The Role of Low-Dose Radiation in the Maintenance of Life



Similar documents
Environmental Radiation Risk Assessment

Radiation Effects Modulating Factors and Risk Assessment An Overview

Prevention and Early Detection. Radiation Exposure and Cancer. Ionizing Radiation. print close

What is Cancer? Cancer is a genetic disease: Cancer typically involves a change in gene expression/function:

R. Julian Preston NHEERL U.S. Environmental Protection Agency Research Triangle Park North Carolina. Ninth Beebe Symposium December 1, 2010

Leukemia and Exposure to Ionizing Radiation

RADIATION AND HEALTH NOVEMBER 1996

Lung Cancer and Exposure to Ionizing Radiation

Cellulär och molekylär respons på låga doser av joniserande strålning

Future Directions in Cancer Research What does is mean for medical physicists and AAPM?

PRINIPLES OF RADIATION THERAPY Adarsh Kumar. The basis of radiation therapy revolve around the principle that ionizing radiations kill cells

Afraid of Radiation? 2

Chapter 15 Radiation in the Environment 1

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel

medical diagnostics caesium-137 naturally occurring radio nuclides in the food radon in indoor air potassium in the body

Ionizing Radiation and Breast Cancer Risk

Environmental Health and Safety Radiation Safety. Module 1. Radiation Safety Fundamentals

Advanced Radiation Therapy of Cancer by Proton Beam

EPA Radionuclides Rule and the RadNet Program

Nuclear Energy in Everyday Life

CHAPTER 2: UNDERSTANDING CANCER

Radiological Protection Radiological. Protection Science and Application. Base alteration. Abasic site. Single-strand break.

Cancer: Cells Behaving Badly

LESSON 3.5 WORKBOOK. How do cancer cells evolve? Workbook Lesson 3.5

The cancer risk among workers of the nuclear centre at Świerk, Poland

Mutations: 2 general ways to alter DNA. Mutations. What is a mutation? Mutations are rare. Changes in a single DNA base. Change a single DNA base

Are children more sensitive to radiation than adults?

How To Understand The Effects Of Radiation On A Cell

Sophie ANCELET, IRSN/PRP-HOM/SRBE/LEPID

Is Chronic Radiation an Effective Prophylaxis Against Cancer?

Radiation and Pregnancy

Cancer: DNA Synthesis, Mitosis, and Meiosis

Cancer SBL101. James Gomes School of Biological Sciences Indian Institute of Technology Delhi

One out of every two men and one out of every three women will have some type of cancer at some point during their lifetime. 3

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle?

The Human Genome Project. From genome to health From human genome to other genomes and to gene function Structural Genomics initiative

AUSTRALIAN VIETNAM VETERANS Mortality and Cancer Incidence Studies. Overarching Executive Summary

Basics of Nuclear Physics and Fission

ANALYSIS OF POTENTIAL RADIATION-INDUCED GENETIC AND SOMATIC EFFECTS TO HAN FROM MILLING OF URANIUM

Current Status and Future Direction of Proton Beam Therapy

Integrated Management & Educational Consultancy

HADRON THERAPY FOR CANCER TREATMENT

Smoking and Lung Cancer

An Introduction to the Estimation of Risks Arising from Exposure to Low Doses of Ionising Radiation

Proton Therapy: Cutting Edge Treatment for Cancerous Tumors. By: Cherilyn G. Murer, JD, CRA

Treating Thyroid Cancer using I-131 Maximum Tolerable Dose Method

Lung Cancer: More than meets the eye

L Lang-Lazdunski, A Bille, S Marshall, R Lal, D Landau, J Spicer

Department of BioScience Technology Chung Yuan Christian University 2015/08/13

Proton Therapy for Cancer: A New Technology Brief

Strahlenschutzbelehrung Allgemeiner Teil. Radiation Protection

Outline. Predictive Assays in Radiation Therapy Immunotherapy in Cancer Treatment. Introduction. Current clinical practice

Translating DNA repair pathways into therapeutic targets: beyond the BRCA1/2 and PARP inhibitor saga. Jorge S Reis-Filho, MD PhD FRCPath

Biochemistry of Cancer Cell

RADON AND HEALTH. INFORMATION SHEET October What is radon and where does it come from?

