Vision-Based Blind Spot Detection Using Optical Flow
|
|
|
- Logan Hutchinson
- 10 years ago
- Views:
Transcription
1 Vision-Based Blind Spot Detection Using Optical Flow M.A. Sotelo 1, J. Barriga 1, D. Fernández 1, I. Parra 1, J.E. Naranjo 2, M. Marrón 1, S. Alvarez 1, and M. Gavilán 1 1 Department of Electronics, University of Alcalá, Alcalá de Henares, Madrid, Spain {sotelo, llorca, marta, parra}@depeca.uah.es 2 Industrial Automation Institute, CSIC, Arganda del Rey, Madrid, Spain [email protected] Abstract. This paper describes a vision-based system for blind spot detection in intelligent vehicle applications. A camera is mounted in the lateral mirror of a car with the intention of visually detecting cars that can not be perceived by the vehicle driver since they are located in the so-called blind spot. The detection of cars in the blind spot is carried out using computer vision techniques, based on optical flow and data clustering, as described in the following lines. Keywords: Computer Vision, Optical Flow, Blind Spot, Intelligent Vehicles. 1 Introduction A vision-based blind spot detection system has been developed for Intelligent Vehicle Applications. The main sensor for providing detection of cars is vision. Images are analyzed using optical flow techniques [1] in order to detect pixels that move in the same direction as the ego-vehicle. Pixels producing movement as described are grouped following the clustering techniques described in [2]. The resulting clusters are considered as potential vehicles overtaking the ego-vehicle. A double-stage detection mechanism has been devised for providing robust vehicle detection. In a first stage, a pre-detector system computes the mass center of the resulting clusters and determines whether the detected cluster is a potential vehicle according to the size of detected pixels. In a second stage, another detector looks for the appearance of vehicles frontal parts. Any object looking like the frontal part of a vehicle is considered as a potential vehicle, whenever the mass center pre-detector triggers the pre-detection signal. Thus, a sufficiently big object in the image plane, producing optical flow in the same direction as the ego-vehicle, and exhibiting a part similar to the frontal part of a car is validated as a car entering the blind spot. The position of the vehicle in the image plane is computed and tracked using a Kalman Filter. Tracking continues until the vehicle disappears from the scene, and an alarm signal is triggered indicating the driver that a vehicle has entered the blind spot zone. 2 System Description The description of the algorithm is provided in figure 1 in the form of flow diagram. As can be observed, there are several computation steps based on optical flow com- R. Moreno-Díaz et al. (Eds.): EUROCAST 2007, LNCS 4739, pp , Springer-Verlag Berlin Heidelberg 2007
2 1114 M.A. Sotelo et al. puting at image level, pixel-wise clustering, analysis of clusters and final vehicle detection. As previously stated, the system relies on the computation of optical flow using vision as main sensor providing information about the road scene. In order to reduce computational time, optical flow is computed only on relevant points in the image. These points are characterized for exhibiting certain features that permit to discriminate them from the rest of point in their environment. rmally, these salient features have prominent values of energy, entropy, or similar statistics. In this work, a salient feature point has been considered as that exhibiting a relevant differential value. Accordingly, a Canny edge extractor is applied to the original incoming image. Pixels providing a positive value after the Canny filter are considered for calculation of optical flow. The reason for this relies on the fact that relevant points are needed for optical flow computation since matching of the points have to be done between two consecutive frames. Fig. 1. Flow Diagram of the Blind-spot detection algorithm After that, Canny edge pixels are matched and grouped together in order to detect clusters of pixels that can be considered as candidate vehicles in the image. Classical clustering techniques are used to determine groups of pixels, as well as their likelihood to form a single object. Figure 2 depicts a typical example of matched points after computing optical flow and performing pixels clustering.
