)) are topologically reflexive, Acta Sci. Math. (Szeged) 64 (1998), 671 680.
115 (174) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (175) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. (176) L. Molnár, Reflexivity of the automorphism and isometry groups of C -algebras in BDF theory, Arch. Math. 74 (2000), 120 128. [100] F. Cabello Sánchez, Convex transitive norms on spaces of continuous functions, Bull. London. Math. Soc. 37 (2005), 107 118. (177) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [101] F. Cabello Sánchez, Local isometries on spaces of continuous functions, Math. Z. 251 (2005), 735 749. (178) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), 568 586. (179) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (180) L. Molnár, Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Dissertation for the D.Sc. degree of the Hungarian Academy of Sciences, 241 pages, 2004. [102] F. Cabello Sánchez, Automorphisms of algebras of smooth functions and equivalent functions, Differ. Geom. Appl. 30 (2012), 216-221. (181) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), 568 586. (182) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (183) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [103] F. Cabello Sánchez, J. Cabello Sánchez, Z. Ercan and S. Önal, Memorandum on multiplicative bijections and order, Semigroup Forum 79 (2009), 193 209.
116 (184) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), 755 772. (185) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [104] A. Cabello Sánchez and F. Cabello Sánchez, Maximal norms on Banach spaces of continous functions, Math. Proc. Camb. Philos. Soc. 129 (2000), 325 330. (186) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [105] G. Cassinelli, E. De Vito, P.J. Lahti and A. Levrero, The Theory of Symmetry Actions in Quantum Mechanics, Lecture Notes in Physics 654, Springer, 2004. (187) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907 1912. (188) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450. [106] J.T. Chan, C.K. Li and N.S. Sze, Mappings on Matrices: Invariance of Functional Values of Matrix Products, J. Austral. Math. Soc. 81 (2006), 165 184. (189) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (190) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. (191) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [107] J.T. Chan, C.K. Li and N.S. Sze, Mappings preserving spectra of product of matrices, Proc. Amer. Math. Soc. 135 (2007), 977 986. (192) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (193) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874.
117 [108] M.A. Chebotar, Y. Fong and P.H. Lee, On maps preserving zeros of the polynomial xy yx, Linear Algebra Appl. 408 (2005), 230 243. (194) L. Molnár, On the range of a normal Jordan *- derivation, Comment. Math. Univ. Carolinae 35 (1994), 691 695. (195) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. (196) L. Molnár, The range of a Jordan *-derivation, Math. Japon. 44 (1996), 353 356. [109] M.A. Chebotar, W.F. Ke and P.H. Lee, Maps characterized by action on zero products, Pacific J. Math. 216 (2004), 217 228. (197) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), 568 586. (198) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. (199) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), 231 238. (200) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), 91 100. (201) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (202) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), 349 352. [110] M.A. Chebotar, W. Ke and P. Lee, Maps preserving zero Jordan products on Hermitian operators, Illinois J. Math. 49 (2005), 445 452. (203) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (204) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), 91 100. (205) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), 5904 5909. (206) L. Molnár, Conditionally multiplicative maps on the set of all bounded observables preserving compatibility, Linear Algebra Appl. 349 (2002), 197 201. (207) L. Molnár and M. Barczy, Linear maps on the space of all bounded observables preserving maximal deviation, J. Funct. Anal. 205 (2003), 380 400.
118 [111] M.A. Chebotar, W.F. Ke, P.H. Lee and L.S. Shiao, On maps preserving certain algebraic properties, Canad. Math. Bull. 48 (2005), 355 369. (208) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), 568 586. (209) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), 91 100. (210) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [112] L. Chen, F. Lu and T. Wang, Local and 2-local Lie derivations of operator algebras on Banach spaces, Integr. Equ. Oper. Theory 77 (2013), 109 121. (211) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [113] Z. Chen and D. Wang, 2-Local automorphisms of finitedimensional simple Lie algebras, Linear Algebra Appl. 486 (2015) 335 344. (212) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [114] X.H. Cheng and W. Jing, Additivity of maps on triangular algebras, Electr. J. Lin. Alg. 17 (2008), 597 615. (213) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. (214) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. [115] W.S. Cheung, S. Fallat and C.K. Li, Multiplicative preservers on semigroups of matrices, Linear Algebra Appl. 355 (2002), 173 186. (215) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), 1 13. [116] W.S. Cheung and C.K. Li, Linear operators preserving generalized numerical ranges and radii on certain triangular algebras of matrices, Canad. Math. Bull. 44 (2001), 270 281. (216) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [117] G. Chevalier, Lattice approach to Wigner-type theorems, Int. J. Theor. Phys. 44 (2005), 1905 1915.
119 (217) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), 1463 1466. (218) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [118] G. Chevalier, Wigner s theorem and its generalizations, in Engesser, Kurt (ed.) et al., Handbook of quantum logic and quantum structure: Quantum structures, Amsterdam: Elsevier. (2007), 429-475. (219) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), 137 148. (220) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. (221) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. (222) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), 785 791. (223) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), 1463 1466. (224) L. Molnár, A Wigner-type theorem on symmetry transformations in Banach spaces, Publ. Math. (Debrecen) 58 (2000), 231 239. (225) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421. (226) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [119] G. Chevalier, Wigner-type theorems for projections, Int. J. Theor. Phys. 47 (2008), 69 80. (227) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), 1463 1466. (228) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [120] J. Chmieliński, Orthogonality preserving property and its Ulam stability, in Functional Equations in Mathematical Analysis,
120 Springer Optimization and Its Applications, 2012, Volume 52, Part 1, 33 58. (229) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [121] J. Chmieliński, D. Ilišević, M.S. Moslehian and G.H. Sadeghi, Perturbation of the Wigner equation in inner product C - modules, J. Math. Phys. 49 (2008), 033519. (230) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. [122] W.L. Chooi, Rank-one non-increasing additive maps between block triangular matrix algebras, Linear and Multilinear Algebra 58 (2010), 715 740. (231) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [123] W.L. Chooi and M.H. Lim, Rank-one nonincreasing mappings on triangular matrices and some related preserver problems, Linear Multilinear Alg. 49 (2001), 305 336. (232) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [124] W.L. Chooi and M.H. Lim, Coherence invariant mappings on block triangular matrix spaces, Linear Algebra Appl. 346 (2002), 199 238. (233) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [125] W.L. Chooi and M.H. Lim, Some linear preserver problems on block triangular matrix algebras, Linear Algebra Appl. 370 (2003), 25 39. (234) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [126] W.L. Chooi and M.H. Lim, Additive rank-one preserver on block triangular matrix spaces, Linear Algebra Appl. 416 (2006), 588-607. (235) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206.
121 [127] S. Clark, C.K. Li and L. Rodman, Spectral radius preservers of products of nonnegative matrices, Banach J. Math. Anal. 2 (2008), 107-120. (236) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [128] S. Cobzas and M.D. Rus, Normal cones and Thompson metric, Topics in Mathematical Analysis and Applications Springer Optimization and Its Applications Volume 94, 2014, pp 209-258. (237) L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), 3849 3859. (238) O. Hatori and L. Molnár, Isometries of the unitary groups and Thompson isometries of the spaces of invertible positive elements in C -algebras, J. Math. Anal. Appl. 409 (2014), 158 167. [129] C. Costara, Automatic continuity for linear surjective maps compressing the point spectrum, Oper. Matrices 9 (2015), 401 405. (239) L. Molnár, Bilocal *-automorphisms of B(H), Arch. Math. 102 (2014), 83 89. (240) L. Molnár, P. Šemrl and A.R. Sourour, Bilocal automorphisms, Oper. Matrices 9 (2015), 113 120. [130] J. Cui, Linear maps leaving zeros of a polynomial invariant, Acta Math. Sinica 50 (2007), 493 496. (241) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [131] J.L. Cui, Nonlinear preserver problems on B(H), Acta Math. Sin. 27 (2011), 193 202. (242) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), 5904 5909. (243) L. Molnár and P. Šemrl, Spectral order automorphisms of the spaces of Hilbert space effects and observables, Lett. Math. Phys. 80 (2007), 239 255. (244) G. Dolinar and L. Molnár, Maps on quantum observables preserving the Gudder order, Rep. Math. Phys. 60 (2007), 159 166. [132] J. Cui and J. Hou, Linear maps on von Neumann algebras preserving zero products or tr-rank, Bull. Austral. Math. Soc. 65 (2002), 79 91.
122 (245) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. (246) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), 311-321. [133] J. Cui and J. Hou, Linear maps preserving ideals of C - algebras, Proc. Amer. Math. Soc. 131 (2003), 3441 3446. (247) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), 311-321. [134] J. Cui and J. Hou, Linear maps preserving idempotence on nest algebras, Acta Math. Sinica 20 (2004), 807 820. (248) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [135] J. Cui and J. Hou, Linear maps preserving indefinite orthogonality on C -algebras, Chinese Ann. Math., Ser. A 25 (2004), 437 444. (249) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. (250) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [136] J. Cui and J. Hou, Linear maps preserving elements annihilated by a polynomial XY Y X, Studia Math. 174 (2006), 183 199. (251) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. (252) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [137] J. Cui and J. Hou, A characterization of indefinite-unitary invariant linear maps and relative results, Northeast. Math. J. 22(2006), 89 98. (253) V. Mascioni and L. Molnár, Linear maps on factors which preserve the extreme points of the unit ball, Canad. Math. Bull. 41 (1998), 434 441.
123 (254) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [138] J. Cui and J. Hou, Maps leaving functional values of operator products invariant, Linear Algebra Appl. 428 (2008), 1649 1663. (255) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [139] J. Cui, J. Hou and B. Li, Linear preservers on upper triangular operator matrix algebras, Linear Algebra Appl. 336 (2001), 29 50. (256) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [140] J. Cui, J. Hou and C-G. Park, Indefinite orthogonality preserving additive maps, Arch. Math. 83 (2004), 548 557. (257) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. (258) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [141] J. Cui and C.K. Li, Maps preserving product XY Y X on factor von Neumann algebras, Linear Algebra Appl. 431 (2009), 833-842. (259) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. [142] J. Cui and C.K. Li, Maps preserving peripheral spectrum of Jordan products of operators, Oper. Matrices 6 (2012), 129 146. (260) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [143] J. Cui, C.K. Li and Y.T. Poon, Pseudospectra of special operators and pseudospectrum preservers, J. Math. Anal. Appl. 419 (2014), 1261 1273. (261) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120.
124 [144] J. Cui, Q. Li, J. Hou and X. Qi, Some unitary similarity invariant sets preservers of skew Lie products, Linear Algebra Appl. 457 (2014), 76 92. (262) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. (263) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. [145] J. Cui and C. Park, Maps preserving strong skew Lie product on factor Von Neumann algebras, Acta Math. Sci. (Ser. B Engl. Ed.) 32 (2012), 531 538. (264) L. Molnár, On the range of a normal Jordan *- derivation, Comment. Math. Univ. Carolinae 35 (1994), 691 695. (265) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. [146] L. Dai and F. Lu, Nonlinear maps preserving Jordan *- products, J. Math. Anal. Appl. 409 (2014), 180 188. (266) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. [147] M.N. Daif and M.S. Tammam El-Sayiad, An identity related to generalized derivations, Internat. J. Algebra 1 (2007), 547 550. (267) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [148] M.N. Daif and M.S. Tammam El-Sayiad, On generalized derivations of semiprime rings with involution, Internat. J. Algebra 1 (2007), 551 555. (268) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [149] S. Dăscălescu, S. Preduţ, L. van Wyk, Jordan isomorphisms of generalized structural matrix rings, Linear Multilinear Alg. 61 (2013), 369 376. (269) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [150] J. Dauxois, G.M. Nkiet, Y. Romain, Canonical analysis relative to a closed subspace, Linear Algebra Appl. 388 (2004), 119 145. (270) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421.
125 [151] Q. Di and J. Hou, Maps preserving numerical range of products of operators, J. Shanxi Teacher s Univ. Nat. Sci. Ed. 19 (2005), 1 4. (271) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [152] M. Dobovišek, Maps from M n (F) to F that are multiplicative with respect to Jordan triple product, Publ. Math. (Debrecen) 73 (2008), 89 100. (272) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (273) L. Molnár, A remark to the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices, Proc. Amer. Math. Soc., 134 (2006) 2839 2848. [153] M. Dobovišek, Maps from M 2 (F) to M 3 (F) that are multiplicative with respect to the Jordan triple product, Aequationes Math., 85 (2013), 539 552. (274) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. [154] M. Dobovišek, B. Kuzma, G. Lešnjak, C.K. Li and T. Petek, Mappings that preserve pairs of operators with zero triple Jordan product, Linear Algebra Appl. 426 (2007), 255 279. (275) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [155] G. Dolinar, Maps on M n preserving Lie products, Publ. Math. (Debrecen) 71 (2007), 467 478. (276) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [156] G. Dolinar, A. Guterman and J. Marovt, Monotone transformations on B(H) with respect to the left-star and the right-star order, Math. Inequal. Appl. 17 (2014), 573 589. (277) L. Molnár and E. Kovács, An extension of a characterization of the automorphisms of Hilbert space effect algebras, Rep. Math. Phys. 52 (2003), 141 149. [157] G. Dolinar and B. Kuzma, General preservers of quasicommutativity, preprint, Canad. J. Math. 62 (2010), 758 786. (278) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262.
126 (279) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. (280) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), 13 18. [158] G. Dolinar and B. Kuzma, General preservers of quasicommutativity on self-adjoint operators, J. Math. Anal. Appl. 364 (2010), 567 575. (281) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. (282) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), 13 18. [159] G. Dolinar and B. Kuzma, General preservers of quasicommutativity on Hermitian matrices, Electr. J. Lin. Alg. 17 (2008), 436-444. (283) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), 13 18. [160] C. Dryzun and D. Avnir, Chirality measures for vectors, matrices, operators and functions, ChemPhysChem 12 (2011), 197 205. (284) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), 137 148. (285) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. (286) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [161] H. Du and H.X. Cao, Generalization of Uhlhorn s theorem, J. Yanan Univ. Nat. Sci. 24 (2005), 7 8. (287) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [162] H. Du and H.X. Cao, Some remarks on Wigner s theorem, Fangzhi Gaoxiao Jichukexue Xuebao 22 (2009), 346 348.
127 (288) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. (289) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. [163] H.K. Du, C.Y. Deng and Q.H. Li, On the infimum problem of Hilbert space effects, Sci. China Ser. A 49 (2006), 545 556. (290) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287 300. [164] S.P. Du, J.C. Hou and Z.F. Bai, Additive maps preserving similarity or asymptotic similarity on B(H), Linear and Multilinear Algebra 55 (2007), 209 218. (291) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [165] Y. Du and Y. Wang, Additivity of Jordan maps on triangular algebras, Linear Multiliear Alg. 60 (2012), 933 940. (292) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [166] Y. Du and Y. Wang, Jordan homomorphisms of upper triangular matrix rings over a prime ring, Linear Algebra Appl. 458 (2014), 197 206. (293) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [167] A. Duma and C. Vladimirescu, Non-decomposable inner product spaces, Math. Sci. Res. J. 8 (2004), 67 84. (294) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [168] S. Dutta and T.S.S.R.K. Rao, Algebraic reflexivity of some subsets of the isometry group, Linear Algebra Appl. 429 (2008), 1522 1527. (295) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. (296) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007.
128 [169] R. El Harti and M Mabrouk, Maps compressing and expanding the numerical range on C -algebras, Linear Multilinear Alg., to appear. (297) L. Molnár, The automorphism and isometry groups of l (N, B(H)) are topologically reflexive, Acta Sci. Math. (Szeged) 64 (1998), 671 680. [170] A.B.A. Essaleh, M. Niazi and A.M. Peralta, Bilocal *- automorphisms of B(H) satisfying the 3-local property, Arch. Math. 104 (2015), 157 164. (298) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. (299) L. Molnár, Bilocal *-automorphisms of B(H), Arch. Math. 102 (2014), 83 89. [171] D. Ethier, T. Lindberg, and A. Luttman, Polynomial identification in uniform and operator algebras, Ann. Funct. Anal. 1 (2010), 105 122. (300) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (301) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [172] X. Fang, N.S. Sze and X.M. Xu, The Cuntz comparison in the standard C -algebra, Abstr. Appl. Anal. 2014, Article ID 623520, 4 pages. (302) G. Dolinar and L. Molnár, Maps on quantum observables preserving the Gudder order, Rep. Math. Phys. 60 (2007), 159 166. [173] A.K. Faraj and A.H. Majeed, On Left σ-centralizers of Jordan ideals and generalized Jordan left (σ, τ)-derivations of prime rings, Eng. and Tech. Journal 29 (2011), 544 553. (303) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [174] J.S. Farsani, Zero products preserving maps from the Fourier algebra of amenable groups, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 523 534. (304) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007.