The Compensation Scheme for Nuclear Industry Workers in the United Kingdom

Cancer is the leading cause of death for Canadians aged 35 to 64 and is also the leading cause of critical illness claims in Canada.

ACUTE MYELOID LEUKEMIA (AML),

National Cancer Institute Research on Childhood Cancers. In the United States in 2005, approximately 9,510 children under age 15 will be

Proton Radiotherapy. Cynthia Keppel Scientific and Technical Director Hampton University Proton Therapy Institute. Lead Virginia.

Cytogenetic analysis of restoration workers for Fukushima Daiichi Nuclear Power Station accident

ANNEX 2: Assessment of the 7 points agreed by WATCH as meriting attention (cover paper, paragraph 9, bullet points) by Andy Darnton, HSE

Society of Nuclear Medicine 1850 Samuel Morse Drive Reston, VA

Estimated New Cases of Leukemia, Lymphoma, Myeloma 2014

Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program

Breast cancer and the role of low penetrance alleles: a focus on ATM gene

Radiation and the Universe Higher Exam revision questions and answers

Griffith University - Case for Support. Mesothelioma Research Program

MULTIPLE MYELOMA. Dr Malkit S Riyat. MBChB, FRCPath(UK) Consultant Haematologist

Special report. Chronic Lymphocytic Leukemia (CLL) Genomic Biology 3020 April 20, 2006

Radon: The Second Leading Cause of Lung Cancer? Deh, deh, deh, dehhhhh..

Genetics BRCA1 and BRCA2 are gene mutations which give 5 percent genetic risk of breast and ovary cancers. Worse if they drink alcohol.

M. Ugolini 1,2, G. Babini 1,2, G. Baiocco 1,2, D. Cappelletti 1,2, L. Mariotti 1,2, J. Morini 1,2,3 and A. Ottolenghi 1,2

Medical Physics and Radioactivity

Investigating Community Cancer Concerns--Deer Park Community Advisory Council, 2008

The Need for a PARP in vivo Pharmacodynamic Assay

Seminar 7. Medical application of radioisotopes - radiotherapy

The Science behind Proton Beam Therapy

How Cancer Begins???????? Chithra Manikandan Nov 2009

1 page Overview. CONCURRENT 1D, 1E, 1F Biology & Pathogenesis Multi-Modality Immunology 1

Maria Dalbey RN. BSN, MA, MBA March 17 th, 2015

MUTATION AND MUTAGENS

What is cancer? Teacher notes. Key stage 4/4 TH LEVEL Science lesson plan with links to PSHE

If you were diagnosed with cancer today, what would your chances of survival be?

REVIEW OF EXPOSURE LIMITS AND HEALTH CONCERNS SANTA ANA. Base Station Telecommunication Transmitters UNIFIED SCHOOL DISTRICT

Radiation Protection Series

Procedure for Visitors in UIC Laboratories

New strategies in anticancer therapy

LEUKEMIA LYMPHOMA MYELOMA Advances in Clinical Trials

A new score predicting the survival of patients with spinal cord compression from myeloma

Inventory of Performance Monitoring Tools for Subsurface Monitoring of Radionuclide Contamination

The Cancer Cluster Myth When is an Epidemic Not an Epidemic?

INSTRUCTION CONCERNING RISKS FROM OCCUPATIONAL RADIATION EXPOSURE

Cell phones and brain tumors: A review including the long-term epidemiologic data. Surgical Neurology September 2009; 72; pp.

Radiation Oncology Nursing Care. Helen Lusby Radiation Oncology Nurse BAROC 2012

1) Aug 2005 In Vitro Chromosomal Aberration Study Cytotoxicity (File: TS39) Conclusion No cytotoxicity can be detected at concentrations up to 100%.

Experiment 10. Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

New Directions in Treatment of Ovarian Cancer. Amit M. Oza Princess Margaret Hospital University of Toronto

Transcription:

The Role of Low-Dose Radiation in the Maintenance of Life Bobby R. Scott Lovelace Respiratory Research Institute Albuquerque, NM 87108 USA In-house Seminar, September 23, 2006 http://www.radiation-scott.org

Contents Ionizing radiation and its sources Spontaneous and radiation-induced damage Radiation adaptive response (hormesis) Biological basis for radiation hormesis Radiation risk-assessment paradigms (LNT vs. hormetic) for cancer LRRI hormetic cancer relative risk model Evidence that low doses of radiation are facilitating the maintenance of life Conclusions

Radiation Has Existed Since the Beginning of the Universe Universe created 10-20 billion years ago from a cosmic explosion

Radiation Sources are Everywhere The Sun Indoor Radon Plant s Plants Our Bodies Radioactive Soil and Rocks

Forms of Radiation Non-ionizing and Ionizing. An example of non-ionizing radiation is UV rays. Ionizing radiation is either particulate or electromagnetic. Gamma and X-ray photons are electromagnetic forms. Protons, beta particles, neutrons and heavy ions are examples of particulate ionizing radiation.