3 Vision-Based Blind Spot Detection Using Optical Flow 1115 Fig. 2. Clustering of pixels providing relevant optical flow Fig. 3. Grouping of close clusters in a second clustering stage Pixels in blue represent edge points that have produced relevant optical flow in two consecutive frames. Red ellipses stand for possible groups (clusters) of objects. Violet ellipses represent ambiguous groups of objects that could be possibly split in two. Gray pixels represent the mass center of detected clusters. Even after pixels clustering, some clusters can still be clearly regarded as belonging to the same real object. A second grouping stage is then carried out among different clusters in order to determine which of them can be further merged together into a single blob. For this purpose, simple distance criteria are considered. As depicted in figure 3, two objects that
4 1116 M.A. Sotelo et al. are very close to each other are finally grouped together in the same cluster. The reason for computing a two-stage clustering process relies on the fact that by selecting a small distance parameter in the first stage interesting information about clusters in the scene can be achieved. Otherwise, i.e. using a large distance parameter in single clustering process, very gross clusters would have been achieved, losing all information about the granular content of the points providing optical flow in the image. The selected clusters constitute the starting point for locating candidate vehicles in the image. For that purpose, the detected positions of clusters are used as a seed point for finding collection of horizontal edges that could potentially represent the lower part of a car. The candidate is located on detected horizontal edges that meet certain conditions of entropy and vertical symmetry. Some of the most critical aspects in blind spot detection are listed below: 1. Shadows on the asphalt due to lampposts, other artifacts or a large vehicle overtaking the ego-vehicle on the right lane. 2. Self-shadow reflected on the asphalt (especially problematic in sharp turns like in round-about points), or self-shadow reflected on road protection fences. Pre-Detector Vehicle Behaviour Frontal part detection Mass centre detection Pre-Warning Warning Tracking Frontal part detection Fig. 4. Pre-detection Flow Diagram
5 Vision-Based Blind Spot Detection Using Optical Flow Robust performance in tunnels. 4. Avoiding false alarms due to vehicles on the third lane. The flow diagram of the double-stage detection algorithm is depicted in figure 4. As can be observed, there is a pre-detector that discriminates whether the detected object is behaving like a vehicle or not. If so, the frontal part of the vehicle is located in the Region Of Interest and a pre-warning is issued. In addition, the vehicle mass centre is computed. In case the frontal part of the vehicle is properly detected and its mass centre can also be computed a final warning message is issued. Vehicle tracking starts at that point. Tracking is stopped when the vehicle gets out of the image. Some times, the shadow of the vehicle remains in the image for a while after the vehicle disappears from the scene, provoking the warning alarm to hold on for 1 or 2 seconds. This is not a problem, since the overtaking car is running in parallel with the ego-vehicle during that time although it is our of the image scene. Thus, maintaining the alarm in such cases turns out to be a desirable side-effect. After locating vehicle candidates, these are classified using a SVM classifier previously trained with samples obtained from real road images. 3 Implementation and Results A digital camera was mounted in the lateral mirror of a real car equipped with a Pentium IV 2.8 GHz PC running Linux Knoppix 3.7 and OpenCV libraries The car Fig. 5. Example of blind spot detection in a sequence of images. The indicator in the upperright part of the figure toggles from green to blue when a car is detected in the blind spot.
6 1118 M.A. Sotelo et al. was manually driven for several hours in real highways and roads. After the experiments, the system achieved a detection rate of 99% (1 missing vehicle), producing 5 false positive detections. Figure 5 shows an example of blind spot detection in a sequence of images. The indicator depicted in the upper-right part of the figure toggles from green to blue when a vehicle enters the blind spot area (indicated by a green polygon). A blue bounding box depicts the position of the detected vehicle. Our current research focuses on the development of SVM-based vehicle recognition for increasing the detection rate and decreasing the false alarm rate, as demonstrated in [3], where SVM was used for vehicle detection in an ACC application. Acknowledgments. This work has been funded by Research Project CICYT DPI C03-02 (Ministerio de Educación y Ciencia, Spain). References 1. Giachetti, A., Campani, M., Torre, V.: The use of optical flow for road navigation. IEEE Transactions on Robotics and Automation 14(1) (1998) 2. Kailunailen, J.: Clustering algorithms: basics and visualization. Helsinki University of Technology. Laboratory of Computer and Information Science. T61.195, Special Assignment 1 (2002) 3. Sotelo, M.A., Nuevo, J., Ocaña, M., Bergasa, L.M.: A Monocular Solution to Vision-Based ACC in Road Vehicles. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST LNCS, vol. 3643, pp Springer, Heidelberg (2005)
Extended Floating Car Data System - Experimental Study -
2011 IEEE Intelligent Vehicles Symposium (IV) Baden-Baden, Germany, June 5-9, 2011 Extended Floating Car Data System - Experimental Study - R. Quintero, A. Llamazares, D. F. Llorca, M. A. Sotelo, L. E.