129 [175] W. Feldman, Lattice preserving maps on lattices of continuous functions, J. Math. Anal. Appl. 404 (2013), 310 316. (305) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287 300. (306) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), 755 772. [176] S. Feng, Additivity of elementary maps on nest subalgebras of von Neumann algebra, J. Baoji College Arts Sci. Nat. Sci. 28 (2008), 177 181. (307) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. [177] S. Feng and J.H. Zhang, Additivity of elementary maps on nest subalgebra of von Neumann algebra, J. Xi an Univ. Art Sci. Nat. Sci. Ed. 9 (2006), 29 32. (308) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [178] R.J. Fleming and J.E. Jamison, Isometries on Banach spaces: Vector-valued function spaces. Vol. 2. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 138, Boca Raton, 2007. (309) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. (310) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. (311) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (312) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), 349 352. (313) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. [179] J.J. Font and M. Hosseini, Diameter preserving mappings between function algebras, Taiwanese J. Math. 15 (2011), 1487 1495. (314) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310.
130 [180] J.J. Font and M. Sanchis, A characterization of locally compact spaces with homeomorphic one-point compactifications, Topology Appl., 121 (2002), 91 104. (315) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [181] J.J. Font and M. Sanchis, Extreme points and the diameter norm, Rocky Mountain J. Math. 34 (2004), 1325 1332. (316) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [182] A. Fošner, Automorphisms of the poset of upper triangular idempotent matrices, Linear and Multilinear Algebra 53 (2005), 27 44. (317) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. (318) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [183] A. Fošner, Order preserving maps on the poset of upper triangular idempotent matrices, Linear Algebra Appl. 403 (2005), 248 262. (319) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. (320) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [184] A. Fošner, Non-linear commutativity preserving maps on M n (R), Linear and Multilinear Algebra 53 (2005), 323 344. (321) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. [185] A. Fošner, Non-linear commutativity preserving maps on symmetric matrices, Publ. Math. (Debrecen), 71 (2007), 375 396. (322) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math. 56 (2005), 589 595. [186] A. Fošner, Commutativity preserving maps on M n (R), Glasnik Mat. 44 (2009), 127 140.
131 (323) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [187] A. Fošner, A note on commutativity preservers on real matrices, Proceedings of the 5th Asian Mathematical Conference, Malaysia 2009, pp. 373 379. (324) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math. 56 (2005), 589 595. (325) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [188] A. Fošner, 2-local Jordan automorphisms on operator algebras, Studia Math. 209 (2012), 235 246. (326) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [189] A. Fošner, 2-local mappings on algebras with involution, Ann. Funct. Anal. 5 (2014), 63 69. (327) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [190] A. Fošner, Local generalized (α, β)-derivations, The Scientific World J. (2014), Article ID 805780, 5 pp. (328) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [191] A. Fošner and M. Fošner, On superderivations and local superderivations, Taiwanese J. Math. 11 (2007), 1383 1396. (329) L. Molnár, Locally inner derivations of standard operator algebras, Math. Bohem. 121 (1996), 1 7. [192] A. Fošner and M. Fošner, On ɛ-derivations and local ɛ- derivations, Acta Math. Sin. 26 (2010), 1555-1566. (330) L. Molnár, Locally inner derivations of standard operator algebras, Math. Bohem. 121 (1996), 1 7. [193] A. Fošner, Z. Huang, C.K. Li, N.S. Sze, Linear preservers and quantum information science, Linear Multilinear Algebra 61 (2013), 1377 1390. (331) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369.
132 (332) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450. (333) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), 5904 5909. (334) L. Molnár, Conditionally multiplicative maps on the set of all bounded observables preserving compatibility, Linear Algebra Appl. 349 (2002), 197 201. (335) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. (336) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287 300. (337) L. Molnár and M. Barczy, Linear maps on the space of all bounded observables preserving maximal deviation, J. Funct. Anal. 205 (2003), 380 400. (338) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [194] A. Fošner, Z. Huang, C.K. Li, Y.T. Poon, N.S. Sze, Linear maps preserving the higher numerical ranges of tensor product of matrices, Linear Multilinear Algebra 62 (2014), 776 791. (339) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [195] A. Fošner, B. Kuzma, T. Kuzma, S.S. Sze, Maps preserving matrix pairs with zero Jordan product, Linear and Multilinear Algebra 59 (2011), 507 529. (340) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. (341) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. (342) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [196] A. Fošner and N. Peršin, On certain functional equation related to two-sided centralizers, Aeq. Math. Aeq. Math. 85 (2013), 329 346. (343) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95.
133 [197] A. Fošner and J. Vukman, Some functional equations on standard operator algebras, Acta Math. Hung. 118 (2008), 299 306. (344) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [198] M. Fošner, Prime rings with involution equipped with some new product, Southeast Asian Bull. Math. 26 (2002), 27 31. (345) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. [199] M. Fošner and D. Ilišević, Generalized bicircular projections via rank preserving maps on the spaces of symmetric and antisymmetric operators, Oper. Matrices 5 (2011), 239-260. (346) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [200] M. Fošner and J. Vukman, An equation related to two-sided centralizers in prime rings, Rocky Mountain J. Math. 41 (2011), 765 776. (347) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [201] D.J. Foulis, Square roots and inverses in E-rings, Rep. Math. Phys. 58 (2006), 357 373. (348) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), 755 772. [202] D.J. Foulis, Observables, states, and symmetries in the context of CB-effect algebras, Rep. Math. Phys. 60 (2007), 329 346. (349) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907 1912. [203] A. Galántai, Subspaces, angles and pairs of orthogonal projections, Linear and Multilinear Algebra, 56 (2008), 227 260. (350) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421. [204] H. Gao, Jordan-triple multiplicative surjective maps on B(H), J. Math. Anal. Appl. 401 (2013), 397 403. (351) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (352) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy
134 and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [205] H.L Gau and C.K. Li, C -isomorphisms, Jordan isomorphisms, and numerical range preserving maps, Proc. Amer. Math. Soc. 135 (2007), 2907 2914. (353) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [206] Gy.P. Gehér, An elementary proof for the non-bijective version of Wigners theorem, Phys. Lett. A 378 (2014), 2054 2057. (354) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), 137 148. (355) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. (356) F. Botelho, J. Jamison and L. Molnár, Surjective isometries on Grassmann spaces, J. Funct. Anal. 265 (2013), 2226 2238. [207] Gy.P. Gehér, Maps on real Hilbert spaces preserving the area of parallelograms and a preserver problem on self-adjoint operators, J. Math. Anal. Appl. 422 (2015), 1402 1413. (357) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), 137 148. (358) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. (359) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. (360) L. Molnár and W. Timmermann, Transformations on bounded observables preserving measure of compatibility, Int. J. Theor. Phys. 50 (2011), 3857 3863. [208] Gy. P. Gehér and G. Nagy, Maps on classes of Hilbert space operators preserving measure of commutativity, Linear Algebra Appl. 463 (2014), 205 227. (361) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. (362) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007.
135 (363) L. Molnár and W. Timmermann, Transformations on bounded observables preserving measure of compatibility, Int. J. Theor. Phys. 50 (2011), 3857 3863. (364) L. Molnár and P. Šemrl, Transformations of the unitary group on a Hilbert space, J. Math. Anal. Appl. 388 (2012), 1205 1217. [209] A.G. Ghazanfari and S.S. Dragomir Bessel and Grüss type inequalities in inner product modules over Banach *-algebras, J. Inequal. Appl. Volume 2011, Article ID 562923, 16 pages. (365) L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), 323 325. [210] L. Gong, X. Qi, J. Shao and F. Zhang, Strong (skew) ξ-lie commutativity preserving maps on algebras, Cogent Mathematics (2015), 2: 1003175. (366) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. [211] F. González and V.V. Uspenskij, On homomorphisms of groups of integer-valued functions, Extracta Math. 14 (1999), 19 29. (367) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [212] O. Gölbaşi and E. Koç, Notes on Jordan (σ, τ) -derivations and Jordan triple (σ, τ) -derivations, Aeq. Math. 85 (2013), 581 591. (368) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [213] S.A. Grigoryan and T.V. Tonev, Shift-invariant Uniform Algebras on Groups, Monografie Matematyczne, Vol. 68, Birkhäuser Verlag, 2006. (369) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [214] E. Gselmann, Jordan triple mappings on positive denite matrices, Aeq. Math., to appear. (370) L. Molnár, A remark to the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices, Proc. Amer. Math. Soc., 134 (2006) 2839 2848. [215] R.J. Gu and P.S. Ji, Jordan triple maps of triangular algebras, J. Qingdao Univ. Nat. Sci. Ed. 20 (2007), 8 11. (371) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302.
136 [216] S. Gudder and R. Greechie, Sequential products on effect algebras, Rep. Math. Phys. 49 (2002), 87 111. (372) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. [217] S. Gudder and F. Latrémolière, Characterization of the sequential product on quantum effects, J. Math. Phys. 49 (2008), 052106. (373) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287 300. [218] M. Győry, 2-local isometries of C 0 (X), Acta Sci. Math. (Szeged) 67 (2001), 735 746. (374) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (375) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (376) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), 231 238. (377) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), 349 352. (378) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. [219] M. Győry, Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving orthogonality, Publ. Math. (Debrecen) 65 (2004), 233 242. (379) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. (380) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. (381) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), 1463 1466. (382) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), 785 791. (383) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421.
137 [220] M. Győry, A new proof of Wigner s theorem, Rep. Math. Phys. 54 (2004), 159 167. (384) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), 137 148. (385) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. [221] M. Győry, On the topological reflexivity of the isometry group of the suspension of B(H), Studia Math. 166 (2005), 287 303. (386) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), 415 421. (387) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (388) L. Molnár, A proper standard C -algebra whose automorphism and isometry groups are topologically reflexive, Publ. Math. (Debrecen) 52 (1998), 563 574. (389) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (390) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. (391) L. Molnár, Reflexivity of the automorphism and isometry groups of C -algebras in BDF theory, Arch. Math. 74 (2000), 120 128. [222] D. Hadwin and J.K. Li, Local derivations and local automorphisms, J. Math. Anal. Appl. 290 (2004), 702 714. (392) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), 415 421. [223] J. Hamhalter, Quantum Measure Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003. (393) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), 137 148. (394) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. [224] J. Hamhalter, Spectral order of operators and range projections, J. Math. Anal. Appl. 331 (2007), 1122-1134.
138 (395) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450. [225] J. Hamhalter, Linear maps preserving maximal deviation and the Jordan structure of quantum systems, J. Math. Phys. 53 (2012), 122208. (396) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. (397) L. Molnár and M. Barczy, Linear maps on the space of all bounded observables preserving maximal deviation, J. Funct. Anal. 205 (2003), 380 400. (398) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. (399) L. Molnár, Linear maps on observables in von Neumann algebras preserving the maximal deviation, J. London Math. Soc. 81 (2010), 161 174. [226] X. Hao, P. Ren and R.L. An, Jordan semi-triple multiplicative maps on symmetric matrices, Advances in Linear Algebra and Matrix Theory 3 (2013), 11 16. (400) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (401) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [227] O. Hatori, Algebraic properties of isometries between groups of invertible elements in Banach algebras, J. Math. Anal. Appl. 376 (2011) 84-93. (402) L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), 3849 3859. [228] O. Hatori, Isometries of the unitary groups in C -algebras, Studia Math. 221 (2014), 61 86. (403) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), 267 273. (404) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. (405) L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), 3849 3859.
139 (406) L. Molnár and G. Nagy, Thompson isometries on positive operators: the 2-dimensional case, Electron. J. Lin. Alg. 20 (2010), 79 89. (407) L. Molnár, Kolmogorov-Smirnov isometries and affine automorphisms of spaces of distribution functions, Cent. Eur. J. Math. 9 (2011), 789 796. (408) L. Molnár and G. Nagy, Isometries and relative entropy preserving maps on density operators, Linear Multilinear Algebra 60 (2012), 93 108. [229] O. Hatori, Isometries on the spetial unitary group, in Function Spaces in Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 645, American Mathematical Society, 2015, pp. 119 134. (409) L. Molnár, Jordan triple endomorphisms and isometries of unitary groups, Linear Algebra Appl. 439 (2013), 3518 3531. (410) L. Molnár and P. Šemrl, Transformations of the unitary group on a Hilbert space, J. Math. Anal. Appl. 388 (2012), 1205 1217. [230] O. Hatori, K. Hino, T. Miura and H. Oka, Peripherally monomial-preserving maps between uniform algebras, Mediterr. J. Math. 6 (2009), 47-59. (411) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [231] O. Hatori, G. Hirasawa and T. Miura, Additively spectralradius preserving surjections between unital semisimple commutative Banach algebras, Cent. Eur. J. Math. 8 (2010), 597 601. (412) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [232] O. Hatori, T. Ishii, T. Miura and S. Takahasi, Characterizations and automatic linearity for ring homomorphisms on algebras of functions, in Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 328, American Mathematical Society, 2003, pp. 201 215. (413) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), 1789 1794. (414) L. Molnár, Automatic surjectivity of ring homomorphisms on H -algebras and algebraic differences among some group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 125 134.
140 [233] O. Hatori, A. Jimenez-Vargas and M. Villegas-Vallecillos, Maps which preserve norms of non-symmetrical quotients between groups of exponentials of Lipschitz functions, J. Math. Anal. Appl. 415 (2014), 825 845. (415) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [234] O. Hatori, K. Kobayashi, T. Miura and S.E. Takahasi, Reflections and a generalization of the Mazur-Ulam theorem, Rocky Mountain J. Math. 42 (2012), 117 150. (416) L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), 3849 3859. [235] O. Hatori, S. Lambert, A. Luttman, T. Miura, T. Tonev, and R. Spectral preservers in commutative Banach algebras, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp. 103 124. (417) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (418) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [236] O. Hatori, T. Miura and H. Takagi, Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving properties, Proc. Amer. Math. Soc. 134 (2006), 2923-2930. (419) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [237] O. Hatori, T. Miura and H. Takagi, Unital and multiplicatively spectrum-preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative, J. Math. Anal. Appl. 326 (2007), 281 296. (420) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [238] O. Hatori, T. Miura and H. Oka, An example of multiplicatively spectrum-preserving maps between non-isomorphic semi-simple
141 commutative Banach algebras, Nihonkai Math. J. 18 (2007), 11 15. (421) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [239] O. Hatori, T. Miura, H. Oka and H. Takagi, 2-local isometries and 2-local automorphisms on uniform algebras, Int. Math. Forum 2 (2007), 2491 2502. (422) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (423) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (424) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), 349 352. (425) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. (426) L. Molnár, Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Dissertation for the D.Sc. degree of the Hungarian Academy of Sciences, 241 pages, 2004. [240] O. Hatori, T. Miura, H. Oka and H. Takagi, Peripheral multiplicativity of maps on uniformly closed algebras of continuous functions which vanish at infinity, Tokyo J. of Math. 32 (2009), 91 104. (427) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [241] O. Hatori, T. Miura, R. Shindo and H. Takagi, Generalizations of spectrally multiplicative surjections between uniform algebras, Rend. Circ. Mat. Palermo 59 (2010), 161 183. (428) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [242] K. He and J. Hou, Distance preserving maps and completely distance preserving maps on the Schatten p-class, J. Shanxi Univ. Nat. Sci. Ed. 32 (2009), 502 506. (429) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), 267 273.
142 [243] K. He and J. Hou, A generalization of Wigners theorem, Acta Math. Sci. (Ser. A) 31 (2011), 1633-1636. (430) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. (431) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), 1463 1466. (432) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [244] K. He and J. Hou, A generalization of Uhlhorn s version of Wigners theorem, J. Math. Study 45 (2012), 107 114. (433) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. (434) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421. (435) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. (436) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), 267 273. [245] K. He and J. Hou, Non-linear maps on self-adjoint operators preserving numerical radius and numerical range of Lie product, Linear Multilinear Alg., to appear. (437) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. [246] K. He, J. Hou and C.K. Li, A geometric characterization of invertible quantum measurement maps, J. Funct. Anal. 264 (2013), 464 478. (438) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450. (439) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. (440) L. Molnár and W. Timmermann, Mixture preserving maps on von Neumann algebra effects, Lett. Math. Phys. 79 (2007), 295 302.
143 [247] K. He, F. Sun and J. Hou, Separability of sequential isomorphisms on quantum effects in multipartite systems, J. Phys. A: Math. Theor. 48 (2015), 075302 (9pp). (441) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. (442) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [248] K. He and Q. Yuan, Non-linear isometries on Schatten-p class in atomic nest algebras, Abstr. Appl. Anal. Volume 2014, Article ID 810862. (443) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), 267 273. (444) L. Molnár, Isometries of the spaces of bounded frame functions, J. Math. Anal. Appl. 338 (2008), 710 715. [249] K. He, Q. Yuan and J. Hou, Entropy-preserving maps on quantum states, Linear Algebra Appl. 467 (2015), 243-253. (445) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. (446) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. (447) L. Molnár, Maps on states preserving the relative entropy, J. Math. Phys. 49 (2008), 032114. (448) L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl., 432 (2010), 3343 3350. (449) L. Molnár and G. Nagy, Transformations on density operators that leave the Holevo bound invariant, Int. J. Theor. Phys. 53 (2014), 3273 3278. [250] H. Heinosaari, A simple sufficient condition for the coexistence of quantum effects, J. Phys. A: Math. Theor. 46 (2013), 152002. (450) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450. [251] H. Heinosaari, D. Reitzner and P. Stano, Notes on joint measurability of quantum observables, Found. Phys. 38 (2008), 1133 1147. (451) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450.
