An Energy-Aware Methodology for Live Placement of Virtual Machines with Variable Profiles in Large Data Centers

Size: px
Start display at page:

Download "An Energy-Aware Methodology for Live Placement of Virtual Machines with Variable Profiles in Large Data Centers"

Transcription

1 An Energy-Aware Methodology for Live Placement of Virtual Machines with Variable Profiles in Large Data Centers Rossella Macchi: Danilo Ardagna: Oriana Benetti: Politecnico di Milano eni s.p.a. Politecnico di Milano eni s.p.a.

2 Outline 2 1) Goals and motivations 2) Physical virtual desktop comparison 3) Mathematical formulation of the VM allocation problem 4) Heuristic solution 5) Experimental analysis 6) Conclusions and future work

3 Goals and motivations CO 2 World consumption: 33.5 billion tons average increase 5% per year 2% due to ICT By 2020 a further ICT increase of 20% Hw efficiencies: Sw efficiencies: Sources: Nasa and T-Systems The greening of business

4 Goals and motivations 3 Goals: Energy analysis and comparison of Virtual Desktop Energy consumption optimization from virtualisation Hw efficiencies: Green ICT Sw efficiencies: Sources: Nasa and T-Systems The greening of business

5 Technologies Analysis : Measurements 4 1. Physical virtual desktop comparison 2. Thin Client - Server

6 Technologies Analysis : break-even point 5

7 Technologies Analysis : break-even point 5

8 VM allocation on physical servers 6 Goals: minimize the number of the active servers and VMs live migrations, with performance constraints Solution: Dynamic resources profile (LOW-HIGH) Heuristic placement Break-even point reduction Switching profiles: 1. Low High - Find new location for the new VM, when it does not fit into the current server 2. High Low - Underutilization of the servers

9 Theoretical problem : Bin Packing Problem 7 Bin-Packing Problem, MCBBP variant (multi-capacity bin packing problem)

10 Theoretical problem : Bin Packing Problem 7 Bin-Packing Problem, MCBBP variant (multi-capacity bin packing problem) NP-HARD Problem Cannot be resolved efficiently within a reasonable time Placing Heuristic Global solution approximation Parameters fine tuning

11 VM allocation : MILP model 8 Goals: S min i=1 CV cpu i _use + CF y i + PMig TMig 1 Mig 1 + PMig TMig 2 Mig 2 S (U) Up 1 (Up 2 ) NumServer N1 (N2) Parameters CpuServer (Ram Server) CpuP 1 ( P 2 ) Ram P 1 (P 2 ) oldx s,u CF CV Pmig Tmig 1 (Tmig 2 ) Perc_P1 (Perc_P2) x s,u y s k s1,s2,u Problem s decision variables 1 Users u allocated on server s 0 Else 1 Server is ON 0 Else 1 User U migrated from server s1 to server s2 0 Else Mig 1 Mig 2 Migrations of profile 1 or 2 Language: Ampl Solver: ILOG Cplex

12 VM allocation : MILP model 8 Goals: S min i=1 CV cpu i _use + CF y i + PMig TMig 1 Mig 1 + PMig TMig 2 Mig 2 Constraints: S 1) x u j U 4) 5) 6) 9) 10) i=1 Up1 Up2 2 ) x y j U, i S ) x + x j Up i S, + 1, x perc_p+ x perc_p i S i, j i, j 2 j=1 Up1 i, j j j=1 Up2 i j x RamP+ x RamP RamServer i S i, j 1 i, j 2 i j=1 Up1 j=1 Up2 x CpuP+ x CpuP CpuServer i S i, j 1 i,j 2 i j=1 mig,, 1 1 = k i S z S j Up i, z, j i= 1 z= 1 j= 1 S S UP2 = mig2 ki, z, j i S, z S, j Up2 i= 1 z= 1 j= 1 i j=1 + x 2 k + 1 i S, z S, i z, j i, j z, j i, z, j + x 2 k + 1 i S, z S, i z, i, j z, j i, z, j S S UP1 3 i, j i, j N1 1 7) oldx Up1 8) oldx j Up... 2