A Reliability Point and Kalman Filter-based Vehicle Tracking Technique
A Reliability Point and Kalman Filter-based Vehicle Tracing Technique Soo Siang Teoh and Thomas Bräunl Abstract This paper introduces a technique for tracing the movement of vehicles in consecutive video
An Energy-Based Vehicle Tracking System using Principal Component Analysis and Unsupervised ART Network
Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '9) ISSN: 179-519 435 ISBN: 978-96-474-51-2 An Energy-Based Vehicle Tracking System using Principal
Comparing Improved Versions of K-Means and Subtractive Clustering in a Tracking Application
Comparing Improved Versions of K-Means and Subtractive Clustering in a Tracking Application Marta Marrón Romera, Miguel Angel Sotelo Vázquez, and Juan Carlos García García Electronics Department, University
Speed Performance Improvement of Vehicle Blob Tracking System
Speed Performance Improvement of Vehicle Blob Tracking System Sung Chun Lee and Ram Nevatia University of Southern California, Los Angeles, CA 90089, USA [email protected], [email protected] Abstract. A speed
Detection and Recognition of Mixed Traffic for Driver Assistance System
Detection and Recognition of Mixed Traffic for Driver Assistance System Pradnya Meshram 1, Prof. S.S. Wankhede 2 1 Scholar, Department of Electronics Engineering, G.H.Raisoni College of Engineering, Digdoh
Detecting and positioning overtaking vehicles using 1D optical flow
Detecting and positioning overtaking vehicles using 1D optical flow Daniel Hultqvist 1, Jacob Roll 1, Fredrik Svensson 1, Johan Dahlin 2, and Thomas B. Schön 3 Abstract We are concerned with the problem
A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow
, pp.233-237 http://dx.doi.org/10.14257/astl.2014.51.53 A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow Giwoo Kim 1, Hye-Youn Lim 1 and Dae-Seong Kang 1, 1 Department of electronices
Vision based Vehicle Tracking using a high angle camera
Vision based Vehicle Tracking using a high angle camera Raúl Ignacio Ramos García Dule Shu [email protected] [email protected] Abstract A vehicle tracking and grouping algorithm is presented in this work
False alarm in outdoor environments
Accepted 1.0 Savantic letter 1(6) False alarm in outdoor environments Accepted 1.0 Savantic letter 2(6) Table of contents Revision history 3 References 3 1 Introduction 4 2 Pre-processing 4 3 Detection,
REAL TIME TRAFFIC LIGHT CONTROL USING IMAGE PROCESSING
REAL TIME TRAFFIC LIGHT CONTROL USING IMAGE PROCESSING Ms.PALLAVI CHOUDEKAR Ajay Kumar Garg Engineering College, Department of electrical and electronics Ms.SAYANTI BANERJEE Ajay Kumar Garg Engineering
Method for Traffic Flow Estimation using Ondashboard
Method for Traffic Flow Estimation using Ondashboard Camera Image Kohei Arai Graduate School of Science and Engineering Saga University Saga, Japan Steven Ray Sentinuwo Department of Electrical Engineering
Vehicle Tracking System Robust to Changes in Environmental Conditions
INORMATION & COMMUNICATIONS Vehicle Tracking System Robust to Changes in Environmental Conditions Yasuo OGIUCHI*, Masakatsu HIGASHIKUBO, Kenji NISHIDA and Takio KURITA Driving Safety Support Systems (DSSS)
The demonstration will be performed in the INTA high speed ring to emulate highway geometry and driving conditions.