144 [252] T. Heinosaari and M. Ziman, Guide to mathematical concepts of quantum theory, Acta Phys. Slov. 58 (2008), 487 674. (452) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421. (453) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450. (454) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287 300. [253] C. Heunen and C. Horsman, Matrix multiplication is determined by orthogonality and trace, Linear Algebra Appl. 439 (2013), 4130 4134. (455) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [254] F. Hiai and D. Petz, Introduction to Matrix Analysis and Applications, Springer and Hindustan Book Agance, New Delhi, India 2014, 332 p. (456) L. Molnár, Maps preserving the geometric mean of positive operators, Proc. Amer. Math. Soc. 137 (2009), 1763 1770. [255] G. Hirasawa, T. Miura and R. Shindo, A generalization of the Banach-Stone theorem for commutative Banach algebras, Nihonkai Math. J. 21 (2010), 105 114. (457) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [256] G. Hirasawa, T. Miura and H. Takagi, Spectral radii conditions for isomorphisms between unital semisimple commutative Banach algebras, in Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011, pp. 125 134. (458) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [257] G. Hirasawa and H. Oka, A polynomially spectrum preserving map between uniform algebras, Nihonkai Math. J. 21 (2010), 115 119. (459) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120.
145 [258] M. Hongan, N.U. Rehman and R.M. Al-Omary On Lie Ideals and Jordan triple derivations in rings, Rend. Sem. Mat. Univ. Padova 125 (2011), 147 156. (460) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [259] D. Honma, Surjections on the algebras of continuous functions which preserve peripheral spectrum, in Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 435, American Mathematical Society, 2007, pp. 199 206. (461) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [260] D. Honma, Norm-preserving surjections on the algebras of continuous functions, Rocky Mount. J. Math. 39 (2009), 1517 1531. (462) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [261] S. Honma and T. Nogawa, Isometries of the geodesic distances for the space of invertible positive operators and matrices, Linear Algebra Appl. 444 (2014), 152 164. (463) L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), 3849 3859. (464) L. Molnár and G. Nagy, Thompson isometries on positive operators: the 2-dimensional case, Electron. J. Lin. Alg. 20 (2010), 79 89. (465) O. Hatori and L. Molnár, Isometries of the unitary group, Proc. Amer. Math. Soc. 140 (2012), 2141 2154. (466) O. Hatori, G. Hirasawa, T. Miura and L. Molnár, Isometries and maps compatible with inverted Jordan triple products on groups, Tokyo J. Math. 35 (2012), 385 410. (467) L. Molnár, Jordan triple endomorphisms and isometries of unitary groups, Linear Algebra Appl. 439 (2013), 3518 3531. (468) O. Hatori and L. Molnár, Isometries of the unitary groups and Thompson isometries of the spaces of invertible positive elements in C -algebras, J. Math. Anal. Appl. 409 (2014), 158 167. (469) L. Molnár, Jordan triple endomorphisms and isometries of spaces of positive definite matrices, Linear Multilinear Alg., to appear.
146 [262] M. Hosseini and M. Amini, Peripherally multiplicative maps between Figa-Talamanca-Herz algebras, Publ. Math. (Debrecen) 86 (2015), 71 88. (470) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [263] M. Hosseini and J.J. Font, Norm-additive in modulus maps between function algebras, Banach J. Math. Anal. 8 (2014), 79 92. (471) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [264] M. Hosseini and F. Sady, Multiplicatively range-preserving maps between Banach function algebras, J. Math. Anal. Appl. 357 (2009), 314-322. (472) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [265] M. Hosseini and F. Sady, Multiplicatively and non-symmetric multiplicatively norm-preserving maps, Cent. Eur. J. Math. 8 (2010), 878 889. (473) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [266] M. Hosseini and F. Sady, Weighted composition operators on C(X) and Lip c (X, α), Tokyo J. of Math. 35 (2012), 71 84. (474) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [267] M. Hosseini and F. Sady, Banach function algebras and certain polynomially norm-preserving maps, Banach J. Math. Anal. 6 (2012), 1 18. (475) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [268] M. Hosseini and F. Sady, Maps between Banach function algebras satisfying certain norm conditions, Cent. Eur. J. Math. 11 (2013), 1020 1033. (476) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120.
147 [269] J. Hou and J. Cui, Rank-1 preserving linear maps on nest algebras, Linear Algebra Appl. 369 (2003), 263 277. (477) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [270] J. Hou and J. Cui, Completely rank nonincreasing linear maps on nest algebras, Proc. Amer. Math. Soc. 132 (2004), 1419 1428. (478) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [271] J. Hou and Q. Di, Maps preserving numerical ranges of operator products, Proc. Amer. Math. Soc. 134 (2006), 1435 1446. (479) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [272] J. Hou, K. He and X. Qi, Characterizing sequential isomorphisms on Hilbert-space effect algebras, J. Phys. A: Math. Theor. 43 (2010), 315206. (480) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. (481) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. (482) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287 300. [273] J. Hou and L. Huang, Maps completely preserving idempotents and maps completely preserving square-zero operators, Israel J. Math. 176 (2010), 363-380. (483) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [274] J. Hou, C.K. Li and N.C. Wong, Jordan isomorphisms and maps preserving spectra of certain operator products, Studia Math. 184 (2008), 31 47. (484) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421. (485) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120.
148 (486) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [275] J. Hou, C.K. Li and N.C. Wong, Maps preserving the spectrum of generalized Jordan product of operators, Linear Algebra Appl. 432 (2010), 1049 1069. (487) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [276] J. Hou and X. Zhang, Ring isomorphisms and linear or additive maps preserving zero products on nest algebras, Linear Algebra Appl. 387 (2004), 343 360. (488) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [277] F.G. Hu, Multiplicative maps on matrices preserving the Frobenius norm, J. Hubei Inst. National. Nat. Sci. 25 (2007), 268 271. (489) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), 1 13. (490) L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), 727 736. [278] L. Huang, L. Chen and F. Lu, Characterizations of automorphisms of operator algebras on Banach spaces, J. Math. Anal. Appl. 430 (2015), 144 151. (491) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), 1 13. [279] L. Huang, Y. Liu, Maps completely preserving commutativity and maps completely preserving Jordan zero-product, Linear Algebra Appl. 462 (2014), 233 249. (492) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. (493) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. (494) L. Molnár and W. Timmermann, Transformations on bounded observables preserving measure of compatibility, Int. J. Theor. Phys. 50 (2011), 3857 3863.
149 [280] L. Huang, Z.F. Lu and J.L. Li, Additive maps completely preserving skew idempotency between standard operator algebras, Zhongbei Daxue Xuebao (Ziran Kexue Ban)/Journal of North University of China (Natural Science Edition) 32 (2011), 71 73. (495) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [281] Z. Huang, Weakening the conditions in some classical theorems on linear preserver problems, Linear Multilinear Alg., to appear. (496) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [282] D. Huo, B. Zheng, J. Xua and H. Liu, Nonlinear mappings preserving Jordan multiple product on factor von Neumann algebras, Linear Multilinear Alg. 63 (2015), 1026 1036. (497) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. [283] D. Ilišević, Molnár-dependence in a pre-hilbert module over an H -algebra, Acta Math. Hungar. 101 (2003), 69 78. (498) L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), 323 325. [284] D. Ilišević, Equations arising from Jordan *-derivation pairs, Aequationes Math. 67 (2004), 236 240. (499) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), 44 55. [285] D. Ilišević, Quadratic functionals on modules over complex Banach *-algebras with an approximate identity, Studia Math. 171 (2005), 103 123. (500) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), 44 55. [286] D. Ilišević, Quadratic functionals on modules over alternative *-rings, Studia Sci. Math. Hung. 42 (2005), 459 469. (501) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), 44 55. [287] D. Ilisevič, Generalized bicircular projections via the operator equation αx 2 AY 2 +βxay +A = 0, Linear Algebra Appl. 429 (2008), 2025 2029.
150 (502) L. Molnár and P. Šemrl, Order isomorphisms and triple isomorphisms of operator ideals and their reflexivity, Arch. Math. 69 (1997), 497 506. (503) M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *- semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), 253 266. (504) V. Mascioni and L. Molnár, Linear maps on factors which preserve the extreme points of the unit ball, Canad. Math. Bull. 41 (1998), 434 441. [288] D. Ilisevič and A. Turnšek, Stability of the Wigner equation - a singular case, J. Math. Anal. Appl. 429 (2015), 273-287. (505) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. [289] D. Ilišević and A. Turněk, A quantitative version of Hersteins theorem for Jordan *-isomorphisms, Linear Multilinear Alg., to appear. (506) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. [290] D. Ilišević and S. Varošanec, Grüss type inequalitiesin inner product modules, Proc. Amer. Math. Soc. 133 (2005), 3271 3280. (507) L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), 323 325. [291] K. Jarosz and T.S.S.R.K. Rao, Local isometries of function spaces, Math. Z. 243 (2003), 449 469. (508) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), 415 421. (509) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (510) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), 568 586. (511) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. (512) L. Molnár, Reflexivity of the automorphism and isometry groups of C -algebras in BDF theory, Arch. Math. 74 (2000), 120 128.
151 (513) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. [292] A.T. Jelodar, M.S. Moslehian and A. Sanami, A ternary characterization of automorphisms of B(H), Nihonkai Math. J. 21 (2010), 1 9. (514) L. Molnár and P. Šemrl, Order isomorphisms and triple isomorphisms of operator ideals and their reflexivity, Arch. Math. 69 (1997), 497 506. (515) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (516) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (517) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [293] G. Ji and Y. Gao, Maps preserving operator pairs whose products are projections, Linear Algebra Appl. 433 (2010), 1348 1364. (518) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. (519) L. Molnár, Maps on states preserving the relative entropy, J. Math. Phys. 49 (2008), 032114. [294] P. Ji, Additivity of Jordan maps on Jordan algebras, Linear Algebra Appl. 431 (2009), 179-188. (520) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [295] P. Ji and Z. Liu, Additivity of Jordan maps on standard Jordan operator algebras, Linear Algebra Appl. 430 (2009), 335 343. (521) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [296] P. Ji, W. Qi, Z. Qin, Multiplicative Jordan triple isomorphisms on Jordan algebras, J. Shandong Univ. Nat. Sci. Ed. 44 (2009), 1 3.
152 (522) L. Molnár, Multiplicative Jordan triple isomorphisms on the self-adjoint elements of von Neumann algebras, Linear Algebra Appl. 419 (2006), 586 600. [297] P. Ji, L. Sun, J. Chen, Jordan multiplicative isomorphisms on spin factors, J. Shandong Univ. Nat. Sci. Ed. 46 (2011), 1 3. (523) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [298] P. Ji and J. Yu, Maps on AF C -algebras, J. Math. (Wuhan) 26 (2006), 53 57. (524) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (525) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (526) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), 349 352. [299] P.S. Ji and C.P. Wei, Isometries and 2-local isometries on Cartan bimodule algebras in hyperfinite factors of type II 1, Acta Math. Sinica. 49 (2006), 51 58. (527) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), 349 352. [300] Jian, K. H, Q. Yuan and F. Wang, On partially trace distance preserving maps and reversible quantum channels, J. Applied Math. (2013), Article ID 474291, 5 pages (528) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. (529) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), 267 273. (530) L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl., 432 (2010), 3343 3350. [301] M. Jiao, Maps preserving commutativity up to a factor on standard operator algebras, Journal of Mathematical Research with Applications 33 (2013), 708 716. (531) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262.
153 (532) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), 13 18. [302] M. Jiao and X. Qi, Additive maps preserving commutativity up to a factor on nest algebras, Linear Multilinear Alg. 63 (2015), 1242 1256. (533) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), 13 18. [303] A. Jiménez-Vargas, Linear bijections preserving the Hölder seminorm, Proc. Amer. Math. Soc. 135 (2007), 2539 2547. (534) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [304] A. Jimenéz-Vargas, A.M. Campoy and M. Villegas-Vallecillos, Algebraic reflexivity of the isometry group of some spaces of Lipschitz functions, J. Math. Anal. Appl. 366 (2010), 195 201. (535) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. (536) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (537) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. [305] A. Jiménez-Vargas, K. Lee, A. Luttman and M. Villegas- Vallecillos, Generalized weak peripheral multiplicativity in algebras of Lipschitz functions, Cent. Eur. J. Math. 11 (2013), 1197 1211. (538) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [306] A. Jimenez-Vargas, A. Luttman and M. Villegas-Vallecillos, Weakly peripherally multiplicative surjections of pointed Lipschitz algebras, Rocky Mountain J. Math. 40 (2010), 1903 1922. (539) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [307] A. Jiménez-Vargas and M.A. Navarro, Hölder seminorm preserving linear bijections and isometries, Proc. Indian Acad. Sci. (Math. Sci.) 119 (2009), 53-62.
154 (540) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [308] A. Jiménez-Vargas and M. Villegas-Vallecillos, Lipschitz algebras and peripherally-multiplicative maps, Acta Math. Sinica 24 (2008), 1233 1242. (541) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [309] A. Jiménez Vargas and M. Villegas Vallecillos, 2-local isometries on spaces of Lipschitz functions, Canad. Math. Bull. 54 (2011), 680 692. (542) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), 231 238. (543) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), 349 352. (544) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [310] W. Jing, P. Li and S. Lu, Additive mappings that preserve rank one nilpotent operators, Linear Algebra Appl. 367 (2003), 213 224. (545) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), 311-321. [311] W. Jing and F. Lu, Additivity of Jordan (triple) derivations on rings, Linear and Multilinear Algebra 40 (2012), 2700 2719. (546) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [312] W. Jing and S.J. Lu, Topological reflexivity of the spaces of (α, β)-derivations on operator algebras, Studia Math. 156 (2003), 121 131. (547) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), 415 421. (548) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (549) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), 568 586.
155 [313] W. Jing, S. Lu and G. Han, On topological reflexivity of the spaces of derivations on operator algebras, Appl. Math. J. Chinese Univ. Ser. A 17 (2002), 75 79. (550) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), 415 421. (551) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. [314] D.J. Kečkić Cyclic kernels of elementary operators on a reflexive Banach space, Linear Algebra Appl. 438 (2013), 2628 2633. (552) L. Molnár and P. Šemrl, Elementary operators on selfadjoint operators, J. Math. Anal. Appl. 327 (2007), 302 309. [315] S.O. Kim, Linear maps preserving ideals of C -algebras, Proc. Amer. Math. Soc. 129 (2001), 1665 1668. (553) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), 311-321. [316] S.O. Kim, Automorphisms of Hilbert space effect algebras, Linear Algebra Appl. 402 (2005), 193 198. (554) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (555) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. (556) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907 1912. (557) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), 91 100. (558) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287 300. [317] S.O. Kim and J.S. Kim, Local automorphisms and derivations on M n, Proc. Amer. Math. Soc. 132 (2004), 1389 1392. (559) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), 349 352. (560) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [318] S.O. Kim and J.S. Kim, Local automorphisms and derivations on certain C -algebras, Proc. Amer. Math. Soc. 133 (2005), 3303-3307.
156 (561) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), 415 421. (562) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [319] S.O. Kim and C. Park, Additivity of Jordan triple product homomorphisms on generalized matrix algebras, Bull. Korean Math. Soc. 50 (2013), 2027 2034. (563) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (564) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. [320] B. Kolodziejek, The Lukacs-Olkin-Rubin theorem on symmetric cones through Gleason s theorem, Studia Math. 217 (2013), 1 17. (565) L. Molnár, A remark to the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices, Proc. Amer. Math. Soc., 134 (2006) 2839 2848. [321] B. Kolodziejek, Multiplicative Cauchy functional equation on symmetric cones, Aequat. Math. 89 (2015), 1075 1094. (566) L. Molnár, A remark to the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices, Proc. Amer. Math. Soc., 134 (2006) 2839 2848. [322] B. Kolodziejek, Lukacs-Olkin-Rubin theorem on symmetric cones without invariance of the quotient, J. Theor. Probab., to appear. (567) L. Molnár, A remark to the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices, Proc. Amer. Math. Soc., 134 (2006) 2839 2848. [323] I. Kosi-Ulbl and J. Vukman, An identity related to derivations of standard operator algebras and semisimple H -algebras, CUBO A Math. J. 12 (2010), 95 102. (568) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [324] G.K. Kumar and S.H. Kulkarni, Linear maps preserving pseudospectrum and condition spectrum, Banach J. Math. Anal. 6 (2012), 45-60. (569) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007.