Low- and High-LET Forms LET (linear energy transfer) is the average energy lost by radiation when traversing a small thickness of material. Two types (low-let and high-let) are considered. Examples of low-let radiation are X-ray photons, gamma-ray photons, beta particles (energetic electrons), and protons. Examples of high-let radiation are alpha particles, neutrons, and heavy ions ( e.g., 10-MeV carbon ions from an accelerator).

Feinendegen L, IHS 2006

Some Typical Radiation Doses Typical chest X-ray, 0.1 mgy (low-let radiation). Average annual low-let dose, worldwide, about 1 mgy. Annual DOE/NRC individual low-let dose limit for public, 1 mgy (1 msv for mixed low- and high- LET radiations). Annual EPA low-let dose limit for releases to air, 0.1 mgy (0.1 msv for mixed low- and high-let radiations). Annual EPA low-let dose limit for drinking water, 0.04 mgy (0.04 msv for mixed low- and high-let radiations) Unacknowledged problems with msv dose concept discussed later.

Adverse Consequences of Exposure of Humans to Radiation Low and high radiation doses can cause stochastic effects such as cancer and genetic effects. High doses and dose rates can cause lifethreatening effects such as severe damage to organs as well as serious morbidity. Damage to DNA above the spontaneous level is largely responsible for most detrimental radiobiological effects.

DNA Double Strand Breaks Considered most serious form of radiationinduced genomic damage. Are largely repaired via error-prone nonhomologous end joining. May occasionally be repaired via less error-prone homologous recombination. Damage threshold appears to be required to activate double-strand-break repair pathways. Natural background radiation may be important for maintaining the damage threshold. Misrepair can lead to genomically unstable mutant and neoplastic transformed cells.

Does Low Dose Radiation Play and Important Role in Maintaining Life? Natural background low-let radiation probably does. How? Via activating adapted protection (hormesis)!

Hormesis (Adapted Protection) Survival of all organisms on Earth depends upon their ability to adapt to environmental and other stresses. Numerous genes evolved over time to mediate adaptive responses to both internal and external genotoxic stresses (e.g., genes involved in stabilization and in post-translational regulation of the p53 protein). Hormesis: low-dose-induced adapted protection; high-dose inhibition.

Proteins Likely Involved in Radiation- Induced Adapted Protection The tumor suppressor protein p53 and BAX. Stress-response proteins involved in transiently stabilizing p53. Proteins (e.g., ATM) involved in posttranslational modifications of p53. Appella E and Anderson CW. Eur. J. Biochem. 268:2764-2772, FEBS 2001

Radiation Adaptive Response is and Evolutionary Conserved Response Occurs in: - Single cell organisms - Insects - Plants - Lower vertebrates - Mammalian cells - Mammals including humans Mitchel REJ (2006 IHS Meeting presentation)

0.10 Current Radiation Risk Assessment Paradigm: Utopian-World LNT BEIR VII Low-Dose, Low-Dose-Rate Extrapolation 0.08 Cancer Risk 0.06 0.04 LNT DDREF 0.02 0.00 BEIR VII discounted hormesis 0 20 40 60 80 100 120 140 160 180 200 Utopian-World Radiation Dose (msv)

Utopian-World Dose Units The following are fantasy-world dose units, based on hypothetical straight-line cancer risk vs. dose relationships, irrespective of the dose, type of radiation, or radiation combinations: Sievert (Sv) msv µsv

Hormetic Risk (J-Shaped) Curve Utopian-world dose units inappropriate Increased Cancers Cancer Incidence Spontaneous Cancer Frequency Hormetic Zone Hormetic Effect 0 Absorbed Radiation Dose (mgy)