Company / Contact: Description of your project Description of your vehicle/ mock up High speed CACC with lateral control AUTOPÍA Program Centro de Automática y Robótica (UPM-CSC) The goal of this demonstration
Real-Time Tracking of Pedestrians and Vehicles
Real-Time Tracking of Pedestrians and Vehicles N.T. Siebel and S.J. Maybank. Computational Vision Group Department of Computer Science The University of Reading Reading RG6 6AY, England Abstract We present
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
Static Environment Recognition Using Omni-camera from a Moving Vehicle
Static Environment Recognition Using Omni-camera from a Moving Vehicle Teruko Yata, Chuck Thorpe Frank Dellaert The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 USA College of Computing
An Active Head Tracking System for Distance Education and Videoconferencing Applications
An Active Head Tracking System for Distance Education and Videoconferencing Applications Sami Huttunen and Janne Heikkilä Machine Vision Group Infotech Oulu and Department of Electrical and Information
Electric Power Steering Automation for Autonomous Driving
Electric Power Steering Automation for Autonomous Driving J. E. Naranjo, C. González, R. García, T. de Pedro Instituto de Automática Industrial (CSIC) Ctra. Campo Real Km.,2, La Poveda, Arganda del Rey,
Monitoring Head/Eye Motion for Driver Alertness with One Camera
Monitoring Head/Eye Motion for Driver Alertness with One Camera Paul Smith, Mubarak Shah, and N. da Vitoria Lobo Computer Science, University of Central Florida, Orlando, FL 32816 rps43158,shah,niels @cs.ucf.edu
Real time vehicle detection and tracking on multiple lanes
Real time vehicle detection and tracking on multiple lanes Kristian Kovačić Edouard Ivanjko Hrvoje Gold Department of Intelligent Transportation Systems Faculty of Transport and Traffic Sciences University
Synthetic Aperture Radar: Principles and Applications of AI in Automatic Target Recognition
Synthetic Aperture Radar: Principles and Applications of AI in Automatic Target Recognition Paulo Marques 1 Instituto Superior de Engenharia de Lisboa / Instituto de Telecomunicações R. Conselheiro Emídio
Super-resolution method based on edge feature for high resolution imaging
Science Journal of Circuits, Systems and Signal Processing 2014; 3(6-1): 24-29 Published online December 26, 2014 (http://www.sciencepublishinggroup.com/j/cssp) doi: 10.11648/j.cssp.s.2014030601.14 ISSN:
VEHICLE LOCALISATION AND CLASSIFICATION IN URBAN CCTV STREAMS
VEHICLE LOCALISATION AND CLASSIFICATION IN URBAN CCTV STREAMS Norbert Buch 1, Mark Cracknell 2, James Orwell 1 and Sergio A. Velastin 1 1. Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE,
Fall Detection System based on Kinect Sensor using Novel Detection and Posture Recognition Algorithm
Fall Detection System based on Kinect Sensor using Novel Detection and Posture Recognition Algorithm Choon Kiat Lee 1, Vwen Yen Lee 2 1 Hwa Chong Institution, Singapore [email protected] 2 Institute
Cloud tracking with optical flow for short-term solar forecasting
Cloud tracking with optical flow for short-term solar forecasting Philip Wood-Bradley, José Zapata, John Pye Solar Thermal Group, Australian National University, Canberra, Australia Corresponding author:
Automatic Labeling of Lane Markings for Autonomous Vehicles
Automatic Labeling of Lane Markings for Autonomous Vehicles Jeffrey Kiske Stanford University 450 Serra Mall, Stanford, CA 94305 [email protected] 1. Introduction As autonomous vehicles become more popular,
Last Mile Intelligent Driving in Urban Mobility
底 盘 电 子 控 制 系 统 研 究 室 Chassis Electronic Control Systems Laboratory 姓 学 名 号 Hui CHEN School 学 of 院 ( Automotive 系 ) Studies, Tongji University, Shanghai, China 学 科 专 业 [email protected] 指 导 老 师 陈
EFFICIENT VEHICLE TRACKING AND CLASSIFICATION FOR AN AUTOMATED TRAFFIC SURVEILLANCE SYSTEM
EFFICIENT VEHICLE TRACKING AND CLASSIFICATION FOR AN AUTOMATED TRAFFIC SURVEILLANCE SYSTEM Amol Ambardekar, Mircea Nicolescu, and George Bebis Department of Computer Science and Engineering University
Navigation Aid And Label Reading With Voice Communication For Visually Impaired People
Navigation Aid And Label Reading With Voice Communication For Visually Impaired People A.Manikandan 1, R.Madhuranthi 2 1 M.Kumarasamy College of Engineering, [email protected],karur,india 2 M.Kumarasamy
Detection and Restoration of Vertical Non-linear Scratches in Digitized Film Sequences
Detection and Restoration of Vertical Non-linear Scratches in Digitized Film Sequences Byoung-moon You 1, Kyung-tack Jung 2, Sang-kook Kim 2, and Doo-sung Hwang 3 1 L&Y Vision Technologies, Inc., Daejeon,
Multimodal Biometric Recognition Security System
Multimodal Biometric Recognition Security System Anju.M.I, G.Sheeba, G.Sivakami, Monica.J, Savithri.M Department of ECE, New Prince Shri Bhavani College of Engg. & Tech., Chennai, India ABSTRACT: Security
Human behavior analysis from videos using optical flow
L a b o r a t o i r e I n f o r m a t i q u e F o n d a m e n t a l e d e L i l l e Human behavior analysis from videos using optical flow Yassine Benabbas Directeur de thèse : Chabane Djeraba Multitel
Facial Features Tracking applied to Drivers Drowsiness Detection
Facial Features Tracking applied to Drivers Drosiness Detection L. M. BERGASA, R. BAREA, E. LÓPEZ, M. ESCUDERO, J. I. PINEDO Departamento de Electrónica, Universidad de Alcalá Campus universitario s/n.
