Chapter 5 Estimating Demand Functions

Similar documents
Chapter 3 Quantitative Demand Analysis

AP Microeconomics Chapter 12 Outline

RELEVANT TO ACCA QUALIFICATION PAPER P3. Studying Paper P3? Performance objectives 7, 8 and 9 are relevant to this exam

4. Simple regression. QBUS6840 Predictive Analytics.

A Detailed Price Discrimination Example

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

Multiple Linear Regression in Data Mining

13 EXPENDITURE MULTIPLIERS: THE KEYNESIAN MODEL* Chapter. Key Concepts

Profit maximization in different market structures

1 Economic Application of Derivatives

CHAPTER 10 MARKET POWER: MONOPOLY AND MONOPSONY

Chapter 13 Introduction to Linear Regression and Correlation Analysis

Logs Transformation in a Regression Equation

Univariate Regression

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade

Lecture 5: Review Investment decisions and break even analysis

Chapter 04 Firm Production, Cost, and Revenue

ECON 103, ANSWERS TO HOME WORK ASSIGNMENTS

17. SIMPLE LINEAR REGRESSION II

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Premaster Statistics Tutorial 4 Full solutions

or, put slightly differently, the profit maximizing condition is for marginal revenue to equal marginal cost:

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

A Primer on Forecasting Business Performance

Econometrics Problem Set #3

AP Physics 1 and 2 Lab Investigations

Practice Questions Week 6 Day 1

Monopoly and Monopsony Labor Market Behavior

In following this handout, sketch appropriate graphs in the space provided.

FORECASTING DEPOSIT GROWTH: Forecasting BIF and SAIF Assessable and Insured Deposits

All these models were characterized by constant returns to scale technologies and perfectly competitive markets.

1. Suppose that a score on a final exam depends upon attendance and unobserved factors that affect exam performance (such as student ability).

Motor and Household Insurance: Pricing to Maximise Profit in a Competitive Market

Learning Objectives. Essential Concepts

2011 Pearson Education. Elasticities of Demand and Supply: Today add elasticity and slope, cross elasticities

Regression Analysis (Spring, 2000)

Section 1.5 Linear Models

Financial Risk Management Exam Sample Questions/Answers

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

a. Meaning: The amount (as a percentage of total) that quantity demanded changes as price changes. b. Factors that make demand more price elastic

Elasticity. I. What is Elasticity?

Course Objective This course is designed to give you a basic understanding of how to run regressions in SPSS.

Straightening Data in a Scatterplot Selecting a Good Re-Expression Model

Regression Analysis: A Complete Example

Correlation key concepts:

In this chapter, you will learn improvement curve concepts and their application to cost and price analysis.

Pricing decisions and profitability analysis

Economics 201 Fall 2010 Introduction to Economic Analysis Problem Set #6 Due: Wednesday, November 3

16 : Demand Forecasting

Answers to Text Questions and Problems. Chapter 22. Answers to Review Questions

Review of Fundamental Mathematics

Topic 1 - Introduction to Labour Economics. Professor H.J. Schuetze Economics 370. What is Labour Economics?

Simple linear regression

Example: Boats and Manatees

Managerial Economics

Figure: Computing Monopoly Profit

SPSS Guide: Regression Analysis

Module 5: Multiple Regression Analysis

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

Multiple Linear Regression

Practice Questions Week 8 Day 1

Interaction between quantitative predictors

A. a change in demand. B. a change in quantity demanded. C. a change in quantity supplied. D. unit elasticity. E. a change in average variable cost.

P2 Performance Management

2. What is the general linear model to be used to model linear trend? (Write out the model) = or

EXCEL Tutorial: How to use EXCEL for Graphs and Calculations.

Mgmt 469. Fixed Effects Models. Suppose you want to learn the effect of price on the demand for back massages. You

Chapter 6 Cost-Volume-Profit Relationships

11 PERFECT COMPETITION. Chapter. Competition

Oligopoly: How do firms behave when there are only a few competitors? These firms produce all or most of their industry s output.

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exercise 1.12 (Pg )

The Big Picture. Correlation. Scatter Plots. Data

Mgmt 469. Model Specification: Choosing the Right Variables for the Right Hand Side

Employment and Pricing of Inputs

Productioin OVERVIEW. WSG5 7/7/03 4:35 PM Page 63. Copyright 2003 by Academic Press. All rights of reproduction in any form reserved.