157 [325] D.L.W. Kuo, M.C. Tsai, N.C. Wong and J. Zhang, Maps preserving Schatten p-norms of convex combinations, Abstr. Appl. Anal. (2014), Article ID 520795, 5 pp. (570) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. (571) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [326] B. Kuzma, Additive mappings preserving rank-one idempotents, Acta Math. Sin. 21 (2005), 1399 1406. (572) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [327] P. Lahti, M. M aczynski and K. Ylinen, Unitary and antiunitary operators mapping vectors to paralell or to orthogonal ones, with applications to symmetry transformations, Lett. Math. Phys. 55 (2001), 43 51. (573) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907 1912. [328] S. Lambert, A. Luttman and T. Tonev, Weakly peripherallymultiplicative mappings between uniform algebras, in Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 435, American Mathematical Society, 2007, pp. 265 282. (574) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [329] K. Lee, Characterizations of peripherally multiplicative mappings between real function algebras, Publ. Math. (Debrecen) Publ. Math. Debrecen 84 (2014), 379 397. (575) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [330] K. Lee, A multiplicative Banach-Stone theorem, in Function Spaces in Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 645, American Mathematical Society, 2015, pp. 191 198. (576) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120.
158 [331] K. Lee and A. Luttman, Generalizations of weakly peripherally multiplicative maps between uniform algebras, J. Math. Anal. Appl. 375 (2011), 108 117. (577) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [332] P. Legiša, Automorphisms of M n partially ordered by the star order, Linear Multilinear Alg. 54 (2006), 157 188. (578) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [333] Z. Léka, A note on central moments in C -algebras, J. Math. Ineq. 9 (2015), 165 175. (579) L. Molnár, Linear maps on observables in von Neumann algebras preserving the maximal deviation, J. London Math. Soc. 81 (2010), 161 174. [334] B. Lemmens and C. Walsh, Isometries of Polyhedral Hilbert geometries, J. Topol. Anal. 3 (2011), 213 241. (580) L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009), 3849 3859. [335] G. Lešnjak and N.S. Sze, On injective Jordan semi-triple maps of matrix algebras, Linear Algebra Appl. 414 (2006), 383 388. (581) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. [336] C.W Leung, C.K. Ng and N.C. Wong, Linear orthogonality preservers of Hilbert C -modules, J. Operator Theory 71 (2014), 571 584. (582) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), 785 791. (583) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [337] C.W. Leung, C.W. Tsai and N.C. Wong, Linear disjointness preservers of W -algebras, Math. Z. 270 (2012), 699 708. (584) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), 311-321.
159 [338] C. Li, F. Lu and X. Fang, Nonlinear mappings preserving product XY +Y X on factor von Neumann algebras, Linear Algebra Appl. 438 (2013) 2339-2345. (585) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. [339] C. Li, F. Lu and X. Fang, Non-linear ξ-jordan *-derivations on von Neumann algebras, Linear Multilinear Alg. 62 (2014), 466 473. (586) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. [340] C.K. Li and E. Poon, Schur product of matrices and numerical radius (range) preserving maps, Linear Alg. Appl. 424 (2007), 8 24. (587) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [341] C.K. Li and L. Rodman, Preservers of spectral radius, numerical radius, or spectral norm of the sum on nonnegative matrices, Linear Algebra Appl. 430 (2009), 1739 1761. (588) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [342] C.K. Li, P. Šemrl, L. Plevnik, Preservers of matrix pairs with a fixed inner product value, Oper. Matrices 6 (2012), 433 464. (589) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [343] C.K. Li, P. Šemrl and N.S. Sze, Maps preserving the nilpotency of products of operators, Linear Alg. Appl. 424 (2007), 222-239. (590) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (591) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [344] J. Li, Applications of Wigner s theorem to positive maps preserving norm of operator products, J. Math. Study 37 (2004), 11 16. (592) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369.
160 (593) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. [345] J. Li, Applications of Wigner s theorem to positive maps preserving norm of operator products, Front. Math. China 1 (2006), 582 588. (594) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. (595) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. [346] P. Li, Elementary maps on nest algebras, J. Math. Anal. Appl. 320 (2006), 174 191. (596) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. (597) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. [347] P. Li and W. Jing, Jordan elementary maps on rings, Linear Algebra Appl. 382 (2004), 237 245. (598) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. (599) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (600) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. [348] P. Li and F. Lu, Elementary operators on J -subspace lattice algebras, Bull. Austral Math. Soc. 68 (2003), 395 404. (601) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. (602) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. [349] P. Li and F. Lu, Additivity of elementary maps on rings, Commun. Alg. 32 (2004), 3725-3737. (603) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. (604) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319.
161 [350] P. Li and F. Lu, Additivity of Jordan elementary maps on nest algebras, Linear Algebra Appl. 400 (2005), 327 338. (605) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. (606) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (607) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. (608) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. [351] P. Li and F. Lu, Jordan elementary operators on J -subspace lattice algebras algebras, Linear Algebra Appl., 428 (2008), 2675 2687. (609) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. (610) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. [352] Y. Li and P. Busch, Von Neumann entropy and majorization, J. Math. Anal Appl. 408 (2013), 384 393. (611) L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl., 432 (2010), 3343 3350. [353] Y. Li and Z. Xiao, Additivity of maps on generalized matrix algebras, Electron. J. Linear Algebra 22 (2011), 743 757. (612) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [354] P.K. Liau, W.L. Huang and C.K. Liu, Nonlinear strong commutativity preserving maps on skew elements of prime rings with involution, Linear Algebra Appl. 436 (2012), 3099-3108. (613) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. (614) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), 13 18.
162 [355] J.S Lin and C.K Liu, Strong commutativity preserving maps in prime rings with involution, Linear Algebra Appl. 432 (2010), 14 23. (615) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. [356] Y.F. Lin and T.L. Wong, A note on 2-local maps, Proc. Edinburgh Math. Soc. 49 (2006), 701 708. (616) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. (617) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), 231 238. (618) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), 91 100. (619) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (620) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), 349 352. (621) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [357] Z. Ling and F. Lu, Jordan maps of nest algebras, Linear Algebra Appl. 387 (2004), 361 368. (622) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [358] C.K. Liu, Strong commutativity preserving generalized derivations on right ideals, Monatsh. Math. 166 (2012), 453 465. (623) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), 13 18. [359] C.K. Liu and P.K Liau, Strong commutativity preserving generalized derivations on Lie ideals, Linear Multilinear Algebra 59 (2011), 905 915. (624) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), 13 18.
163 [360] C.K. Liu and W.Y. Tsai, Jordan isomorphisms of upper triangular matrix rings, Linear Algebra Appl. 426 (2007), 143 148. (625) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [361] J.H. Liu and N.C. Wong, 2-local automorphisms of operator algebras, J. Math. Anal. Appl. 321 (2006), 741 750. (626) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [362] J.H. Liu, N.C. Wong, Local automorphisms of operator algebras, Taiwanese J. Math. 11 (2007), 611 619. (627) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. (628) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), 91 100. [363] L. Liu, Strong commutativity preserving maps on von Neumann algebras, Linear Multilinear Alg. 63 (2015), 490 496. (629) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. [364] F. Lu, Multiplicative mappings of operator algebras, Linear Algebra Appl. 347 (2002), 283 291. (630) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), 1 13. (631) L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), 727 736. [365] F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), 121 131. (632) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [366] F. Lu, Jordan maps on associative algebras, Commun. Algebra 31 (2003), 2273 2286. (633) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320.
164 [367] F. Lu, Jordan triple maps, Linear Algebra Appl. 375 (2003), 311 317. (634) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (635) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [368] F. Lu, Jordan derivable maps of prime rings, Commun. Algebra 38 (2010), 4430 4440. (636) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. [369] F. Lu and B. Liu, Lie derivable maps on B(X), J. Math. Anal. Appl. 372 (2010), 369-376. (637) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (638) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [370] F. Lu and J. Xie, Multiplicative mappings of rings, Acta Math. Sinica 22 (2006), 1017 1020. (639) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), 1 13. (640) L. Molnár, Multiplicative maps on ideals of operators which are local automorphisms, Acta Sci. Math. (Szeged) 65 (1999), 727 736. [371] A. Luttman and S. Lambert, Norm conditions for uniform algebra isomorphisms, Cent. Europ. J. Math., 6 (2008), 272 280. (641) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [372] A. Luttman and T. Tonev, Uniform algebra isomorphisms and peripheral multiplicativity, Proc. Amer. Math. Soc. 135 (2007), 3589 3598. (642) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [373] L. Maccone, Information-disturbance tradeoff in quantum measurements, Phys. Rev. A 73 (2006), 042307.
165 (643) L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001), 299 303. [374] M. Maczynski and E. Scheffold, On elementary operators of length 1 and some order intervals in B s (H), Acta Sci. Math. (Szeged) 70 (2004), 405 417. (644) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907 1912. (645) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), 5904 5909. [375] H.A. Mahdi and A.H. Majeed, Derivable maps of prime rings, Iraqi J. Sci. 54 (2013), 191 194. (646) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. [376] Abdul-Rahman H. Majeed and A.H. Mahmood, Dependent elements of biadditive mappings on semiprime rings, Journal of Al-Nahrain University 18 (2015),141 148. (647) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), 44 55. [377] Gy. Maksa and Zs. Páles, Wigner s theorem revisited, Publ. Math. (Debrecen) 81 (2012), 243 249. (648) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), 137 148. (649) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. (650) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. (651) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), 785 791. (652) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), 1463 1466. (653) L. Molnár, A Wigner-type theorem on symmetry transformations in Banach spaces, Publ. Math. (Debrecen) 58 (2000), 231 239. (654) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262.
166 [378] A. Maouche, Spectrum preserving mappings in Banach algebras, Far East J. Math. Sci. 21 (2006), 27 31. (655) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [379] M. Marciniak, On extremal positive maps acting between type I factors, M. Bożejko (ed.) et al., Noncommutative harmonic analysis with applications to probability. II: Banach Center Publ. 89 (2010), 201 221. (656) M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *- semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), 253 266. [380] L.W. Marcoux, H. Radjavi and A.R. Sourour, Multiplicative maps that are close to an automorphism on algebras of linear transformations, Studia Math. 214 (2013), 279 296. (657) L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), 1 13. [381] J. Marovt, Order preserving bijections of C(X, I), J. Math. Anal. Appl. 311 (2005), 567 581. (658) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907 1912. (659) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450. (660) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287 300. (661) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), 755 772. (662) E. Kovács and L. Molnár, Preserving some numerical correspondences between Hilbert space effects, Rep. Math. Phys. 54 (2004), 201 209. [382] J. Marovt, Multiplicative bijections of C(X, I), Proc. Amer. Math. Soc. 134 (2006), 1065 1075. (663) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), 755 772. [383] J. Marovt, Affine bijections of C(X, I), Studia Math. 173 (2006), 295 309.
167 (664) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. (665) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907 1912. (666) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287 300. (667) L. Molnár and E. Kovács, An extension of a characterization of the automorphisms of Hilbert space effect algebras, Rep. Math. Phys. 52 (2003), 141 149. (668) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), 755 772. (669) E. Kovács and L. Molnár, Preserving some numerical correspondences between Hilbert space effects, Rep. Math. Phys. 54 (2004), 201 209. [384] J. Marovt, Order preserving bijections of C + (X), Taiwanese J. Math. 14 (2010), 667 673. (670) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. (671) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287 300. (672) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), 755 772. (673) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. (674) L. Molnár and W. Timmermann, Transformations on the sets of states and density operators, Linear Algebra Appl. 418 (2006), 75 84. [385] J. Marovt and T. Petek, Automorphisms of Hilbert space effect algebras equipped with Jordan triple product, the twodimensional case, Publ. Math. (Debrecen) 66 (2005), 245-250. (675) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. [386] M. Mathieu, Elementary operators on Calkin algebras, Irish Math. Soc. Bulletin 46 (2001), 33 42. (676) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791.
168 [387] M. Mbekhta, V. Mller and M. Oudghiri, Additive preservers of the ascent, descent and related subsets, J. Operator Theory 71 (2014), 63 83. (677) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [388] Q. Meng, Z. Xu, Automorphisms and local automorphisms of positive cones, J. Qufu Norm. Univ. Nat. Sci. Ed. 1 (2010), 41 43. (678) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (679) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. (680) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907 1912. (681) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), 91 100. [389] T. Miura, A representation of ring homomorphisms on commutative Banach algebras, Scient. Math. Japon. 53 (2001), 515 523. (682) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), 1789 1794. [390] T. Miura, A representation of ring homomorphisms on unital regular commutative Banach algebras, Math. J. Okoyama Univ. 44 (2002), 143 153. (683) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), 1789 1794. [391] T. Miura, D. Honma A generalization of peripherallymultiplicative surjections between standard operator algebras, Cent. Eur. J. Math. 7 (2009), 479 486. (684) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (685) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007.
169 [392] T. Miura, D. Honma and R. Shindo, Divisibly norm-preserving maps between commutative Banach algebras, Rocky Mountain J. Math. 41 (2011), 1675 1699. (686) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [393] T. Miura and S. Takahasi, Ring homomorphisms on real Banach algebras, Int. J. Math. Math. Sci. 48 (2003), 3025 3030. (687) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), 1789 1794. [394] T. Miura, S.E. Takahasi and N. Niwa Prime ideals and complex ring homomorphisms on a commutative algebra, Publ. Math. (Debrecen) 70 (2006), 453 460. (688) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), 1789 1794. [395] T. Miura, S.E. Takahasi and N. Niwa Ring homomorphisms on commutative regular Banach algebras, Nihonkai Math. J. 19 (2008), 61 74. (689) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), 1789 1794. (690) L. Molnár, Automatic surjectivity of ring homomorphisms on H -algebras and algebraic differences among some group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 125 134. [396] T. Miura, S.E. Takahasi, N. Niwa and H. Oka, On surjective ring homomorphisms between semi-simple commutative Banach algebras, Publ. Math. (Debrecen) 73 (2008), 119 131. (691) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), 1789 1794. [397] T. Miura and T. Tonev, Mappings onto multiplicative subsets of function algebras and spectral properties of their products, Ark. Mat. 53 (2015), 329 358. (692) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [398] G. Nagy, Commutativity preserving maps on quantum states, Rep. Math. Phys. 63 (2009), 447 464.
170 (693) L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001), 299 303. (694) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. (695) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [399] G. Nagy, Isometries on positive operators ofunit norm, Publ. Math. (Debrecen) 82 (2013), 183 192. (696) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), 267 273. (697) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [400] G. Nagy, Preservers for the p-norm of linear combinations of positive operators, Abstr. Appl. Anal., Volume 2014, Article ID 434121, 9 pages. (698) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), 267 273. (699) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. (700) L. Molnár and W. Timmermann, Maps on quantum states preserving the Jensen-Shannon divergence, J. Phys. A: Math. Theor. 42 (2009), 015301. [401] G. Nagy, Isometries of the spaces of self-adjoint traceless operators, Linear Algebra Appl. 484 (2015), 1 12. (701) L. Molnár and M. Barczy, Linear maps on the space of all bounded observables preserving maximal deviation, J. Funct. Anal. 205 (2003), 380 400. (702) F. Botelho, J. Jamison and L. Molnár, Surjective isometries on Grassmann spaces, J. Funct. Anal. 265 (2013), 2226 2238. [402] M. Najafi Tavani, Peripherally multiplicative operators on unital commutative Banach algebras, Banach J. Math. Anal. 9 (2015), 75 84. (703) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120.
171 [403] J.C. Navarro Pascual and M.G. Sanchez Lirola, Diameter, extreme points and topology, Studia Math. 191 (2009), 203 209. (704) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [404] T.W. Palmer, Banach Algebras and the General Theory of *- Algebras, vol. II., Cambridge University Press, 2001. (705) L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), 323 325. (706) L. Molnár, -representations of the trace-class of an H - algebra, Proc. Amer. Math. Soc. 115 (1992), 167 170. (707) L. Molnár, Modular bases in a Hilbert A-module, Czech. Math. J. 42 (1992), 649 656. (708) L. Molnár, The range of a Jordan *-derivation on an H -algebra, Acta Math. Hung. 72 (1996), 261 267. [405] F.F. Pan, The characterization of the local linear mappings on the subalgebra of matrix algebra M 3 (C), J. Xi an Univ. Post and Telecomm., 11 (2006), 121 124. (709) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. [406] Y. Pang and W. Yang, Elementary operators on strongly double triangle subspace lattice algebras, Linear Algebra Appl. 433 (2010), 1678-1685. (710) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. (711) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. (712) L. Molnár and P. Šemrl, Elementary operators on selfadjoint operators, J. Math. Anal. Appl. 327 (2007), 302 309. [407] V. Pavlovič, Remarks and comments on some recent results, Filomat 29 (2015), 1039 1041. (713) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. A.M. Peralta, A note on 2-local representations of C -algebras, Operators and Matrices, to appear. (714) C.J.K. Batty and L. Molnár, On topological reflexivity of the groups of *-automorphisms and surjective isometries of B(H), Arch. Math. 67 (1996), 415 421.