Mouse Control using a Web Camera based on Colour Detection
Mouse Control using a Web Camera based on Colour Detection Abhik Banerjee 1, Abhirup Ghosh 2, Koustuvmoni Bharadwaj 3, Hemanta Saikia 4 1, 2, 3, 4 Department of Electronics & Communication Engineering,
chapter 3 basic driving skills
chapter 3 basic driving skills When curving to the left, keep the front wheels close to the right edge of the lane to keep your driver s side rear wheels out of the next lane of traffic. Curve ahead slow
Urban Vehicle Tracking using a Combined 3D Model Detector and Classifier
Urban Vehicle Tracing using a Combined 3D Model Detector and Classifier Norbert Buch, Fei Yin, James Orwell, Dimitrios Maris and Sergio A. Velastin Digital Imaging Research Centre, Kingston University,
Tips and Technology For Bosch Partners
Tips and Technology For Bosch Partners Current information for the successful workshop No. 04/2015 Electrics / Elektronics Driver Assistance Systems In this issue, we are continuing our series on automated
Nighttime Vehicle Distance Alarm System
Proceedings of the 7th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Athens, Greece, August 24-26, 2007 226 ighttime Vehicle Distance Alarm System MIG-CI LU *, WEI-YE
A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA
A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin - [email protected]
LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE. [email protected]
LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE 1 S.Manikandan, 2 S.Abirami, 2 R.Indumathi, 2 R.Nandhini, 2 T.Nanthini 1 Assistant Professor, VSA group of institution, Salem. 2 BE(ECE), VSA
Evaluation of Optimizations for Object Tracking Feedback-Based Head-Tracking
Evaluation of Optimizations for Object Tracking Feedback-Based Head-Tracking Anjo Vahldiek, Ansgar Schneider, Stefan Schubert Baden-Wuerttemberg State University Stuttgart Computer Science Department Rotebuehlplatz
Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches
Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic
HANDS-FREE PC CONTROL CONTROLLING OF MOUSE CURSOR USING EYE MOVEMENT
International Journal of Scientific and Research Publications, Volume 2, Issue 4, April 2012 1 HANDS-FREE PC CONTROL CONTROLLING OF MOUSE CURSOR USING EYE MOVEMENT Akhil Gupta, Akash Rathi, Dr. Y. Radhika
Journal of Industrial Engineering Research. Adaptive sequence of Key Pose Detection for Human Action Recognition
IWNEST PUBLISHER Journal of Industrial Engineering Research (ISSN: 2077-4559) Journal home page: http://www.iwnest.com/aace/ Adaptive sequence of Key Pose Detection for Human Action Recognition 1 T. Sindhu
A Real-Time Driver Fatigue Detection System Based on Eye Tracking and Dynamic Template Matching
Tamkang Journal of Science and Engineering, Vol. 11, No. 1, pp. 65 72 (28) 65 A Real-Time Driver Fatigue Detection System Based on Eye Tracking and Dynamic Template Matching Wen-Bing Horng* and Chih-Yuan
Vision based approach to human fall detection
Vision based approach to human fall detection Pooja Shukla, Arti Tiwari CSVTU University Chhattisgarh, [email protected] 9754102116 Abstract Day by the count of elderly people living alone at home
Automated Monitoring System for Fall Detection in the Elderly
Automated Monitoring System for Fall Detection in the Elderly Shadi Khawandi University of Angers Angers, 49000, France [email protected] Bassam Daya Lebanese University Saida, 813, Lebanon Pierre
T O B C A T C A S E G E O V I S A T DETECTIE E N B L U R R I N G V A N P E R S O N E N IN P A N O R A MISCHE BEELDEN
T O B C A T C A S E G E O V I S A T DETECTIE E N B L U R R I N G V A N P E R S O N E N IN P A N O R A MISCHE BEELDEN Goal is to process 360 degree images and detect two object categories 1. Pedestrians,