Breakeven, Leverage, and Elasticity

5. Multiple regression

Linear Regression. Chapter 5. Prediction via Regression Line Number of new birds and Percent returning. Least Squares

The formula to measure the rice elastici coefficient is Percentage change in quantity demanded E= Percentage change in price

WEB APPENDIX. Calculating Beta Coefficients. b Beta Rise Run Y X

MBA Jump Start Program

Part Three. Cost Behavior Analysis

ANSWERS TO END-OF-CHAPTER QUESTIONS

9 Hedging the Risk of an Energy Futures Portfolio UNCORRECTED PROOFS. Carol Alexander 9.1 MAPPING PORTFOLIOS TO CONSTANT MATURITY FUTURES 12 T 1)

Problem Set #5-Key. Economics 305-Intermediate Microeconomic Theory

2013 MBA Jump Start Program. Statistics Module Part 3

Why is Insurance Good? An Example Jon Bakija, Williams College (Revised October 2013)

Scatter Plot, Correlation, and Regression on the TI-83/84


8. Time Series and Prediction

Introduction to Regression and Data Analysis

Section A. Index. Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques Page 1 of 11. EduPristine CMA - Part I

Study Questions for Chapter 9 (Answer Sheet)

On Correlating Performance Metrics

University of Lethbridge Department of Economics ECON 1012 Introduction to Macroeconomics Instructor: Michael G. Lanyi

Transcription:

Chapter 5 Estimating Demand Functions 1

Why do you need statistics and regression analysis? Ability to read market research papers Analyze your own data in a simple way Assist you in pricing and marketing decisions Read scientific research We will cover first intuitive principles only, which are familiar from statistics course. Go to the Schwerpunktfach Angewandte Ökonometrie und Statistik of our Department to learn in detail 2

Alternative methods of estimating demand (getting data) Look at the literature Consumer interviews Experience of the past Market experiments in different subsidiaries or across time Scanner data make it much more easy nowadays Sales of single products can be easily tracked Prices are easily changed because of electronic systems ==> simple experiments can easily be done Use data from Vorteilscard, discount cards, city card, etc. consumer information systems E-business is collecting automatically information, e.g. site visits, log-in information, etc. But basically with all these methods, once you gathered data, you need methods to get something meaningful out of them. 3

Suppose you have TV advertisements in different market segments (countries) and have collected sales in all these markets Now you would like to know, how many products you could sell more, if you added ten seconds of TV ad. Measured sales of your product Regression line Duration of TV ads in seconds 4

How to find this relation? Given the points you have collected: how can you best fit a straight line through these points? Well, you just try to find a straight line, which minimizes the squared sum of the vertical distances of your points to this line Squared sum because negative and positive distances should be considered 5

Regression analysis A statistical technique that describes the way in which one variable is related to another Used to estimate demand (but also to lots of other problems) Simplest version: LHS (Sales, left hand side variable or dependent variable but I find this easier to remember) is determined linearly by the RHS (Advertisements, right hand side var. or independent variable) S i = α + βa i + e i (we first try it with one RHS variable, but it s not more difficult if we use several ones) e i is an error term, capturing other issues (variables) not covered in the analysis or pure randomness. 6

Errors e should be minimal β is the slope coefficient we are looking for Sales (S) e 2 = 1.5. S2. α + β A regression line. α. e 1 = -1 S 1 A 1 A 2 Advertisements (A) 7

Multiple regression Includes two or more independent variables S i = α + β 1 A i + β 2 P i + e i where: S i = sales A i = Advertising expenses = price P i Independent influence of one variable is measured i.e. holding the other variable constant: partial effect of one variable can be identified. 8

How good is your estimate? Coefficient of determination: R-squared measures goodness of fit of the estimated regression line Proportion of total variance explained by your variables varies between 0 and 1 y y x x 9

10

Unfortunately parameters α and β are not always reliably estimated It could be that you don t have enough data or that the relationship is unstable, so that your estimated parameter β 1 is not reliable (i.e. the value you found is just random). T-statistic (t-value) tells us if we can say with some confidence that the parameter β 1 is different from zero, i.e. that there is a relation between the two variables in question. Rule of Thumb: as long as the t-statistic is greater than 2, you can be sure, that the found coefficient is not just random. Coefficients with t s below 1.5 or so, should be disregarded (you can say: there is no significant relation between these two variables; technically that means that the chance is high (more than 10% that the found coefficient is just random) 11

Example Sales= 20 + 0.5 Income + 1.3 Advert 0.45 Price (3.4) (4.2) (0.7) (2.2) t-values are in parentheses If income of the population rises by one unit (the unit you had in your data), then sales increase by 0.5 units holding advertising expenses and prices constant If price rises by one unit, then sales decrease by 0.45 units again holding the other two variables constant Advertising does not seem to have a significant effect on sales (t-value is too low). There is a very high chance (around 50%) that the positive effect, you measured has arisen just by chance. 12