172 (715) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), 231 238. (716) L. Molnár, 2-local isometries of some operator algebras, Proc. Edinb. Math. Soc. 45 (2002), 349 352. (717) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. (718) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [408] T. Petek, Spectrum and commutativity preserving mappings on triangular matrices, Linear Algebra Appl. 357 (2002), 107 122. (719) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [409] F. Pop, On local representations of von Neumann algebras, Proc. Amer. Math. Soc. 132 (2004), 3569 3576. (720) L. Molnár and P. Šemrl, Local automorphisms of the unitary group and the general linear group on a Hilbert space, Expo. Math. 18 (2000), 231 238. (721) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [410] S. Pulmannová, Tensor products of Hilbert space effect algebras, Rep. Math. Phys. 53 (2004), 301 316. (722) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907 1912. [411] J. Qi, G. Ji, Linear maps preserving idempotency of products of matrices on upper triangular matrix algebras, Commun. Math. Res. 25 (2009), 253 264. (723) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [412] X.F. Qi, Characterization of centralizers on rings and operator algebras, Acta Math. Sin. 56 (2013), 459 468. (724) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [413] X.F. Qi, S.P. Du and J.C. Hou, Two kinds of additive maps on operator algebras, J. Shanxi Normal Univ. Nat. Sci. Ed. 20 (2006), 1-3.
173 (725) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [414] X. Qi, S. Du and J. Hou, Characterization of centralizers, Acta Math. Sin., Chin. Ser. 51 (2008), 509 516. (726) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [415] X.F. Qi and J.C. Hou, Nonlinear strong commutativity preserving maps on prime rings, Comm. Algebra 38 (2010), 2790 2796. (727) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. [416] X. Qi and J. Hou, Additivity of Lie multiplicative maps on triangular algebras Linear Multilinear Algebra 59 (2011), 391 397. (728) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. [417] X.F. Qi and J.C. Hou, Strong commutativity preserving maps on triangular rings, Oper. Matrices 6 (2012), 147 158. (729) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. [418] X. Qi and J. Hou, Strong skew commutativity preserving maps on von Neumann algebras, J. Math. Anal. Appl. 397 (2012), 362 370. (730) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. [419] X. Qi and J. Hou, Characterizing centralizers and generalized derivations on triangular algebras by acting on zero product, Acta Math. Sin., Eng. Ser. 29 (2013), 1245 1256. (731) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [420] J. Qian and P. Li, Additivity of Lie maps on operator algebras, Bull. Korean Math. Soc. 44 (2007), 271 279. (732) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (733) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320.
174 (734) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. (735) L. Molnár, Non-linear Jordan triple automorphisms of sets of self-adjoint matrices and operators, Studia Math. 173 (2006), 39 48. [421] F. Qu, A class of bijective maps preserving *-multiplicativity on B(H), J. Baoji College Arts Sci. Nat. Sci. 29 (2009), 13 15. (736) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. [422] M. Radjabalipour, Additive mappings on von Neumann algebras preserving absolute values, Linear Algebra Appl. 368 (2003), 229 241. (737) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. (738) M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *- semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), 253 266. (739) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [423] M. Radjabalipour, K. Seddighi and Y. Taghavi, Additive mappings on operator algebras preserving absolute values, Linear Algebra Appl. 327 (2001), 197 206. (740) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. [424] M. Radjabalipour and Y. Taghavi, Characterisations of *-homomorphisms of B(H) into B(K), Proceedings of the 31st Iranian Mathematics Conference (Tehran, 2000), 275 281, Univ. Tehran, Tehran, 2000. (741) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. [425] M. Radjabalipour and P. Torabian, On nonlinear preservers of weak matrix majorization, Bull. Iranian Math. Soc. 32 (2006), 21 30.
175 (742) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450. [426] H. Radjavi and P. Šemrl, Linear maps preserving quasicommutativity, Studia Math. 184 (2008), 191 204. (743) L. Molnár, Linear maps on matrices preserving commutativity up to a factor, Linear Multilinear Algebra 57 (2008), 13 18. [427] N.V. Rao and A.K. Roy, Multiplicatively spectrum-preserving maps of function algebras, Proc. Amer. Math. Soc. 133 (2005), 1135 1142. (744) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [428] N.V. Rao and A.K. Roy, Multiplicatively spectrum-preserving maps of function algebras II, Proc. Edinb. Math. Soc. 48 (2005), 219 229. (745) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [429] N.V. Rao, T.V. Tonev and E.T. Toneva, Uniform algebra isomorphisms and peripheral spectra, In: Topological Algebras (Eds. A. Malios and M. Haralampidu), Contemporary Math. 427 (2007), 401 416. (746) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [430] T.S.S.R.K. Rao, Local surjective isometries of function spaces, Expositiones Math. 18 (2000), 285 296. (747) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. [431] T.S.S.R.K. Rao, Some generalizations of Kadison s theorem: A survey, Extracta Math. 19 (2004), 319 334. (748) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (749) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36.
176 (750) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. (751) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. (752) L. Molnár, Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Dissertation for the D.Sc. degree of the Hungarian Academy of Sciences, 241 pages, 2004. [432] T.S.S.R.K. Rao, Local isometries of L(X, C(K)), Proc. Amer. Math. Soc. 133 (2005), 2729-2732. (753) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (754) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (755) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. (756) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. (757) L. Molnár, Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Dissertation for the D.Sc. degree of the Hungarian Academy of Sciences, 241 pages, 2004. [433] T.S.S.R.K. Rao, A note on the algebraic reflexivity of the group of surjective isometries of K(C(K)), Expo. Math. 26 (2008), 79-83. (758) L. Molnár and B. Zalar, Reflexivity of the group of surjective isometries on some Banach spaces, Proc. Edinb. Math. Soc. 42 (1999), 17 36. (759) F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical spaces, Rev. Mat. Iberoam. 18 (2002), 409 430. [434] T.S.S.R.K. Rao, Nice surjections on spaces of operators, Proc. Indian Acad. Sci. (Math. Sci.) 116 (2006), 401 409. (760) V. Mascioni and L. Molnár, Linear maps on factors which preserve the extreme points of the unit ball, Canad. Math. Bull. 41 (1998), 434 441.
177 [435] T.S.S.R.K. Rao and A.K. Roy, Diameter preserving linear bijections of functions spaces, J. Austral. Math. Soc. 70 (2001), 323 335. (761) M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. 71 (1998), 301 310. [436] N. ur Rehman, Jordan triple (α, β) -derivations on semiprime rings with involution, Hacettepe J. Math. Stat. 42 (2013), 641 651. (762) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [437] M.A. Rieffel, Standard deviation is a strongly Leibniz seminorm, New York J. Math., 20 (2014), 35 56. (763) L. Molnár, Linear maps on observables in von Neumann algebras preserving the maximal deviation, J. London Math. Soc. 81 [438] A. Rivas, S.F. Huelga and M. Plenio, Quantum non- Markovianity: characterization, quantification and detection, Rep. Progr. Phys. 77 (2014), 094001, 26 pp. (764) L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001), 299 303. [439] L. Rodman and P. Šemrl, Orthogonality preserving bijective maps on real and complex projective spaces, Linear and Multilinear Alg. 54 (2006), 355 367. (765) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), 785 791. (766) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [440] L. Rodman and P. Šemrl, Orthogonality preserving bijective maps on finite dimensional projective spaces over division rings, Linear and Multilinear Alg. 56 (2008), 647-664. (767) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), 785 791. (768) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [441] L. Rodman and P. Šemrl, Preservers of generalized orthogonality on finite dimensional real vector and projective spaces, Linear and Multilinear Alg. 57 (2009), 839 858.
178 (769) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), 785 791. (770) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [442] A. Sanami, A characterization of the Helmholtz free energy, J. Math. Phys. 54 (2013), 053301. (771) L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl., 432 (2010), 3343 3350. [443] A. Sanami, A characterization of the entropy-gibbs transformations, Iran. J. Math. Chem. 5 (2014), 69 75. (772) L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl., 432 (2010), 3343 3350. [444] K. Seddighi and Y. Taghavi, Mappings on spaces of continuous functions, Southeast Asian Bull. Math. 24 (2000), 287 295. (773) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), 1789 1794. [445] P. Šemrl, Generalized symmetry transformations on quaternionic indefinite inner product spaces: An extension of quaternionic version of Wigner s theorem, Commun. Math. Phys. 242 (2003), 579 584. (774) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), 785 791. (775) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [446] P. Šemrl, Orthogonality preserving transformations on the set of n-dimensional subspaces of a Hilbert space, Illinois J. Math. 48 (2004), 567 573. (776) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421. [447] P. Šemrl, Order-preserving maps on the poset of idempotent matrices, Acta Sci. Math. (Szeged) 69 (2003), 481 490.
179 (777) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [448] P. Šemrl, Applying projective geometry to transformations on rank one idempotents, J. Funct. Anal. 210 (2004), 248 257. (778) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), 785 791. (779) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [449] P. Šemrl, Non-linear commutativity preserving maps, Acta Sci. Math. (Szeged) 71 (2005), 781 819. (780) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [450] P. Šemrl, Maps on idempotents, Studia Math. 169 (2005), 21 44. (781) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. (782) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), 785 791. (783) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421. (784) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [451] P. Šemrl, Maps on idempotent matrices over division rings, J. Algebra 298 (2006), 142 187. (785) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421. (786) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [452] P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), 364 393.
180 (787) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), 785 791. (788) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), 1463 1466. (789) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (790) L. Molnár, A Wigner-type theorem on symmetry transformations in Banach spaces, Publ. Math. (Debrecen) 58 (2000), 231 239. (791) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421. (792) L. Molnár, *-semigroup endomorphisms of B(H), in I. Gohberg et al. (Edt.), Operator Theory: Advances and Applications, Vol. 127, pp. 465 472, Birkhäuser, 2001. (793) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. (794) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [453] P. Šemrl, Maps on matrix and operator algebras, Jahresber. Deutsch. Math.-Verein. 108 (2006), 91 103. (795) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [454] P. Šemrl, Maps on idempotent operators, Banach Cent. Publ. 75 (2007), 289 301. (796) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. (797) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. (798) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), 785 791. (799) L. Molnár, A Wigner-type theorem on symmetry transformations in type II factors, Int. J. Theor. Phys. 39 (2000), 1463 1466.
181 (800) L. Molnár, A Wigner-type theorem on symmetry transformations in Banach spaces, Publ. Math. (Debrecen) 58 (2000), 231 239. (801) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421. (802) L. Molnár, *-semigroup endomorphisms of B(H), in I. Gohberg et al. (Edt.), Operator Theory: Advances and Applications, Vol. 127, pp. 465 472, Birkhäuser, 2001. (803) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [455] P. Šemrl, Linear Preserver Problems, In Handbook of Linear Algebra (L. Hogben edt.) Discrete Mathematics and its Applications, Chapman and Hall, 2007, 22-1. (804) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), 5904 5909. [456] P. Šemrl, Non-linear commutativity preserving maps on hermitian matrices, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 157 168. (805) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), 5904 5909. [457] P. Šemrl, Comparability preserving maps on bounded observables, Integral Equations Operator Theory 62 (2008), 441 454. (806) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), 5904 5909. (807) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [458] P. Šemrl, Local automorphisms of standard operator algebras, J. Math. Anal. Appl. 371 (2010), 403 406. (808) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [459] P. Šemrl Symmetries on bounded observables - a unified approach based on adjacency preserving maps, Integral Equations Operator Theory 72 (2012), 7-66. (809) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. (810) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), 5904 5909.
182 (811) L. Molnár, Non-linear Jordan triple automorphisms of sets of self-adjoint matrices and operators, Studia Math. 173 (2006), 39 48. (812) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. (813) L. Molnár, Maps preserving the geometric mean of positive operators, Proc. Amer. Math. Soc. 137 (2009), 1763 1770. [460] P. Šemrl, Comparability preserving maps on Hilbert space effect algebras, Comm. Math. Phys. 313 (2012), 375 384. (814) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907 1912. (815) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450. (816) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), 5904 5909. (817) L. Molnár and E. Kovács, An extension of a characterization of the automorphisms of Hilbert space effect algebras, Rep. Math. Phys. 52 (2003), 141 149. (818) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [461] P. Šemrl Symmetries of Hilbert space effect algebras, J. Lond. Math. Soc. 88 (2013), 417 436. (819) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. (820) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907 1912. (821) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450. (822) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), 5904 5909. (823) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287 300. (824) L. Molnár and E. Kovács, An extension of a characterization of the automorphisms of Hilbert space effect algebras, Rep. Math. Phys. 52 (2003), 141 149.
183 (825) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), 755 772. (826) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. (827) L. Molnár and W. Timmermann, Mixture preserving maps on von Neumann algebra effects, Lett. Math. Phys. 79 (2007), 295 302. (828) L. Molnár, Maps preserving the geometric mean of positive operators, Proc. Amer. Math. Soc. 137 (2009), 1763 1770. (829) CML09f L. Molnár, Maps preserving the harmonic mean or the parallel sum of positive operators, Linear Algebra Appl. 430 (2009), 3058 3065. [462] P. Šemrl Automorphisms of Hilbert space effect algebras, J. Phys. A: Math. Theor. 48 (2015) 195301. (830) L. Molnár and Zs. Páles, -order automorphisms of Hilbert space effect algebras: The two-dimensional case, J. Math. Phys. 42 (2001), 1907 1912. (831) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450. (832) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [463] P. Šemrl and A.R. Sourour, Order preserving maps on hermitian matrices, J. Austral. Math. Soc. 95 (2013), 129 132. (833) L. Molnár, Order-automorphisms of the set of bounded observables, J. Math. Phys. 42 (2001), 5904 5909. (834) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [464] H. Shi, G. Ji, Maps preserving norms of Jordan products on the space of self-adjoint operators, J. Shandong Univ. Nat. Sci. Ed.45 (2010), 80 84. (835) L. Molnár, Maps on states preserving the relative entropy, J. Math. Phys. 49 (2008), 032114. [465] R. Shindo, Norm conditions for real-algebra isomorphisms between uniform algebras, Centr. Eur. Math. J. 8 (2010), 135 147. (836) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120.
184 [466] R. Shindo, Maps between uniform algebras preserving norms of rational functions, Mediterr. J. Math. 8 (2011), 81 95. (837) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [467] R. Shindo, Weakly-peripherally multiplicative conditions and isomorphisms between uniform algebras, Publ. Math. (Debrecen) 78 (2011), 675 685. (838) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [468] R. Simon, N. Mukunda, S. Chaturvedi and V. Srinivasan Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics, Phys. Lett. A 372 (2008), 6847 6852. (839) L. Molnár, Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, J. Nat. Geom. 10 (1996), 137 148. (840) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. (841) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. (842) L. Molnár, Generalization of Wigner s unitaryantiunitary theorem for indefinite inner product spaces, Commun. Math. Phys. 210 (2000), 785 791. (843) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [469] N. Širovnik and J. Vukman, A result concerning two-sided centralizers on algebras with involution, Oper. Matrices 7 (2013), 687 693. (844) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [470] N. Širovnik and J. Vukman, On derivations of operator algebras with involution, Demonstr. Math. 47 (2014), 784 790. (845) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [471] P.B. Slater, Quantum and Fisher information from the Husimi and related distributions, J. Math. Phys. 47 (2006), Art. No. 022104.
185 (846) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), 267 273. [472] R. Slowik, Maps on infinite triangular matrices preserving idempotents, Linear Multilinear Alg. 62 (2014), 938 964. (847) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [473] R. Slowik, Linear minimal rank preservers on infinite triangular matrices, Kyushu J. Math. 69 (2015), 63 68. (848) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [474] P. Stano, D. Reitzner and T. Heinosaari, Coexistence of qubit effects, Phys. Rev. A 78 (2008), 012315. (849) L. Molnár, Characterizations of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437 450. [475] E. Størmer, Positive Linear Maps of Operator Algebras, Springer-Verlag, Berlin Heidelberg, 2013. (850) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [476] P. Szokol, M.-C. Tsai and J. Zhang, Preserving problems of geodesic-affine maps and related topics on positive definite matrices, Linear Algebra Appl. 483 (2015), 293 308. (851) O. Hatori and L. Molnár, Isometries of the unitary groups and Thompson isometries of the spaces of invertible positive elements in C -algebras, J. Math. Anal. Appl. 409 (2014), 158 167. (852) L. Molnár, Maps preserving the geometric mean of positive operators, Proc. Amer. Math. Soc. 137 (2009), 1763 1770. [477] A. Taghavi, Additive mappings on operator algebras preserving square absolute values, Honam Math. J. 23 (2001), 51 57. (853) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. [478] A. Taghavi, When is a subspace of B(X ) ideal?, Southeast Asian Bull. Math. 26 (2002), 153 158.
186 (854) L. Molnár, On the range of a normal Jordan *- derivation, Comment. Math. Univ. Carolinae 35 (1994), 691 695. (855) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. (856) L. Molnár, The range of a Jordan *-derivation, Math. Japon. 44 (1996), 353 356. [479] A. Taghavi, Additive mappings on C -algebras preserving absolute values, Linear Multilinear Algebra 60 (2012), 33-38. (857) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. (858) L. Molnár, Multiplicative Jordan triple isomorphisms on the self-adjoint elements of von Neumann algebras, Linear Algebra Appl. 419 (2006), 586 600. [480] A. Taghavi, Additive mappings on C -algebras sub-preserving absolute values of products, Journal of Inequalities and Applications 2012, Article ID 161, 6 p., electronic only (2012). (859) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. (860) L. Molnár, Multiplicative Jordan triple isomorphisms on the self-adjoint elements of von Neumann algebras, Linear Algebra Appl. 419 (2006), 586 600. [481] A. Taghavi and E. Dadar, Range-preserving maps on operator algebras, Int. J. Contemp. Math. Sci. 3 (2008), 311 317. (861) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [482] A. Taghavi, V. Darvish, H. Rohi, Additivity of maps preserving products AP ± P A on C -algebras, Math. Slovaca, to appear. (862) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234. (863) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. [483] (2) A. Taghavi, H. Rohi and V. Darvish, Non-linear *-Jordan derivations on von Neumann algebras, Linear Multilinear Alg., to appear. (864) L. Molnár, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229 234.