Tracking and Recognition in Sports Videos
Tracking and Recognition in Sports Videos Mustafa Teke a, Masoud Sattari b a Graduate School of Informatics, Middle East Technical University, Ankara, Turkey [email protected] b Department of Computer
Tracking And Object Classification For Automated Surveillance
Tracking And Object Classification For Automated Surveillance Omar Javed and Mubarak Shah Computer Vision ab, University of Central Florida, 4000 Central Florida Blvd, Orlando, Florida 32816, USA {ojaved,shah}@cs.ucf.edu
A Vision-Based Tracking System for a Street-Crossing Robot
Submitted to ICRA-04 A Vision-Based Tracking System for a Street-Crossing Robot Michael Baker Computer Science Department University of Massachusetts Lowell Lowell, MA [email protected] Holly A. Yanco
3D Vehicle Extraction and Tracking from Multiple Viewpoints for Traffic Monitoring by using Probability Fusion Map
Electronic Letters on Computer Vision and Image Analysis 7(2):110-119, 2008 3D Vehicle Extraction and Tracking from Multiple Viewpoints for Traffic Monitoring by using Probability Fusion Map Zhencheng
Crater detection with segmentation-based image processing algorithm
Template reference : 100181708K-EN Crater detection with segmentation-based image processing algorithm M. Spigai, S. Clerc (Thales Alenia Space-France) V. Simard-Bilodeau (U. Sherbrooke and NGC Aerospace,
Observing Human Behavior in Image Sequences: the Video Hermeneutics Challenge
Observing Human Behavior in Image Sequences: the Video Hermeneutics Challenge Pau Baiget, Jordi Gonzàlez Computer Vision Center, Dept. de Ciències de la Computació, Edifici O, Campus UAB, 08193 Bellaterra,
Density Based Traffic Signal System
ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference
ESE498. Intruder Detection System
0 Washington University in St. Louis School of Engineering and Applied Science Electrical and Systems Engineering Department ESE498 Intruder Detection System By Allen Chiang, Jonathan Chu, Siwei Su Supervisor
T-REDSPEED White paper
T-REDSPEED White paper Index Index...2 Introduction...3 Specifications...4 Innovation...6 Technology added values...7 Introduction T-REDSPEED is an international patent pending technology for traffic violation
Honeywell Video Analytics
INTELLIGENT VIDEO ANALYTICS Honeywell s suite of video analytics products enables enhanced security and surveillance solutions by automatically monitoring video for specific people, vehicles, objects and
EB Automotive Driver Assistance EB Assist Solutions. Damian Barnett Director Automotive Software June 5, 2015
EB Automotive Driver Assistance EB Assist Solutions Damian Barnett Director Automotive Software June 5, 2015 Advanced driver assistance systems Market growth The Growth of ADAS is predicted to be about
Scalable Traffic Video Analytics using Hadoop MapReduce
Scalable Traffic Video Analytics using Hadoop MapReduce Vaithilingam Anantha Natarajan Subbaiyan Jothilakshmi Venkat N Gudivada Department of Computer Science and Engineering Annamalai University Tamilnadu,
How To Run A Factory I/O On A Microsoft Gpu 2.5 (Sdk) On A Computer Or Microsoft Powerbook 2.3 (Powerpoint) On An Android Computer Or Macbook 2 (Powerstation) On
User Guide November 19, 2014 Contents 3 Welcome 3 What Is FACTORY I/O 3 How Does It Work 4 I/O Drivers: Connecting To External Technologies 5 System Requirements 6 Run Mode And Edit Mode 7 Controls 8 Cameras
A Method of Caption Detection in News Video
3rd International Conference on Multimedia Technology(ICMT 3) A Method of Caption Detection in News Video He HUANG, Ping SHI Abstract. News video is one of the most important media for people to get information.