Interpreting regression results Most of the time you will not do the statistics yourself, but you should be able to read and interpret the stuff. Usual statistics programs can do the job, like Stata, SPSS, even Excel. Main advantage of regression over other statistical tools like simple correlation or scatter graphs, etc.: The impact of several variables can be checked simultaneously. Ceteris paribus condition: the coefficient β 1 reports the influence of this variable, holding all other variables unchanged This is exactly what is done in all economic models routinely!! This is also what you would like to know, if you are trying to manipulate the market: e.g. you would like to reduce prices by 1 (holding all other market conditions constant) -> what will be the effect on demand??? 13

Example (1) You collected data on sales of Ford cars for each of the last 60 months. Now you want to find out how the sales of your (Ford) cars react to price changes. You might have had some special discount periods among these 60 months. The price rose more or less over this period and still sales increased. What does this tell you about your demand function? 14

Example (continued) Did you use real price? What happened to income of your potential costumers? What happened to prices of your main competitors (Opel, VW, )? What happened to taxes,? Only multiple regression can tell you, if your discount actions have been successful 15

Identification problem How can you identify a demand curve, if you have only data points on price and quantity? These data points arise both from shifts in demand and supply. Very important issue for econometricians, but difficult to handle in practice You want to estimate price elasticity of demand, but may not be able to do so, because demand was not stable over time (or the regions you looked at) To identify demand properly, you need to assume, that all the variation in your data come from changes in supply only Possible problem: you fail to distinguish between movements along the demand curve (say downwards) and shifts thereof!!! 16

Identification problem 17

Identification problem 18

Identification problem 19

Chapter 5/Question 1 The Klein Corporation s marketing department, using regression analysis, estimates the firm s demand function, the result being Q = -104 2.1P + 3.2I + 1.5A + 1.6Z R 2 = 0.89 Sample = 200 observations where Q is the quantity demanded, P is the price, I is disposable income, A is advertising expenditure and Z is the price of a competing product. a) If I = 5,000, A = 20 and Z = 1,000, what is the Klein Corporation's demand curve? b) If P = 500 (and the conditions in part a hold), estimate the quantity demanded. c) How well does this regression equation fit the data? 20

Chapter 5/Question 2 The Strunk Company hires a consultant to estimate the demand function for it s product. The result of a regression analysis is: log Q = 1.48 0.16 log P + 0.43 log Z (2.5) (3.4) R 2 = 0.95 Sample = 89 observations where Q is the quantity demanded, P is the price and Z is the price of a competing product. a) Strunk s president argues that a 2 percent price reduction will result in a 3.2 percent increase in the number of units sold by the firm. Do you agree? b) Calculate the cross price elasticity of demand between Strunk s product and the rival product. c) Comment on the goodness of fit of the regression. 21

Chapter 5/Solutions Question 1 a) Q = -104 2.1P + 3.2 (5,000) + 1.5 (20) + 1.6 (1,000) Q = 17,526 2.1 P demand function b) Q = 17,526 2.1 (500) Q = 16,476 c) The model explains 89 percent of the variation in Q! Question 2 a) The price elasticity of demand equals -0.16, a 2 percent price reduction will result in 0.32 percent increase in quantity demanded. b) The cross price elasticity of demand between Strunk s product and the rival product equals 0.43. A 1 percent increase in the price of the rival s product will result in a 0.43 percent increase in quantity demanded. c) The model explains 95 percent of the variation in Q! 22

Question 3 Since the Hawkins Company s costs (other than advertising) are essentially all fixed costs, it wants to maximize its total revenue (net of advertising expenses). According to a regression analysis (based on 124 observations) carried out by a consultant hired by the Hawkins Company, Q = -23 4.1P + 4.2I + 3.1A, where Q is the quantity demanded (in dozens), P is the price of the firm s product (in dollar per dozen), I is per capita income (in dollars), and A is advertising expenditure (in dollars). a) If the price of the product is $10 per dozen, should the firm increase its advertising? b) If the advertising budget is fixed at $10,000, and per capita income equals $8,000, what is the firm s marginal revenue curve? c) If the advertising budget is fixed at $10,000, and per capita income equals $8,000, what price should the Hawkins Company charge? 23

Answer 2a) Total revenue less advertising expenditures is TR A= 23P 4.1P2 + 4.2IP + 3.1AP A = 23P 4.1P2 + 4.2IP + (3.1P 1)A = 640 + 42I + 30A if P = 10 d(tr A)/dA = 30 > 0 if P = 10 Advertising expenditures increase net revenues and should be increased. 2b) P= (1/4.1) x ( 23 Q + 33,600 + 31,000) = 15,750.244Q MR= 15,750.488Q. 2c) Total revenue is maximized where marginal revenue equals zero. Given the levels of advertising and per capita income, marginal revenue is zero at an output of Q = 15,750/.488 = 32,275; this implies P = 15,750.244 x 3,2275 = 7,875. 24