BEIR VII vs. French Academies on LNT and Radiation Hormesis BEIR VII Selectively-chosen A- bomb cancer data was consistent with LNT French Academies LNT should not be applied to low-let doses < 100 mgy Even natural background low-let radiation harms Radiation hormesis dismissed Looked at basic research results and ignored No evidence of harm from natural background radiation; may be beneficial Radiation hormesis not dismissed Considered implications of basic research results

Low Doses and Dose-Rates of Low-LET Radiation Protect Us From Harm: Hormesis Protect against chromosomal damage (Ed Azzam s group)! Protect against mutation induction (Pam Sykes group), even when the low dose follows a large dose (Tanya Day s work)! Protect against neoplastic transformation (Les Redpath s group)! Protect against high dose chemical- and radiation-induced cancer (Kazou Sakai s group)! Stimulate increased immune system defense (Daila Gridley s group)! Suppress cancer induction by alpha radiation (Chuck Sanders group)! Suppress metastasis of existing cancer (Kiyohiko Sakamoto s group)! Extend tumor latent period (Ron Mitchel s group)! Protect against diseases other than cancer (Kazuo Sakai s group)!

Biological Basis for Hormetic Zone for Low-LET Radiation Spontaneously Occurring Genomic Instability Low Dose/Dose Rate Low-LET Radiation DNA Damage Accumulation Neoplastic Transformation * High fidelity DNA repair/apoptosis PAM Process Protective Intercellular Signaling Proliferation of Malignant Cells * Immune function Adapted Protection Cancer * Contributes to PROFAC Indicates Suppressor Function Scott 2006 ROS scavenging contributes to protection

Feinendegen L, IHS 2006

Protective Apoptosis Medicated (PAM) Process in Fibroblast: Protective Intercellular Signaling O O Transformed Cell Induction of Apoptosis OH O Cl O ONOO NO Induction of Apoptosis O O HOCl G. Bauer. Histol. Histopathol. 11:237-255, 1996 H O TGF-β P Peroxidase Normal Cell Cl

PAM Process Signaling Can eliminate genomically unstable cells caused by different agents. May vary for different stressing agent (e.g., ionizing radiation, UV radiation, chemical, etc.). May differ for different organs/tissue. Role of p53 protein (if any) not clear. TGF-β appears to play and important role.

Types of Radiation Hormesis Environmental radiation hormesis Medical radiation hormesis Therapeutic radiation hormesis Occupational-Exposure-Associated Radiation Hormesis

Environmental Radiation Hormesis Natural and human-activityrelated background radiation induced hormetic effects have been found to be associated with the suppression of spontaneous cancers and other diseases. Cosmic Rays Indoor Radon Radioactive Soil, Plants, and Rocks

LRRI Cancer Hormetic Relative Risk (HRR) Model Key Assumption: cancer arises from cells with persistent genomic instability through a series of stochastic changes, independent of how the instability originate, but dependent on the number of cells with this instability in an organ. Cancer relative risk (RR) proportional to neoplastic transformation RR. Neoplastic transformation RR based on NEOTRANS 3 model developed at LRRI. Protective and deleterious stochastic dose thresholds cause hormetic dose-response curve shape.

Stochastic Thresholds Each of us has a different radiation threshold (organ specific) for activating protective processes. Each also has a different higher threshold for inhibiting some of the protection. Such thresholds are called stochastic thresholds (StoThresh) and are characterized by distributions rather than a fixed value for everyone. Uniform distributions are currently presumed for StoThresh.

LRRI Hormetic Relative Risk (HRR) Model RR* cancer incidence at absolute zero background radiation Transition Zone A LNT Zone RR 1 Phantom Risk RR = 1-PROFAC Transition Zone B 0 0 Zone of Maximal Protection bd* D** D*** Absorbed Radiation Dose D b indicates dose from natural background radiation

Some Expected Benefits of Radiation Doses in the Zone of Maximal Protection (Hormetic Zone) Suppression of spontaneous and other cancers (i.e., RR < 1, SMR < 1). Suppression of cancer metastasis. Suppression of other genomicinstability associated diseases. Suppression of inflammation caused by other agents.

PROFAC, A Measure of Hormetic Effects PROFAC stands for protection factor. Mutation and neoplastic transformation PROFAC: fraction of mutant or transformed cells eliminated via hormesis (adapted protection). Cancer suppression PROFAC: fraction of cases that do not occur that would have occurred if it were not for induced hormesis.