Robust Real-Time Face Detection
Robust Real-Time Face Detection International Journal of Computer Vision 57(2), 137 154, 2004 Paul Viola, Michael Jones 授 課 教 授 : 林 信 志 博 士 報 告 者 : 林 宸 宇 報 告 日 期 :96.12.18 Outline Introduction The Boost
Programs for diagnosis and therapy of visual field deficits in vision rehabilitation
Spatial Vision, vol. 10, No.4, pp. 499-503 (1997) Programs for diagnosis and therapy of visual field deficits in vision rehabilitation Erich Kasten*, Hans Strasburger & Bernhard A. Sabel Institut für Medizinische
Colorado School of Mines Computer Vision Professor William Hoff
Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Introduction to 2 What is? A process that produces from images of the external world a description
Automatic 3D Mapping for Infrared Image Analysis
Automatic 3D Mapping for Infrared Image Analysis i r f m c a d a r a c h e V. Martin, V. Gervaise, V. Moncada, M.H. Aumeunier, M. irdaouss, J.M. Travere (CEA) S. Devaux (IPP), G. Arnoux (CCE) and JET-EDA
PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY
PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY V. Knyaz a, *, Yu. Visilter, S. Zheltov a State Research Institute for Aviation System (GosNIIAS), 7, Victorenko str., Moscow, Russia
Vision-based Real-time Driver Fatigue Detection System for Efficient Vehicle Control
Vision-based Real-time Driver Fatigue Detection System for Efficient Vehicle Control D.Jayanthi, M.Bommy Abstract In modern days, a large no of automobile accidents are caused due to driver fatigue. To
A Multiagent Model for Intelligent Distributed Control Systems
A Multiagent Model for Intelligent Distributed Control Systems José Aguilar, Mariela Cerrada, Gloria Mousalli, Franklin Rivas, and Francisco Hidrobo CEMISID, Dpto. de Computación, Facultad de Ingeniería,
Design Report. IniTech for
Design Report by IniTech for 14 th Annual Intelligent Ground Vehicle Competition University of Maryland: Baltimore County: Erik Broman (Team Lead and Requirement Lead) Albert Hsu (Design Lead) Sean Wilson
Segmentation of building models from dense 3D point-clouds
Segmentation of building models from dense 3D point-clouds Joachim Bauer, Konrad Karner, Konrad Schindler, Andreas Klaus, Christopher Zach VRVis Research Center for Virtual Reality and Visualization, Institute
Poker Vision: Playing Cards and Chips Identification based on Image Processing
Poker Vision: Playing Cards and Chips Identification based on Image Processing Paulo Martins 1, Luís Paulo Reis 2, and Luís Teófilo 2 1 DEEC Electrical Engineering Department 2 LIACC Artificial Intelligence
Human Detection Robot using PIR Sensors
Human Detection Robot using PIR Sensors Saravana Kumar K, Priscilla P, Germiya K Jose, Balagopal G Abstract: Human Detection Robot is a robot that can detect the presence of human; it sends the signal
VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS
VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS Aswin C Sankaranayanan, Qinfen Zheng, Rama Chellappa University of Maryland College Park, MD - 277 {aswch, qinfen, rama}@cfar.umd.edu Volkan Cevher, James
PIXEL-LEVEL IMAGE FUSION USING BROVEY TRANSFORME AND WAVELET TRANSFORM
PIXEL-LEVEL IMAGE FUSION USING BROVEY TRANSFORME AND WAVELET TRANSFORM Rohan Ashok Mandhare 1, Pragati Upadhyay 2,Sudha Gupta 3 ME Student, K.J.SOMIYA College of Engineering, Vidyavihar, Mumbai, Maharashtra,
Canny Edge Detection
Canny Edge Detection 09gr820 March 23, 2009 1 Introduction The purpose of edge detection in general is to significantly reduce the amount of data in an image, while preserving the structural properties