187 (865) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. [484] A. Tajmouati and A. El Bakkali, Linear maps preserving the Kato spectrum, Int. Journal of Math. Analysis 6 (2012), 253 263. (866) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [485] S.E. Takahasi and O. Hatori, A structure of ring homomorphisms on commutative Banach algebras, Proc. Amer. Math. Soc. 127 (1999), 2283 2288. (867) L. Molnár, The range of a ring homomorphism from a commutative C -algebra, Proc. Amer. Math. Soc. 124 (1996), 1789 1794. [486] T. Tanengtang, K. Paithoonwattanakij, P.P. Yupapin and S. Suchat, Quantum bits generation using correlated photons: Fidelity and error corrections, Optik 121 (2010), 1976-1980. (868) L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001), 299 303. [487] X.M. Tang, C.G. Cao and X. Zhang, Modular automorphisms preserving idempotence and Jordan isomorphisms of triangular matrices over commutative rings, Linear Algebra Appl. 338 (2001), 145 152. (869) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [488] F. Ticozzi and L. Viola, Quantum information encoding, protection, and correctionfrom trace-norm isometries, Phys. Rev. A 81 (2010), 032313. (870) L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), 267 273. [489] W. Timmermann, Remarks on automorphism and derivation pairs in ternary rings of unbounded operators, Arch. Math. 74 (2000), 379 384. (871) L. Molnár and B. Zalar, Three-variable *-identities and homomorphisms of Schatten classes, Publ. Math. (Debrecen) 50 (1997), 121 133. (872) L. Molnár and P. Šemrl, Order isomorphisms and triple isomorphisms of operator ideals and their reflexivity, Arch. Math. 69 (1997), 497 506.
188 [490] W. Timmermann, Elementary operators on algebras of unbounded operators, Acta Math. Hung. 107 (2005) 149 160. (873) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. (874) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. [491] W. Timmermann, Zero product preservers and orthogonality preservers in algebras of unbounded operators, Math. Pannon. 16 (2005), 165-172. (875) M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *- semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), 253 266. (876) L. Molnár, Characterization of additive *- homomorphisms and Jordan *-homomorphisms on operator ideals, Aequationes Math. 55 (1998), 259 272. [492] T. Tonev, Weak multiplicative operators on function algebras without units, Banach Cent. Publ. 91 (2010), 411 421. (877) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (878) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [493] T. Tonev, Spectral conditions for almost composition operators between algebras of functions, Proc. Amer. Math. Soc. 142 (2014), 2721 2732. (879) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [494] T. Tonev and A. Luttman, Algebra isomorphisms between standard operator algebras, 191 (2009), 163 170. (880) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (881) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007.
189 [495] T. Tonev and R. Yates, Norm-linear and norm-additive operators between uniform algebras, J. Math. Anal. Appl. 357 (2009), 45 53. (882) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (883) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [496] E. Turilova, Automorphisms of spectral lattices of unbounded positive operators, Lobachevskii J. Math. 35 (2014), 259-263. (884) L. Molnár and P. Šemrl, Spectral order automorphisms of the spaces of Hilbert space effects and observables, Lett. Math. Phys. 80 (2007), 239 255. [497] E. Turilova, Automorphisms of spectral lattices of positive contractions on von Neumann algebras, Lobachevskii J. Math. 35 (2014), 355 359. (885) L. Molnár and P. Šemrl, Spectral order automorphisms of the spaces of Hilbert space effects and observables, Lett. Math. Phys. 80 (2007), 239 255. [498] A. Turnšek, On operators preserving James orthogonality, Linear Algebra Appl. 407 (2005), 189 195. (886) M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *- semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), 253 266. (887) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. (888) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [499] A. Turnšek, A variant of Wigners functional equation, Aequat. Math., to appear. (889) L. Molnár, An algebraic approach to Wigner s unitaryantiunitary theorem, J. Austral. Math. Soc. 65 (1998), 354 369. [500] Z. Ullah and M.A. Chaudhry, θ-centralizers of rings with involution, Int. J. Algebra 4 (2010), 843 850. (890) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95.
190 [501] J. Vukman, An equation on operator algebras and semisimple H -algebras, Glasnik Math. 40 (2005), 201 206. (891) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [502] J. Vukman, On derivations of algebras with involution, Acta Math. Hung. 112 (2006), 181 186. (892) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [503] J. Vukman, A note on Jordan *-derivations in semiprime rings with involution, Int. Math. Forum 1 (2006), 617 622. (893) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), 44 55. [504] J. Vukman, On derivations of standard operator algebras and semisimple H -algebras, Studia Sci. Math. Hungar. 44 (2007), 57 63. (894) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [505] J. Vukman, Identities related to derivations and centralizers on standard operator algebras, Taiwanese J. Math. 11 (2007), 255 265. (895) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [506] J. Vukman, A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11 (2007), 367 370. (896) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [507] J. Vukman, On (m, n)-jordan centralizers in rings and algebras, Glasnik Math. 45 (2010), 43 53. (897) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [508] J. Vukman, Some remarks on derivations in semiprime rings and standard operator algebras, Glasnik Math. 46 (2011), 43 48. (898) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [509] J. Vukman and M. Fošner, A characterization of two-sided centralizers on prime rings, Taiwanese J. Math. 11 (2007), 1431 1441.
191 (899) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [510] J. Vukman and I. Kosi-Ulbl, Centralisers on rings and algebras, Bull. Austral. Math. Soc. 71 (2005), 225 234. (900) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [511] J. Vukman and I. Kosi-Ulbl, A remark on a paper of L. Molnár, Publ. Math. (Debrecen) 67 (2005), 419 421. (901) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [512] J. Vukman and I. Kosi-Ulbl, On centralizers of standard operator algebras and semisimple H -algebras, Acta Math. Hung. 110 (2006), 217 223. (902) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [513] J. Vukman and I. Kosi-Ulbl, On centralizers of semiprime rings with involution, Studia Sci. Math. Hung. 43 (2006), 61 67. (903) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [514] J. Vukman and I. Kosi-Ulbl, On centralizers of semisimple H - algebras, Taiwanese J. Math. 11 (2007), 1063 1074. (904) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [515] J. Vukman and I. Kosi-Ulbl, On two-sided centralizers of rings and algebras, CUBO A Math. J. 10 (2008), 211-222. (905) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [516] J. Vukman, I. Kosi-Ulbl and D. Eremita, On certain equations in rings, Bull. Austral. Math. Soc. 71 (2005), 53 60. (906) L. Molnár, On centralizers of an H*-algebra, Publ. Math. (Debrecen) 46 (1995), 89 95. [517] D. Wang, Q. Guan and D. Zhang, Local automorphisms of semisimple algebras and group algebras, Acta Math. Sci. 38 (2011), 1600-1612. (907) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [518] L. Wang, Additivity of Jordan triple elementary maps on triangular algebras, J. Qingdao Univ. Nat. Sci. Ed. 33 (2012).
192 (908) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. (909) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. [519] L. Wang, J. Hou and K. He, Fidelity, sub-fidelity, super-fidelity and their preservers, Int. J. Quantum Inf. 13 (2015), 1550027, 11 pp. (910) L. Molnár, Fidelity preserving maps on density operators, Rep. Math. Phys. 48 (2001), 299 303. (911) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421. [520] X. Wang, Local derivations of a matrix algebra over a commutative ring, J. Math. Res. Expo. 31 (2011), 781 790. (912) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [521] Y. Wang, The additivity of multiplicative maps on rings, Commun. Algebra 37 (2009), 2351 2356. (913) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. [522] Y. Wang, Additivity of multiplicative maps on triangular rings, Linear Algebra Appl. 434 (2011), 625-635. (914) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. [523] Y. Wang and Y. Wang, Jordan homomorphisms of upper triangular matrix rings, Linear Algebra Appl. 439 (2013), 4063 4069. (915) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [524] M. Wei, J. Zhang Elementary maps on triangular algebra, J. Northwest Univ. 45 (2009), 13 15. (916) M. Brešar, L. Molnár and P. Šemrl, Elementary operators II, Acta Sci. Math. (Szeged) 66 (2000), 769 791. (917) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319.
193 [525] M. Wei M, J.H. Zhang, Jordan-triple elementary maps and Jordan isomorphisms on triangular algebras, Fangzhi Gaoxiao Jichukexue Xuebao 22 (2009), 193 197. (918) L. Molnár and P. Šemrl, Elementary operators on standard operator algebras, Linear and Multilinear Algebra 50 (2002), 315 319. [526] T.L. Wong, Jordan isomorphisms of triangular rings, Proc. Amer. Math. Soc. 133 (2005), 3381 3388. (919) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [527] J. Wu, Additive mappings preserving zero products, Acta Math. Sinica 42 (1999), 1125 1128. (920) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400. [528] X. Xia, Y. Jin, Y. Shang and L. Chen, Improved relativeentropy method for eccentricity filtering in roundness measurement based on information optimization, Research Journal of Applied Sciences, Engineering and Technology (RJASET) 5 (2013), 4649 4655. (921) L. Molnár and P. Szokol, Maps on states preserving the relative entropy II, Linear Algebra Appl., 432 (2010), 3343 3350. [529] J. Xie and F. Lu, A note on 2-local automorphisms of digraph algebras, Linear Algebra Appl. 378 (2004), 93 98. (922) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874. [530] J. Xu, B. Zheng and A. Fošner, Linear maps preserving tensor product of rank-one Hermitian matrices, J. Aust. Math. Soc. 98 (2015), 407 428. (923) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [531] J. Xu, B. Zheng and H. Yao, Linear transformations between multipartite quantum systems that map the set of tensor product of idempotent matrices into idempotent matrix set, J. Funct. Space Appl. Volume 2013, Article ID 182569, 7 pages. (924) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421.
194 (925) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [532] J.L. Xu, C.G. Cao and X.M. Tang, Linear preservers of idempotence on triangular matrix spaces over any field, Internat. Math. Forum 2 (2007), 2305 2319. (926) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [533] C. Yan, G. Zhang and C. Gao, The form of finite rank idempotent operators of B(H) and its application, Natur. Sci. J. Harbin Normal Univ. 22 (2006), 34 36. (927) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), 311-321. [534] A. Yang, Jordan isomorphisms on nest subalgebras, Advances in Mathematical Physics, Volume 2015, Article ID 864792, 6 pages. (928) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [535] A.L. Yang and J.H. Zhang, Jordan isomorphisms on nest subalgebras of factor von Neumann algebras, Acta Math. Sinica 51 (2008), 219 224. (929) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [536] D. Yang, Jordan *-derivation pairs on standard operator algebras and related results, Colloq. Math. 102 (2005), 137 145. (930) L. Molnár, Jordan *-derivation pairs on a complex *- algebra, Aequationes Math. 54 (1997), 44 55. [537] L. Yang, W. Zhang and J. Xu, Linear maps on upper triangular matrices spaces preserving idempotent tensor products, Abstr. Appl. Anal. (2014), Article ID 148321, 8 pages (931) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [538] H. You, S. Liu and G. Zhang, Rank one preserving R-linear maps on spaces of self-adjoint operators on complex Hilbert spaces, Linear Algebra Appl. 416 (2006) 568-579.
195 (932) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), 311-321. [539] X.P. Yu and F.Y. Lu, Maps preserving Lie product on B(X), Taiwanese J. Math. 12 (2008), 793 806. (933) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (934) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. [540] L. Yuan and H.K. Du, A note on the infimum problem of Hilbert space effects, J. Math. Phys. 47 (2006), Art. No. 102103. (935) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287 300. [541] Q. Yuan and K. He, Generalized Jordan semitriple maps on Hilbert space effect algebras, Adv. Math. Phys., Volume 2014, Article ID 216713, 5 pages. (936) L. Molnár, On some automorphisms of the set of effects on Hilbert space, Lett. Math. Phys. 51 (2000), 37 45. (937) L. Molnár, Preservers on Hilbert space effects, Linear Algebra Appl. 370 (2003), 287 300. (938) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [542] B. Zalar, Theory of Hilbert triple systems, Yokohama Math. J. 41 (1994), 94 126. (939) L. Molnár, Reproducing kernel Hilbert A-modules, Glasnik Mat. 25 (1990), 335 345. (940) L. Molnár, A note on Saworotnow s representation theorem on positive definite functions, Houston J. Math. 17 (1991), 89 99. (941) L. Molnár, -representations of the trace-class of an H - algebra, Proc. Amer. Math. Soc. 115 (1992), 167 170. (942) L. Molnár, p-classes of an H*-algebra and their representations, Acta Sci. Math. (Szeged) 58 (1993), 411 423. (943) L. Molnár, Conditions for a function to be a centralizer on an H*-algebra, Acta Math. Hung. 67 (1995), 171 174. [543] B. Zalar, Jordan - von Neumann theorem for Saworotnow s generalized Hilbert space, Acta Math. Hung. 69 (1995), 301 325.
196 (944) L. Molnár, Reproducing kernel Hilbert A-modules, Glasnik Mat. 25 (1990), 335 345. (945) L. Molnár, A note on Saworotnow s representation theorem on positive definite functions, Houston J. Math. 17 (1991), 89 99. (946) L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), 323 325. (947) L. Molnár, -representations of the trace-class of an H - algebra, Proc. Amer. Math. Soc. 115 (1992), 167 170. (948) L. Molnár, Modular bases in a Hilbert A-module, Czech. Math. J. 42 (1992), 649 656. (949) L. Molnár, On Saworotnow s Hilbert A-modules, Glasnik Mat. 28 (1993), 259 267. (950) L. Molnár, On A-linear operators on a Hilbert A-module, Period. Math. Hung. 26 (1993), 219 222. [544] B. Zalar, Connections between Hilbert triple systems and involutive H -triples, Acta Sci. Math. (Szeged) 62 (1996), 127 143. (951) L. Molnár, Reproducing kernel Hilbert A-modules, Glasnik Mat. 25 (1990), 335 345. (952) L. Molnár, A note on Saworotnow s representation theorem on positive definite functions, Houston J. Math. 17 (1991), 89 99. (953) L. Molnár, A note on the strong Schwarz inequality in Hilbert A-modules, Publ. Math. (Debrecen) 40 (1992), 323 325. (954) L. Molnár, Modular bases in a Hilbert A-module, Czech. Math. J. 42 (1992), 649 656. (955) L. Molnár, On Saworotnow s Hilbert A-modules, Glasnik Mat. 28 (1993), 259 267. (956) L. Molnár, On A-linear operators on a Hilbert A-module, Period. Math. Hung. 26 (1993), 219 222. [545] F.J. Zhang, Nonlinear strong *-commutativity preserving maps on factor von Neumann algebras, Fangzhi Gaoxiao Jichukexue Xuebao 25 (2012), 21 24. (957) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. [546] F.J. Zhang and G.X. Ji, Additive maps preserving orthogonality on B(H), J. Shaanxi Normal Univ. Nat. Sci. Ed. 33 (2005), 21 25. (958) L. Molnár, Two characterizations of additive *- automorphisms of B(H), Bull. Austral. Math. Soc. 53 (1996), 391 400.
197 [547] G. Zhang and S. Liu, Rank one preserving linear maps on spaces of symmetric operators, J. Heilongjiang Univ. Natur. Sci. 23 (2006), 235 238. (959) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), 311-321. [548] H. Zhang and Y. Li, Jordan triple multiplicative maps on the symmetric matrices, Lecture Notes in Computer Science, 2011, Volume 6987/2011, 27 34. (960) L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295 302. (961) L. Molnár, Jordan maps on standard operator algebras, Functional Equations Results and Advances, in Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001, pp. 305 320. (962) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [549] H. Zhang and X. Wang, Local E-automorphisms on effect algebras, Pure Math. 2 (2012), 152 155. (963) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), 91 100. (964) L. Molnár, Sequential isomorphisms between the sets of von Neumann algebra effects, Acta Sci. Math. (Szeged) 69 (2003), 755 772. [550] J.H. Zhang, S. Feng and R.H. Wu, Local 2-cocycles of nest subalgebras of factor von Neumann algebras, Linear Algebra Appl. 416 (2006), 908-916. (965) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. [551] J.H. Zhang, G.X. Ji and H.X. Cao, Local derivations of nest subalgebras of von Neumann algebras, Linear Algebra Appl. 392 (2004), 61 69. (966) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. [552] J.H. Zhang and H.X. Li, 2-local derivations on digraph algebras, Acta Math. Sin. 49 (2006), 1411 1416. (967) L. Molnár, Local automorphisms of operator algebras on Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 1867 1874.