13 Optimization: Heuristic 9

14 Optimization: Heuristic 9 Stochastic approach adopted to avoid resources saturation

15 VM allocation : Policy implemented 10 Enterprise actual policy: Static profiles Global optimum: Obtained by the MILP model solution Not applicable to real enterprise s instances Theoretical comparison Heuristic: Dynamic profiles Different start allocation policy Policy1: Sequential allocation, avoid boot storm problem (NO SSD) Policy2: On-demand allocation (SSD) Consumption

16 VM allocation: Time comparison 11

17 VM allocation: Parameters Tuning 12 Max server threshold to start a VM MAX = 80 MAX = 90 MAX = 100 Variable Value Total consumption 24189,2 Migration Profile Total consumption 24170,6 Migration Profile Total consumption Migration Profile Min thresholdper to turno off a server Variable Value MIN = 10 Total consumption 24733,1 Migration Profile MIN = 20 Total consumption 24503,5 Migration Profile MIN = 30 Total consumption Migration Profile Priority Weight (sorted by use) Variable Value Total consumption Migration Profile Total consumption Migration Profile Total consumption Migration Profile Total consumption Migration Profile Heuristic robust with respect to parameters

18 VM allocation: Resouces 13 Actual Huristic Policy2 Num Server Cpu On Ram On Max 16,00 97,60% 93,75% Avg 9,81 75,98% 72,98& Max 12,00 86,58% 100,00% Mvg 9,15 66,98% 79,52% Lower use of servers for the same number of users (12 vs. 16) Resource-intensive, cpu always above 60%

19 Scalability analysis 14 Optimum Huristic Deviation Users Max Value Percentage 80 1,14 % 160 2,87 % 240 5,75 % 320 5,00 % Avg Value Utenti Percentage 80 1,74 % 160 3,08 % 240 4,81 % 320 4,98 %

20 Scalability analysis 14

21 Scalability analysis: CO2 savings 15 Total anual for users ,165 KWh = 44 tons CO2 1Kwh = 0,40 Kg CO2

22 Scalability analysis: Time and Resources 16

23 Scalability analysis: Time and Resources 16 <1 second

24 Conclusions and future work 17 Conclusions: Virtual-Physical desktop comparison Break-even point Heuristic solution Average delta from the global optimum lower then 5% Energy consumption reduced by about 35 % and resources by 25% CO2 emission saving for 10,000 users about 44 tons Future work: Further integration: Network constraints Thermal constraints Security constraints Develop a prototype for the VM migration

25 Questions? 18 Questions?

26 Policy1 and Policy delta 19

27 Bibliography 20 1) Cplex:High-performance mathematical programming solver for linear programming, mixed integer programming, and quadratic programming 2) T. Aghavendra, Ranganathan. No "power" struggles: coordinated multilevel power management for the data center. ASPLOS 2008, ) B. Bobro, Kochut. Dynamic placement of virtual machines for managing sla violations. Integrated Network Management, 10 th IEEE International Symposium, ) Borriello. Analisi delle tecnologie intel-vt e amd-v a supporto della virtualizzazione dell'hardware. Master's thesis, Ingegneria Elettronica Napoli, ) Dimitris Economou, Suzanne Rivoire. Full-system power analysis and modeling for server environments. Workshop on Mode- ling, Benchmarking, and Simulation (MoBS), held at the International Symposium on Computer Architecture (ISCA), June ) F. G. Qiang Huang. Power consumption of virtual machine live migration in clouds. Third International Conference on Communications and Mobile Computing, ) T-Systems. White paper green ict: The greening of business. 8) Zaman, Sharrukh. Combinatorial auction-based dynamic vm provisioning and allocation in clouds.