Protection Factors Against Cancer in Humans 1 Region or Group High residual radon, USA Canada, nuclear industry workers US DOE labs workers Mayak Plutonium facility workers Effect all cancers Leukemia Leukemia lung cancer PROFAC 0.35 0.68 0.78 0.86 2 Proportion of spontaneous and other cancers prevented! 1 Jaworowski Z. Symposium Entwicklungen im Strahleschutz, Munich, 29 November 2001. 2 Scott BR. Nonlinearity (in press), 2006a.

Medical Radiation Hormesis: Breast Cancer Suppression by Diagnostic X-Rays PROFAC 0.35 0.30 0.25 0.20 0.15 0.10 Repeated Rounds of Mammograms 0.24 0.32 0.31 0.05 0 0.05 50-54 55-59 60-64 65-69 Based on data from Nyström et al. 2002 Age Group (years)

PROFACs for Nuclear Shipyard Workers Chronically Exposed to γ Rays Cause of Death SMR p value PROFAC Allergic, endocrine, metabolic 0.69 ± 0.12 4.3 x 10-3 0.31 All respiratory disease 0.62 ±0.08 1.4 x 10-6 0.38 Pneumonia 0.68 ±0.04 2.4 x 10-14 0.32 Emphysema 0.63 ±0.26 7.2 x 10-2 0.38 Asthma 0.30 ±0.43 5.1 x 10-2 0.70 All infectious & parasitic 0.86 ±0.72 4.2 x 10-1 0.14 Total mortality 0.78 ±0.04 0.00 0.22 Sponsler R and Cameron JR. Int. J. Low Radiat. 1(4):463-478, 2005.

Cancer Relative Risk In Hormetic Zone: Irradiated Human Populations 1.0 0.9 0.8 0.7 Chernobyl Accident Recovery Workers USA, Residents of High Background States 0.6 British Medical Radiologists after 1955-1979 High Residential Radon, USA 0.5 0.4 0.3 Canadian Nuclear Workers US DOE Workers 0.2 0.1 0 Cancers Cancers Cancers Cancers Leukemia Leukemia RR< 0.85 cannot be due to healthy worker effect (Sponsler and Cameron, 2005) RR

Environmental Radiation Hormesis Solid Cancer Mortality for Yangjiang, China 1979-1998 HRR Model Mean Effective doses are used Slope of the line = - 6.33E-04/mSv Lower 95% D* where blue curve bottoms out implicated to be at least hundreds of mgy Wei and Sugahara. Int. Congress Series 1236:91-99 (2002)

Lung Cancer in Mice with High Spontaneous Frequency Relative Risk All doses > 0 are in hormetic zone, and zone extends to at least 1000 mgy Study involved more than 15,000 mice (R. Ulrich et al., 1976). Curve shape currently thought to be representative of adult humans with significant spontaneous genomic instability burdens.

Lung Cancer in Adult Humans Presumed to Have High Spontaneous Genomic Instability Burdens 1.05 1.00 Multiple fluoroscopy examinations 95% Confidence 0.95 RR 0.90 0.85 0.80 Males Females 0.75 0 100 200 300 400 500 600 700 800 X-Ray Dose (mgy) Data from GR Howe. Radiat. Res. 142:295-304,1995. Similar findings have been reported for breast cancer (Miller. N. Engl. J. Med. 321:1285-1289, 1989)

Suppression of Spontaneous Lung Cancer in Mayak Plutonium Facility Workers Data corrected for influence of alpha radiation (B. Scott, 2006).

Low-Dose-Rate Gamma Rays Protect from Alpha-Radiation-Induced Lung Cancer Rats C. L. Sanders, International Hormesis Conference, 2006

Low-Dose Gamma Rays Protected Trp53 Heterozygous Mice from Lymphomas Number of Tumors 40 0 Gy Trp53 +/- 10 mgy Trp53 +/- 100 mgy Trp53 +/- 30 0 Gy Trp53 +/+ 20 10 0 0 200 400 600 800 Time (days) Multiple low doses could make Trp53 +/- look like Trp53 +/+ (Scott, 2006) Mitchel et al. (2003); low-dose gamma rays increased latency