198 [553] J.H. Zhang, A.L. Yang and F.F. Pan, Local automorphisms on nest subalgebras of factor von Neumann algebras, Linear Algebra Appl. 402 (2005), 335 344. (968) L. Molnár, The set of automorphisms of B(H) is topologically reflexive in B(B(H)), Studia Math. 122 (1997), 183 193. (969) L. Molnár and M. Győry, Reflexivity of the automorphism and isometry groups of the suspension of B(H), J. Funct. Anal. 159 (1998), 568 586. [554] J.H. Zhang, A.L. Yang and F.F. Pan, Linear maps preserving zero products on nest subalgebras of von Neumann algebras, Linear Algebra Appl. 412 (2006), 348 361. (970) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [555] J.H. Zhang and F.J. Zhang, Nonlinear maps preserving Lie products on factor von Neumann algebras, Linear Algebra Appl. 429 (2008), 18 30. (971) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. [556] W. Zhang, J. Hou, Maps preserving peripheral spectrum of generalized Jordan products of self-adjoint operators, Abstr. Appl. Anal. Volume 2014, Article ID 192040, 8 pages. (972) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [557] W. Zhang, J. Hou and X. Qi, Maps preserving peripheral spectrum of generalized Jordan products of operators, Acta Math. Sin. 31 (2015), 953 972. (973) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. (974) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. [558] X. Zhang, H. Cui and J. Hou, Jordan semi-triple mappings preserving rank and minimal rank, Proceedings of the Third International Workshop on Matrix Analysis and Applications, vol 3., World Academic Union, 273 276, 2009.
199 (975) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), 311-321. [559] X. Zhang, X.M. Tang and C.G. Cao, Preserver Problems on Spaces of Matrices, Science Press, Beijing, 2007. (976) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. (977) L. Molnár, Some linear preserver problems on B(H) concerning rank and corank, Linear Algebra Appl. 286 (1999), 311-321. (978) L. Molnár, Transformations on the set of all n- dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys. 217 (2001), 409 421. (979) L. Molnár, Local automorphisms of some quantum mechanical structures, Lett. Math. Phys. 58 (2001), 91 100. (980) L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn s version of Wigner s theorem, J. Funct. Anal., 194 (2002), 248 262. (981) L. Molnár and P. Šemrl, Non-linear commutativity preserving maps on self-adjoint operators, Quart. J. Math., 56 (2005), 589 595. [560] W. Zhang and J. Hou, Maps preserving numerical radius or cross norms of products on 2 2 matrix algebras, Journal of North University of China (Natural Science Edition) 30 (2009), 506 511. (982) L. Molnár, A generalization of Wigner s unitaryantiunitary theorem to Hilbert modules, J. Math. Phys. 40 (1999), 5544 5554. [561] W. Zhang and J. Hou, Maps preserving peripheral spectrum of Jordan semi-triple products of operators, Linear Algebra Appl. 435 (2011), 1326-1335. (983) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120. [562] W. Zhang and J. Hou, Maps preserving peripheral spectrum of generalized products of operators, Linear Algebra Appl. 468 (2015), 87 106. (984) L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. 130 (2002), 111-120.
200 [563] X.H. Zhang and J.H. Zhang, Characterizations of Jordan isomorphisms of nest algebras, Acta Math. Sin. 56 (2013), 553 560. (985) L. Molnár and P. Šemrl, Some linear preserver problems on upper triangular matrices, Linear and Multilinear Algebra 45 (1998), 189 206. [564] L. Zhao and J. Hou, Additive Maps Preserving Indefinite Semi- Orthogonality, J. Systems Sci. Math. Sci. 27 (2007), 697-702. (986) M. Győry, L. Molnár and P. Šemrl, Linear rank and corank preserving maps on B(H) and an application to *- semigroup isomorphisms of operator ideals, Linear Algebra Appl. 280 (1998), 253 266. [565] B. Zheng, J. Xu nd A. Fošner, Linear maps preserving idempotents of tensor products of matrices, Linear Alg. Appl. 470 (2015), 25 39. (987) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [566] B. Zheng, J. Xu nd A. Fošner, Linear maps preserving rank of tensor products of matrices, Linear Multilinear Alg. 63 (2015), 366 376. (988) L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, p. 236, Springer, 2007. [567] J. Zhu and C. Xiong, Generalized derivable maps at zero point on some reflexive operator algebras, Linear Algebra Appl. 397 (2005), 367 379. (989) L. Molnár and P. Šemrl, Local Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 125 (1997), 447 454. (990) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. [568] J. Zhu and C. Xiong, Characterization of generalized Jordan *-left derivations on real nest algebras, Linear Algebra Appl. 404 (2005), 325 344. (991) L. Molnár and P. Šemrl, Local Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 125 (1997), 447 454.
201 (992) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99. [569] J. Zhu and C. Xiong, Generalized Jordan *-left derivations on real nest algebras, Acta Math. Sinica 48 (2005), 299 310. (993) L. Molnár and P. Šemrl, Local Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc. 125 (1997), 447 454. (994) L. Molnár and B. Zalar, On local automorphism of group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 93 99.
202 LECTURES AND TALKS by Lajos Molnár 1. Isometries and isomorphisms on positive definite matrices, 10th Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control, September 7-12, 2015, Kočovce, Slovak Republic 2. Linear bijections on von Neumann factors commuting with λ- Aluthge transform, Seminar talk, Nihon University, June 6, 2015, Tokyo, Japan. 3. On isometries of some matrix spaces, Colloquium talk, Department of Mathematics, Waseda University, June 5, 2015, Tokyo, Japan. 4. Generalized Mazur-Ulam theorems and isometries of positive definite cones in operator algebras, International Conference on Preserver Problems and Related Topics, Niigata University, May 24, 2015, Niigata, Japan. 5. Izometriák és izomorfizmusok, Colloquium talk, Bolyai Institute, University of Szeged, April 14, 2015, Szeged, Hungary. 6. Generalized Mazur-Ulam theorems and isometries of matrix spaces, Seminar talk, Department of Mathematics, The University of Mississippi, March 20, 2015, Oxford MS, USA. 7. Generalized Mazur-Ulam theorems and isometries of matrix spaces, Colloquium talk, Department of Mathematical Sciences, The University of Memphis, March 26, 2015, Memphis TN, USA. 8. Általánosított Mazur-Ulam tételek és mátrixterek izometriái, Seminar of the Department of Analysis, Budapest University of Technology and Economics, January 11, 2015, Budapest, Hungary. 9. Preservers: transformations on quantum structures and isometries of matrix spaces, Series of lectures at Winter School in Abstract Analysis, Charles University, January 10-17, 2015, Švratka, Czecz Republic 10. Isometries of matrix spaces, Varecza Árpád Emléknap, College of Nyíregyháza, October 30, 2014, Nyíregyháza, Hungary.
203 11. On the standard K-loop structure of positive invertible elements in a C -algebra, Analysis Seminar, University of Innsbruck, October 24-26, 2014, Innsbruck, Austria. 12. Quantum structures and their transformations, A course at the CIMPA Research School on Operator theory and the principles of quantum mechanics University Moulay Ismail, 2014 September 8-17, Meknes, Morocco. 13. Isometries and isomorphisms of spaces of positive definite and unitary matrices, International Linear Algebra Society (ILAS) 2014 Meeting, August 6-9, 2014, Seoul, South Korea 14. On the standard K-loop structure of positive invertible elements in a C -algebra, IWOTA 2014, VU University Amsterdam, July 14-18, 2014, Amsterdam, The Netherlands. 15. Isomorphisms and generalized isometries of positive definite cones and unitary groups in operator algebras, Zagreb Workshop on Operator Theory, University of Zagreb, July 3-4, 2014, Zagreb, Croatia 16. Transformations on density operators preserving quantum relative entropy or related quantities, Canadian Mathematical Society, 2014 Summer Meeting, June 6-9, Winnipeg, Canada. 17. An operation on the positive definite cone of a C -algebra and its algebraic properties, Colloquium Talk, Department of Mathematics, University of Manitoba, June 6, 2014, Winnipeg, Canada. 18. Isomorphisms and generalized isometries of positive definite cones and unitary groups in operator algebras, The 7th Conference on Function Spaces, Southern Illinois University, May 20-24, 2014, Edwardsville, USA. 19. On an operation on the positive definite cone of a C -algebra, Seminar Talk, Department of Mathematics, University of Denver, May 16, 2014, Denver, USA. 20. Algebraic properties of some operations on C -algebras, Seminar Talk, Department of Mathematics, University of Wyoming, May 13, 2014, Laramie, USA. 21. On certain operations on the set of positive invertible elements in a C -algebra, Seminar Talk, Department of Mathematics and Computer Science, West University of Timisoara, April 3, 2014, Timisoara, Romania
204 22. On the standard K-loop structure of positive invertible elements in a C -algebra, 14th Debrecen-Katowice Winter Seminar on Functional Equations and Inequalities, January 29 - February 1, 2014, Hajdúszoboszló, Hungary. 23. Transformations on positive definite matrices preserving distances, Functional Analysis Workshop in honour of Z. Sebestyén s 70th birthday, Eötvös Lornd University, January 10, 2014, Budapest, Hungary. 24. Isometries of certain nonlinear spaces of matrices and operators, IWOTA 2013, Indian Institute of Science, December 16-20, 2013, Bangalore, India. 25. Transformations on positive definite matrices preserving distance measures, Analysis Seminar, University of Innsbruck, November 29 - December 1, 2013, Innsbruck, Austria. 26. Preserver Problems on Quantum Structures, Colloquium Talk, Department of Applied Mathematics, National Sun Yat-sen University, November 7, 2013, Kaohsiung, Taiwan. 27. Reflexivity of automorphism groups and isometry groups of some operator structures, Seminar Talk, Department of Applied Mathematics, National Sun Yat-sen University, November 6, 2013, Kaohsiung, Taiwan. 28. Transformations on spaces of unitary or positive definite matrices: Isometries and isomorphism, Seminar Talk, Department of Applied Mathematics, National Sun Yat-sen University, October 30, 2013, Kaohsiung, Taiwan. 29. Isometries and isomorphisms of some spaces of matrices, Operator Algebra Seminar, Department of Mathematics, University of Rome Tor Vergata, September 25, 2013, Rome, Italy. 30. Nonlinear preserver transformations on some quantum structures, Seminar of Department of Mathematics and Department of Physics, University of Calabria, September 19, 2013, Rende, Italy. 31. Isometries and isomorphisms of some spaces of matrices, Advanced School and Workshop on Matrix Geometries and Applications, ICTP, July 1-12, 2013, Trieste, Italy. 32. Sequential isomorphisms and endomorphisms of Hilbert space effect algebras, Numbers, Functions, Equations 2013, June 28-30, 2013, Visegrád, Hungary.
205 33. Reflexivity of automorphism groups and isometry groups of some operator structures, Sz.-Nagy Centennial Conference, University of Szeged, June 24-28, 2013, Szeged, Hungary. 34. Some non-linear preservers on quantum structures, International Linear Algebra Society (ILAS) 2013 Meeting, June 3-7, 2013, Providence, RI, USA. 35. Izometriák és izomorfizmusok, Lendület FIFA 13 Workshop, University of Debrecen, April 26-27, 2013, Debrecen, Hungary. 36. Isometries of some nonlinear spaces of operators, AMS 2013 Spring Southeastern Section Meeting, March 1-3, 2013, University of Mississippi, Oxford, MS, USA. 37. Transformations of the unitary group on a Hilbert space, The Thirteenth Katowice-Debrecen Winter Seminar on Functional Equations and Inequalities, January 30-February 2, 2013, Zakopane, Poland. 38. Preserver problems on quantum structures, Seminar of the Department of Physics, University of Calabria, December 17, 2012, Cosenza, Italy. 39. Operátorstruktúrák izometriái, Celebration of Hungarian Science Meeting of Debrecen Branch of the Hungarian Academy of Sciences, November 15, 2012, Debrecen, Hungary. 40. Isometries of nonlinear operator structures, Seminar of the Institute of Analysis, TU Dresden, November 1, 2012, Dresden, Germany. 41. Isometries of nonlinear structures of linear operators, International Workshop on Functional Analysis, October 12-14, 2012, Timisoara, Romania. 42. C -algebras with isometric unitary groups are Jordan *- isomorphic, Seminar talk at the Department of Mathematics, University of Ljubljana, October 4, 2012, Ljubljana, Slovenia. 43. Sequential isomorphisms and endomorphisms of Hilbert space effect algebras, 11 th Biennial Meeting of the International Quantum Structure Association, University of Cagliari, July 23 27, 2012, Cagliari, Italy.
206 44. Reflexivity of isometry groups and automorphism groups of structures of Hilbert space operators, 50 th International Symposium on Functional Equations, University of Debrecen, June 17 24, 2012, Hajdúszoboszló, Hungary. 45. Algebraic properties of isometries on structures of linear operators, 5th Croatian Mathematical Congress, University of Rijeka, June 18 21, 2012, Rijeka, Croatia. 46. Reflexivity of the isometry groups of some spaces of Hilbert space operators, International Conference on Mathematics and Statistics (ICOMAS-2012), University of Memphis, May 15-18, 2012, Memphis, TN, USA. 47. Isometries of spaces of operators and functions, 7th Floor Seminar, Waseda University, November 8, 2011, Tokyo, Japan. 48. Isometries of spaces of operators and functions, Workshop on Commutative Algebra, Nara University of Education, November 4-6, 2011, Nara, Japan. 49. Order-preserving maps on spaces of operators and applications, Research on preserver problems related to Banach algebras and its applications, RIMS, Kyoto University, October 31 - November 2, 2011, Kyoto, Japan. 50. Transformations of the unitary group, Research on preserver problems related to Banach algebras and its applications, RIMS, Kyoto University, October 31 - November 2, 2011, Kyoto, Japan. 51. Transformations of the unitary group and sequential endomorphisms of effect algebras, Seminar talk at the Department of Mathematics, University of Ljubljana, September 8, 2011, Ljubljana, Slovenia. 52. Order automorphisms on positive definite operators and some applications, The 17th ILAS Conference, TU Braunschweig, August 22-26, 2011, Braunschweig, Germany. 53. Transformations on self-adjoint operators preserving commutativity or a measure of commutativity, IWOTA 2011, University of Seville, July 3-9, 2011, Seville, Spain. 54. Isometries and isomorphisms, Seminar talk at the Department of Mathematics, University of Ljubljana, June 28, 2011, Ljubljana, Slovenia.
207 55. Izometriák és izomorfizmusok, Functional Analysis and Preserver Problems Meeting of the Division of Mathematics of the Hungarian Academy of Sciences, May 11, 2011, Budapest, Hungary. 56. Recent results on isometries of nonlinear spaces of functions and operators, Mathematical Colloquium, Department of Mathematics, University of Osijek, April 28, 2011, Osijek, Croatia. 57. Általános operátor-közepet megőrző transzformációk, Symposium dedicated to L. Losonczi s 70th birthday, Debrecen Branch of the Hungarian Academy of Sciences, March 1, 2011, Debrecen, Hungary. 58. Transformations on self-adjoint operators preserving a measure of commutativity, The Eleventh Katowice-Debrecen Winter Seminar on Functional Equations and Inequalities, February 2 5, 2011, Wis la-malinka, Poland. 59. Order automorphisms of positive operators with some applications, Seminar talk at the Department of Mathematics, University of Ljubljana, November 5, 2010, Ljubljana, Slovenia. 60. Order automorphisms on positive definite operators and a few applications, Conference on Inequalities and Applications 10, September 19 25, 2010, Hajdúszoboszló, Hungary. 61. Linear maps on observables in von Neumann algebras preserving the maximal deviation, IWOTA 2010, TU Berlin, July 12-16, 2010, Berlin, Germany. 62. Transformations preserving relative entropies, Quantum Structures Boton 2010, 10th Biennial IQSA Meeting, June 21 26, 2010, Boston, USA. 63. Isometries of spaces of linear operators and probability distribution functions, The 6th Conference on Function Spaces, Southern Illinois University at Edwardsville, May 18-22, 2010, Edwardsville, USA. 64. Isometries of metric spaces of functions and operators, Conference Operators, Spaces, Algebras, Modules, University of Zagreb, March 1 4, 2010, Zagreb, Croatia.
208 65. Isometries and affine automorphisms of spaces of probability distribution functions, 10th Debrecen-Katowice Winter Seminar on Functional Equations and Inequalities, February 2-6, 2010, Zamárdi, Hungary. 66. A kvantummechanikában fellépő bizonyos operátorstruktúrák izometriái, von Neumann Seminar, Institute of Mathematics, Technical University of Budapest, December 15, 2009, Budapest, Hungary. 67. A metrikus és algebrai szerkezet kapcsolata metrikus algebrai struktúrákban, Joint Seminar of the Institute of Mathematics and the Faculty of Informatics, University of Debrecen, November 19, 2009, Debrecen, Hungary. 68. Isometries of some metric spaces of functions and operators, Seminar Talk, Technical University of Dresden, October 29, 2009, Dresden, Germany. 69. Thompson isometries and transformations preserving the geometric mean of positive operators, 47th International Symposium on Functional Equations, June 14 20, 2009, Gargnano, Italy. 70. Surjective isometries of some metric spaces of functions and operators, Seminar talk, The University of Montana, April 29, 2009, Missoula, USA. 71. Preservers on quantum structures, Colloquium talk, The University of Montana, April 28, 2009, Missoula, USA. 72. Transformations on the space of positive operators, AMS Sectional Meeting, San Francisco State University, April 25 26, 2009, San Francisco, USA. 73. Wigner-type results concerning transformations on density operators, Quantum Structure 2009, February 24 27, 2009, Kočovce, Slovakia. 74. Transformations preserving divergences or distances on spaces of positive operators, Seminar talk at the Department of Mathematics, University of Ljubljana, December 11, 2008, Ljubljana, Slovenia. 75. Surjective isometries of some metric spaces of functions and operators, Seminar talk at the Department of Mathematics, University of Zagreb, December 5, 2008, Zagreb, Croatia.