Hierarchical Approach for Green Workload Management in Distributed Data Centers

Hierarchical Approach for Green Workload Management in Distributed Data Centers Hierarchical Approach for Green Workload Management in Distributed Data Centers Agostino Forestiero, Carlo Mastroianni, Giuseppe Papuzzo, Mehdi Sheikhalishahi Institute for High Performance Computing and

More information

ENERGY EFFICIENT CONTROL OF VIRTUAL MACHINE CONSOLIDATION UNDER UNCERTAIN INPUT PARAMETERS FOR THE CLOUD

ENERGY EFFICIENT CONTROL OF VIRTUAL MACHINE CONSOLIDATION UNDER UNCERTAIN INPUT PARAMETERS FOR THE CLOUD ENERGY EFFICIENT CONTROL OF VIRTUAL MACHINE CONSOLIDATION UNDER UNCERTAIN INPUT PARAMETERS FOR THE CLOUD ENRICA ZOLA, KARLSTAD UNIVERSITY @IEEE.ORG ENGINEERING AND CONTROL FOR RELIABLE CLOUD SERVICES,

More information

Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing

Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing Deep Mann ME (Software Engineering) Computer Science and Engineering Department Thapar University Patiala-147004

More information

Flexible Distributed Capacity Allocation and Load Redirect Algorithms for Cloud Systems

Flexible Distributed Capacity Allocation and Load Redirect Algorithms for Cloud Systems Flexible Distributed Capacity Allocation and Load Redirect Algorithms for Cloud Systems Danilo Ardagna 1, Sara Casolari 2, Barbara Panicucci 1 1 Politecnico di Milano,, Italy 2 Universita` di Modena e

More information

A Distributed Approach to Dynamic VM Management

A Distributed Approach to Dynamic VM Management A Distributed Approach to Dynamic VM Management Michael Tighe, Gastón Keller, Michael Bauer and Hanan Lutfiyya Department of Computer Science The University of Western Ontario London, Canada {mtighe2 gkeller2

More information

Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis

Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis Felipe Augusto Nunes de Oliveira - GRR20112021 João Victor Tozatti Risso - GRR20120726 Abstract. The increasing

More information

Towards an understanding of oversubscription in cloud

Towards an understanding of oversubscription in cloud IBM Research Towards an understanding of oversubscription in cloud Salman A. Baset, Long Wang, Chunqiang Tang [email protected] IBM T. J. Watson Research Center Hawthorne, NY Outline Oversubscription

More information

SLA-driven Dynamic Resource Provisioning for Service Provider in Cloud Computing

SLA-driven Dynamic Resource Provisioning for Service Provider in Cloud Computing IEEE Globecom 2013 Workshop on Cloud Computing Systems, Networks, and Applications SLA-driven Dynamic Resource Provisioning for Service Provider in Cloud Computing Yongyi Ran *, Jian Yang, Shuben Zhang,

More information

Energy Efficient Resource Management in Virtualized Cloud Data Centers

Energy Efficient Resource Management in Virtualized Cloud Data Centers 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing Energy Efficient Resource Management in Virtualized Cloud Data Centers Anton Beloglazov* and Rajkumar Buyya Cloud Computing

More information

Analysis of the influence of application deployment on energy consumption

Analysis of the influence of application deployment on energy consumption Analysis of the influence of application deployment on energy consumption M. Gribaudo, Nguyen T.T. Ho, B. Pernici, G. Serazzi Dip. Elettronica, Informazione e Bioingegneria Politecnico di Milano Motivation

More information

Energy Constrained Resource Scheduling for Cloud Environment

Energy Constrained Resource Scheduling for Cloud Environment Energy Constrained Resource Scheduling for Cloud Environment 1 R.Selvi, 2 S.Russia, 3 V.K.Anitha 1 2 nd Year M.E.(Software Engineering), 2 Assistant Professor Department of IT KSR Institute for Engineering

More information

Solving (NP-Hard) Scheduling Problems with ovirt & OptaPlanner. Jason Brooks Red Hat Open Source & Standards SCALE13x, Feb 2015