Locating and Decoding EAN-13 Barcodes from Images Captured by Digital Cameras
Locating and Decoding EAN-13 Barcodes from Images Captured by Digital Cameras W3A.5 Douglas Chai and Florian Hock Visual Information Processing Research Group School of Engineering and Mathematics Edith
Object Tracking System Using Motion Detection
Object Tracking System Using Motion Detection Harsha K. Ingle*, Prof. Dr. D.S. Bormane** *Department of Electronics and Telecommunication, Pune University, Pune, India Email: [email protected] **Department
Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall
Automatic Photo Quality Assessment Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Estimating i the photorealism of images: Distinguishing i i paintings from photographs h Florin
Fall detection in the elderly by head tracking
Loughborough University Institutional Repository Fall detection in the elderly by head tracking This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation:
Visual Servoing using Fuzzy Controllers on an Unmanned Aerial Vehicle
Visual Servoing using Fuzzy Controllers on an Unmanned Aerial Vehicle Miguel A. Olivares-Méndez mig [email protected] Pascual Campoy Cervera [email protected] Iván Mondragón [email protected] Carol
Determining optimal window size for texture feature extraction methods
IX Spanish Symposium on Pattern Recognition and Image Analysis, Castellon, Spain, May 2001, vol.2, 237-242, ISBN: 84-8021-351-5. Determining optimal window size for texture feature extraction methods Domènec
BENEFIT OF DYNAMIC USE CASES TO EARLY DESIGN A DRIVING ASSISTANCE SYSTEM FOR PEDESTRIAN/TRUCK COLLISION AVOIDANCE
BENEFIT OF DYNAMIC USE CASES TO EARLY DESIGN A DRIVING ASSISTANCE SYSTEM FOR PEDESTRIAN/TRUCK COLLISION AVOIDANCE Hélène Tattegrain, Arnaud Bonnard, Benoit Mathern, LESCOT, INRETS France Paper Number 09-0489
Traffic Monitoring Systems. Technology and sensors
Traffic Monitoring Systems Technology and sensors Technology Inductive loops Cameras Lidar/Ladar and laser Radar GPS etc Inductive loops Inductive loops signals Inductive loop sensor The inductance signal
Neural Network based Vehicle Classification for Intelligent Traffic Control
Neural Network based Vehicle Classification for Intelligent Traffic Control Saeid Fazli 1, Shahram Mohammadi 2, Morteza Rahmani 3 1,2,3 Electrical Engineering Department, Zanjan University, Zanjan, IRAN
Weal-Time System for Monitoring Driver Vigilance
2004 IEEE Intelligent Vehicles Symposium University of Parma Parma, Italy June 14-17,2004 Weal-Time System for Monitoring Driver Vigilance Luis M. Bergasa, Jesus Nuevo, Miguel A. Sotelo Departamento de
Donaxi@HOME Project. Keywords: Hybrid Algorithm, Human-Face Detection, Tracking Unrestricted, Identification of People, Fall, dynamic and kinematic.
Donaxi@HOME Project Héctor S Vargas, Edson Olmedo, A Daniel Martínez, ML Mónica López, Esperanza Medina, José L Pérez, Damian Linares, Carlos Peto, Enrique R García, Víctor Poisot, Jaime Robles, Gerson
Limitations of Human Vision. What is computer vision? What is computer vision (cont d)?
What is computer vision? Limitations of Human Vision Slide 1 Computer vision (image understanding) is a discipline that studies how to reconstruct, interpret and understand a 3D scene from its 2D images
HIGH-PERFORMANCE INSPECTION VEHICLE FOR RAILWAYS AND TUNNEL LININGS. HIGH-PERFORMANCE INSPECTION VEHICLE FOR RAILWAY AND ROAD TUNNEL LININGS.
HIGH-PERFORMANCE INSPECTION VEHICLE FOR RAILWAYS AND TUNNEL LININGS. HIGH-PERFORMANCE INSPECTION VEHICLE FOR RAILWAY AND ROAD TUNNEL LININGS. The vehicle developed by Euroconsult and Pavemetrics and described