209 76. Preservers on quantum structures, Colloquium talk at the Department of Mathematics, University of Zagreb, December 3, 2008, Zagreb, Croatia. 77. Matematikai struktúrák transzformációi: megőrzési problémák, Celebration of Science Meeting of Debrecen Branch of the Hungarian Academy of Sciences, November 28, 2008, Debrecen, Hungary. 78. Surjective isometries of some metric spaces of functions and operators, Colloquium talk at the Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University, November 4, 2008, Prague, Czech Republic. 79. Surjective isometries of some metric spaces of functions and operators, Seminar talk at the Intitute of Mathematics, Physics and Mechanics, University of Ljubljana, October 29, 2008, Ljubljana, Slovenia. 80. Függvények és operátorok metrikus tereinek izometriáiról, Mathematical Colloquium, Bolyai Institute, University of Szeged, October 9, 2008, Szeged, Hungary. 81. Some preserver problems on quantum structures, Quantum Structures 08, 9th Biennial IQSA Meeting, July 6 12, 2008, Sopot, Poland. 82. Transformations on von Neumann algebras preserving maximal deviation, Linear Analysis and Mathematical Physics Meeting of the Division of Mathematics of the Hungarian Academy of Sciences, May 21, 2008, Budapest, Hungary. 83. Maps on quantum states preserving the relative entropy, Gyula 60, Workshop on Functional Equations, Inequalities, and Applications, Debrecen Branch of the Hungarian Academy of Sciences, April 24, 2008, Debrecen, Hungary. 84. Preserver problems on quantum structures, Mathematical Colloquium, Department of Mathematics, University of Osijek, April 3, 2008, Osijek, Croatia. 85. Maps on positive operators preserving operator means, 8th Debrecen-Katowice Winter Seminar on Functional Equations and Inequalities, January 30 - February 2, 2008, Poroszló, Hungary.
210 86. Order automorphisms of quantum observables and effects, 6th Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control, September 10 15, 2007, Nemecká, Slovak Republic. 87. Monotone transformations on quantum observables and effects with respect to different orders, 45th International Symposium on Functional Equations, June 24 - July 1, 2007, Bielsko-Bia la, Poland. 88. Megőrzési problémák, Conference on 10th Anniversary of the Bolyai Research Fellowship, Hungarian Academy of Sciences, April 26, 2007, Budapest, Hungary. 89. Preserver problems, Mathematical Institute of The Slovak Academy of Sciences, March 20, 2007, Bratislava, Slovakia. 90. Preserver problems, Festkolloquium, Fachrichtung Mathematik, Technische Universität Dresden, December 11, 2006, Dresden, Germany. 91. Megőrzési transzformációk, Generations in Science Conference at the Hungarian Academy of Sciences, December 1, 2006, Budapest, Hungary 92. Additivity of multiplicative maps on structures of linear operators, Second Short Workshop on Operator Theory, Agricultural University of Kraków, June 24-27, 2006, Kraków, Poland. 93. Additivity of multiplicative maps on structures of linear operators, 44th International Symposium on Functional Equations, May 14 21, 2006, Louisville, Kentucky, USA. 94. Operátorstruktúrák multiplikatív leképezéseinek additivitása Functional equations, harmonic analysis, spectral synthesis Meeting of the Division of Mathematics of the Hungarian Academy of Sciences, May 2, 2006, Budapest, Hungary. 95. Multiplicative maps on algebraic structures of linear operators, Seminar of the Department of Mathematics, Pedagogical Faculty, University of Maribor, December 21, 2005, Maribor Slovenia. 96. Wigner tételétől a lokális automorfizmusokig, Joint Seminar of the Institute of Mathematics and the Faculty of Informatics, University of Debrecen, December 1, 2005, Debrecen, Hungary.
211 97. Preservers on quantum structures, Hungarian-Croatian Workshop on Informatics and Mathematics, October 5 8, 2005, Debrecen, Hungary. 98. Non-linear Jordan triple automorphisms of sets of self-adjoint matrices and operators, 5th Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control, September 12 17, 2005, Nemecká, Slovak Republic. 99. Az önadjungált operátorok halmazának transzformációiról, Functionalanalysis Meeting of the Division of Mathematics of the Hungarian Academy of Sciences, June 8, 2005, Budapest, Hungary. 100. Characterizations of the determinant on sets of Hermitian matrices, 43th International Symposium on Functional Equations, May 15 21, 2005, Batz-sur-Mer, France. 101. Isometries of quantum effects, 42nd International Symposium on Functional Equations, June 20 27, 2004, Hradec nad Moravici, Czech Republic. 102. Preservers on Hilbert space effects, 5th Joint Conference on Mathematics and Computer Science, June 9 12, 2004, Debrecen, Hungary. 103. A kvantumállapotok halmazának transzformációiról, Seminar on Analysis, Institute of Mathematics, Technical University of Budapest, June 7, 2004, Budapest, Hungary. 104. A kvantumállapotok halmazának transzformációiról, Functional Equations and Inequalities Meeting of the Division of Mathematics of the Hungarian Academy of Sciences, May 12, 2004, Budapest, Hungary. 105. Some preservers on the set of bounded observables, 4th Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control, September 8 13, 2003, Nemecká, Slovak Republic. 106. Preservers on quantum structures, Seminar talk of the Institute of Analysis, Technical University of Dresden, June 5, 2003, Dresden, Germany. 107. Some preservers on density operators, Conference on Topological Algebras, Their Applications, and Related Results (to celebrate the 70th birthday of Professor Wieslaw Żelazko), May 11 17, 2003, Bedlewo, Poland.
212 108. Megőrzési problémák Hilbert-tér operátorok algebrai struktúráin, Seminar talk of the Bolyai Institute of the University of Szeged, April 25, 2002, Szeged, Hungary. 109. Some preserver problems in structures of Hilbert space operators appearing in quantum mechanics, Seminar of the Institute of Mathematics, Physics and Mechanics, University of Ljubljana, March 27, 2002, Ljubljana, Slovenia. 110. Local automorphisms, 3rd Analysis Miniseminar (Dedicated to L. Losonczi s 60th birthday) Hungarian Academy of Sciences, Local Commission in Debrecen, October 13, 2001, Debrecen, Hungary. 111. Ortho-order automorphisms of Hilbert space effect algebras, The 8th International Conference on Functional Equations and Inequalities, September 10 15, 2001, Zlockie, Poland. 112. Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving principal angles, 3nd Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control, September 4 9, 2001, Nemecká, Slovak Republic. 113. Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving principal angles, 39th International Symposium on Functional Equations, August 12 18, 2001, Sandbjerg Estate, Denmark. 114. Hilbert-tér effektjei halmazának automorfizmusairól, Seminar on Analysis, Institute of Mathematics, Technical University of Budapest, April 9, 2001, Budapest, Hungary. 115. On the automorphisms of effect algebras, Seminar talk at the joint Ljubljana-Maribor Seminar, Institute of Mathematics, Physics and Mechanics, University of Ljubljana and Department of Mathematics, University of Maribor, February 15, 2001, Slovenia. 116. Generalizations of Wigner s theorem on symmetry transformations, Seminar talk at the Technical University of Dresden, November 17, 2000, Dresden, Germany. 117. Local automorphisms and local isometries of operator algebras, Seminar talk at the Technical University of Dresden, November 16, 2000, Dresden, Germany.
213 118. Generalizations of Wigner s theorem on symmetries, Quantum Probability: Probability and Operator Algebras with Applications in Mathematical Physics, August 31 September 6, 2000, Göd, Hungary. 119. On the additivity of multiplicative maps on operator algebras, 38th International Symposium on Functional Equations, June 11 18, 2000, Noszvaly, Hungary. 120. Néhány függvényegyenletről operátoralgebrákon, Functional Equations Meeting of the Division of Mathematics of the Hungarian Academy of Sciences, May 10, 2000, Budapest, Hungary. 121. Isomorphisms of standard operator algebras, 90 Years of The Reproducing Kernel Property, Jagiellonian University, April 17-21, 2000, Kraków, Poland. 122. Operátoralgebrák félcsoport izomorfizmusairól, Seminar talk at Eötvös Loránd University, April 3, 2000, Budapest, Hungary. 123. *-semigroup endomorphisms of B(H), Seminar on Functional Analysis, Jagiellonian University, October 12, 1999, Kraków, Poland. 124. Reflexivity of the automorphism and isometry groups of operator algebras, Seminar of the Mathematical Institute of the Polish Academy of Sciences at Kraków, October 11, 1999, Kraków, Poland. 125. Wigner s unitary-antiunitary theorem for Hilbert modules, 2nd Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control, September 13-18, 1999, Nemecká, Slovak Republic. 126. Local automorphisms of some quantum mechanical structures, Functional Analysis and Applications: Memorial Conference for Béla Szőkefalvi-Nagy, August 2-6, 1999, Szeged, Hungary. 127. Operátoralgebrák leképezéseinek reflexivitása, Seminar on Analysis, Institute of Mathematics, Technical University of Budapest, June 7, 1999, Budapest, Hungary. 128. Néhány gyűrűelméleti eredmény alkalmazása operátoralgebrai problémákra, Seminar of the Department of Algebra, Mathematical Research Institute of the Hungarian Academy of Sciences, May 17, 1999, Budapest, Hungary.
214 129. Spring School on Functional Analysis, April 18 24, 1999, Paseky, Czech Republic. 130. Multiplicative preservers on operator algebras, Seminar of the Department of Mathematics, University of Maribor, March 1, 1999, Maribor, Slovenia. 131. A Wigner unitér-antiunitér tétel egy algebrai bizonyítása, Seminar talk at Eötvös Loránd University, October 20, 1998, Budapest, Hungary. 132. A Wigner unitér-antiunitér tétel egy algebrai bizonyítása, Short conference on the occasion of B. Szőkefalvi-Nagy s 85th birthday, September 30, 1998, Szeged, Hungary. 133. Reflexivity of the automorphism and isometry groups of operator algebras, The 17th International Conference on Operator Theory, June 23 26, 1998, Timisoara, Romania. 134. Stability of the surjectivity of endomorphisms and isometries of B(H), Numbers, Functions, Equations 98, June 1 6, 1998, Noszvaly, Hungary. 135. An algebraic approach to Wigner s unitary-antiunitary theorem, 36th International Symposium on Functional Equations, May 24 30, 1998, Brno, Czech Republic. 136. Reflexivity of the automorphism and isometry groups of operator algebras, Joint Seminar on Functional Analysis and C - algebras, University of Paderborn, July 3, 1997, Paderborn, Germany. 137. Reflexivity of the automorphism and isometry groups of operator algebras and the Stone-Čech compactification, Oberseminar Funktionentheorie/Zahlentheorie, University of Paderborn, June 4, 1997, Paderborn, Germany. 138. Jordan *-derivations on operator algebras, Joint Graz-Maribor Workshop on Derivations and Functional Equations, November 29 30, 1996, Maribor, Slovenia. 139. Additive mappings approximated by positive operators on operator ideals, ICAOR International Conference on Approximation and Optimization, July 29 August 1, 1996, Cluj-Napoca, Romania. 140. Algebraic differences among group algebras of compact infinite groups : The nonexistence of a surjective ring homomorphism
215 from L p (G) onto L q (G ), Ring Theory Conference, A satellite conference of the Second European Congress in Mathematics, July 15 20, 1996, Miskolc, Hungary. 141. Topological reflexivity of the automorphism and isometry groups of B(H), The 16th International Conference on Operator Theory, July 2 8, 1996, Timisoara, Romania. 142. Characterization of additive *-homomorphisms and Jordan *- homomorphisms on operator ideals, 34th International Symposium on Functional Equations, June 10 19, 1996, Wisla- Jawornik, Poland. 143. Reflexivity in the space of linear transformations on an operator algebra, Seminar of the University of Maribor, April 4, 1996, Maribor, Slovenia. 144. Automatic surjectivity of ring homomorphisms on H -algebras and algebraic differences among some group algebras of compact groups, Stefan Banach International Mathematical Center, LINEAR OPERATORS II, January 8 February 22, 1996, Warszawa, Poland. 145. Two characterizations of additive *-automorphisms of B(H), The 5th International Conference on Functional Equations and Inequalities, September 4 9, 1995, Zlockie, Poland. 146. Wigner s unitary-antiunitary theorem via Herstein s theorem on Jordan homomorphisms, First Joint Workshop on Modern Applied Mathematics, June 12 16, 1995, Ilieni (Illyefalva), Romania. 147. Automatic surjectivity of endomorphisms of operator algebras, Seminar of the University of Maribor, June 2, 1995, Maribor, Slovenia. 148. Recent results on automatic surjectivity of *-endomorphisms of operator algebras, 2nd Debrecen-Graz Seminar, May 11 14, 1995, Zamárdi, Hungary. 149. Isomorphisms of operator ideals, First Slovenian Congress of Mathematics, October 20 22, 1994, Ljubljana, Slovenia. 150. Operátor ideálok izomorfizmusa, Seminar of the Institute of Mathematics and Informatics, Lajos Kossuth University, September 29, 1994, Debrecen, Hungary.
216 151. The range of a Jordan *-derivation, The 15th International Conference on Operator Theory, June 6 10, 1994, Timisoara, Romania. 152. p-classes of an H -algebra, XIII. Österreichischer Mathematikerkongreß, September 20 24, 1993, Linz, Austria. 153. On local derivations of operator algebras, 31st International Symposium on Functional Equations, August 22 28, 1993, Debrecen, Hungary. 154. On compact operators, TEMPUS Summer School, August 9 28, 1993, Debrecen, Hungary.
217 REFEREE WORK Referee for Grants Hungarian National Foundation for Scientific Research King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia Ministry of Education, Science and Sport, Slovenia Ministry of Science, Education and Sports, Croatia The Natural Sciences and Engineering Research Council of Canada Referee s Reports for Journals and Books Abstr. Appl. Anal. Acta Acad. Paedagog. Agriensis Sect. Mat. N.S. Acta Math. Hung. Acta Math. Acad. Paedagog. Nyhaziensis. N.S. Acta Math. Scientia Acta Math. Sinica Acta Sci. Math. (Szeged) Aequationes Math. Ann. Pol. Math. Arch. Math. Banach Cent. Publ. Banach J. Math. Anal. Bull. Belgian Math. Soc. Bull. Korean Math. Soc. Canad. Math. Bull. Cent. Eur. J. Math. (CEJM) Colloq. Math. Commun. Math. Phys. Complex Anal. Oper. Theory Electr. J. Lin. Alg. Found. Phys. Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 328, American Mathematical Society, 2003. Function Spaces, K. Jarosz, Edt. Contemporary Mathematics vol. 435, American Mathematical Society, 2007. Function Spaces in Modern Analysis, K. Jarosz, Edt. Contemporary Mathematics vol. 547, American Mathematical Society, 2011.
218 Functional Equations Results and Applications, Z. Daróczy and Zs. Páles (eds.), Advances in Mathematics, vol 3., Kluwer Acad. Publ., Dordrecht, 2001. Glasnik Math. Houston J. Math. Illinois J. Math. Indian J. Pure Appl. Math. Inequalities and Applications Proceedings of the Conference on Inequalities and Applications 07, International Series of Numerical Mathematics, Birkhäuser Verlag. Integral Equations Operator Theory Int. J. Math. Math. Sci. Int. J. Theor. Phys. Israel J. Math. J. Applied Math. J. Funct. Space Appl. J. Ineq. Appl. J. Ineq. Pure Appl. Math. J. Austral. Math. Soc. J. London Math. Soc. J. Math. Anal. J. Math. Anal. Appl. J. Math. Phys. J. Oper. Theo. Linear Algebra Appl. Linear Multilinear Algebra Math. Phys. Anal. Geom. Math. Slovaca Math. Z. Miskolc Math. Notes Monatsh. Math. Oper. Matrices Period. Math. Hungar. Proc. Amer. Math. Soc. Proc. Edinburgh Math. Soc. Publ. Math. (Debrecen) Real Anal. Exchange Rep. Math. Phys. Rocky Mountain J. Math. SIAM J. Matrix Anal. Appl. Studia Math. Studia Sci. Math. Hung. Topology Appl. Z. Anal. Anwend.
219 Reviews Math. Rev. Zbl. Math. Publ. Math. Debrecen Book Reviews