Low Rate Gamma Irradiation Suppressed MC-Induced Skin Tumors in Mice MC: methylcholanthrene K. Sakai, International Hormesis Conference 2005

Diebetic mice, Sakai K IHS 2006 Gamma rays

Sakai K, IHS 2006

Therapeutic Radiation Hormesis Cancer cells are resistant to undergoing apoptosis. New research is demonstrating ways of sensitizing cancer cells to undergo apoptosis (e.g., resveratrol). Applying low-dose, low-let radiation (in the hormetic zone) alone or in combination with apoptosis sensitizing agents that target tumor cells can lead to curing cancer. Adding multiple small doses of antiangiogenic drugs may enhance efficacy of treatment.

Resveratrol Trans-3,5,4 -trihydroxystilbene (resveratrol) is found in grapes, berries, peanuts, and other plants. Resvertrol sensitizes cancer cells to undergoing apoptosis and suppresses proliferation of a wide variety of tumor cells (e.g., lymphoid and myeloid cancers; multiple myeloma; cancers of the breast, prostate, stomach, colon, pancreas, and thyroid) Aggarwal BB et al. (Anticancer Res. 24, 2004)

Conclusions The LNT risk assessment paradigm is appropriate (for accurate risk assessment) only for a utopian world! Dose units such as Sv, msv, and µsv belong in the indicated utopian world, not in our world! Their useful life for our world has expired. Radiation hormesis (adapted protection ) is real and has a biological basis for effects such cancer. Natural background low-let radiation protects us from cancer and other diseases via induced adapted protection. Doses just above background provide added protection. The gamma-ray component of radon exposure in our homes is likely protecting us from cancer and other genomic-instability-associated diseases.

Conclusions (continued) Lung cancer in heavy smokers might be prevented via regular diagnostic chest X rays (low doses) to repeatedly activate transient adapted protection. The level of adapted protection is expected to increase as the number of genomically unstable cells in the body increase. The level of adapted protection appears to increase with age and children may not benefit from such protection except in circumstances where they possess significant numbers of genomically unstable cells. Combined low-dose radiation + drug (apoptosis sensitizing; antiangiogenic) therapy for cancer may save many lives while avoiding severe side effects. Multiple small doses would be applied at appropriate intervals.

Future Research New AFOSR grant expected to be prepared: relates to protecting military personnel from cancer induction after exposure to high-dose radiation or genotoxic chemicals. Planned NCI follow-on grant: cancer prevention research in soon-to-come new program. Hope to venture into low-dose cancer therapy research in near future.

Recent LRRI Presentations on our Website (www.radiation-scott.org) Stochastic thresholds and nonlinearity (IHS 2005 Plenary). The LNT hypothesis may have outlived it usefulness for low-let radiation (PSA/ANS 05 Plenary; LANL 2005). Hormesis implications for managing radiological terrorism events (NIAID 2006; Rio Grande Chapter HPS 2006). Medical and therapeutic radiation hormesis: Preventing and curing cancer (IHS 2006). Expected benefits from diagnostic imaging radiation: Suppression of cancer (Diagnostic Imaging Conference, 2006)[to be added]. A cancer prevention perspective to radiation risk assessment (NCI Radiation Carcinogenesis Workshop, 2006)[to be added]. Low-dose/dose rate low-let radiation protects us from cancer (DOE Low Dose Program Workshop, 2006).

Upcoming Publications that May be of Interest to the General Public Scott BR. Natural Background Radiation-Induced Apoptosis and the Maintenance of Mammalian Life on Earth. Chapter I in: New Cell Apoptosis Research, L. C. Vinter (Editor), Nova Science Publishers, Inc. Scott BR. Radiation Hormesis and the Control of Genomic Instability. Chapter VI in: New Research on Genomic Instability, Eleanor Glascow (Editor), Nova Science Publishers, Inc. Raloff J (Senior Editor). Science News articles on hormesis which will feature some our work.

Collaborators and Student Participants Scientists: Pam Sykes, Tanya Day, Les Redpath, Chuck Sanders, Zoya Tokarskaya, Galina Zhuntova, Ed Calabrese, Others Students: Jenni Di Palma, Munima Haque

Acknowledgement The research was supported by the Offices of Science (BER) and Environmental Management, U.S. Department of Energy, Grant Numbers DE-FG02-ER63671 and DE- FG02-03ER63657.