Solving (NP-Hard) Scheduling Problems with ovirt & OptaPlanner. Jason Brooks Red Hat Open Source & Standards SCALE13x, Feb 2015 Solving (NP-Hard) Scheduling Problems with ovirt & OptaPlanner Jason Brooks Red Hat Open Source & Standards SCALE13x, Feb 2015 What Is ovirt? Large scale, centralized management for server and desktop

More information

Towards Energy-efficient Cloud Computing

Towards Energy-efficient Cloud Computing Towards Energy-efficient Cloud Computing Michael Maurer Distributed Systems Group TU Vienna, Austria [email protected] http://www.infosys.tuwien.ac.at/staff/maurer/ Distributed Systems Group

More information

Green Cloud: Smart Resource Allocation and Optimization using Simulated Annealing Technique

Green Cloud: Smart Resource Allocation and Optimization using Simulated Annealing Technique Green Cloud: Smart Resource Allocation and Optimization using Simulated Annealing Technique AkshatDhingra M.Tech Research Scholar, Department of Computer Science and Engineering, Birla Institute of Technology,

More information

International Journal of Advance Research in Computer Science and Management Studies

International Journal of Advance Research in Computer Science and Management Studies Volume 3, Issue 6, June 2015 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

An Energy-aware Multi-start Local Search Metaheuristic for Scheduling VMs within the OpenNebula Cloud Distribution

An Energy-aware Multi-start Local Search Metaheuristic for Scheduling VMs within the OpenNebula Cloud Distribution An Energy-aware Multi-start Local Search Metaheuristic for Scheduling VMs within the OpenNebula Cloud Distribution Y. Kessaci, N. Melab et E-G. Talbi Dolphin Project Team, Université Lille 1, LIFL-CNRS,

More information

Multi-dimensional Affinity Aware VM Placement Algorithm in Cloud Computing

Multi-dimensional Affinity Aware VM Placement Algorithm in Cloud Computing Multi-dimensional Affinity Aware VM Placement Algorithm in Cloud Computing Nilesh Pachorkar 1, Rajesh Ingle 2 Abstract One of the challenging problems in cloud computing is the efficient placement of virtual

More information

Cloud Management: Knowing is Half The Battle

Cloud Management: Knowing is Half The Battle Cloud Management: Knowing is Half The Battle Raouf BOUTABA David R. Cheriton School of Computer Science University of Waterloo Joint work with Qi Zhang, Faten Zhani (University of Waterloo) and Joseph

More information

HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE

HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE Subodha Kumar University of Washington [email protected] Varghese S. Jacob University of Texas at Dallas [email protected]

More information

Green Cloud Computing 班 級 : 資 管 碩 一 組 員 :710029011 黃 宗 緯 710029021 朱 雅 甜

Green Cloud Computing 班 級 : 資 管 碩 一 組 員 :710029011 黃 宗 緯 710029021 朱 雅 甜 Green Cloud Computing 班 級 : 資 管 碩 一 組 員 :710029011 黃 宗 緯 710029021 朱 雅 甜 Outline Introduction Proposed Schemes VM configuration VM Live Migration Comparison 2 Introduction (1/2) In 2006, the power consumption

More information

Power Management in Cloud Computing using Green Algorithm. -Kushal Mehta COP 6087 University of Central Florida

Power Management in Cloud Computing using Green Algorithm. -Kushal Mehta COP 6087 University of Central Florida Power Management in Cloud Computing using Green Algorithm -Kushal Mehta COP 6087 University of Central Florida Motivation Global warming is the greatest environmental challenge today which is caused by

More information

Energy-aware joint management of networks and cloud infrastructures

Energy-aware joint management of networks and cloud infrastructures Energy-aware joint management of networks and cloud infrastructures Bernardetta Addis 1, Danilo Ardagna 2, Antonio Capone 2, Giuliana Carello 2 1 LORIA, Université de Lorraine, France 2 Dipartimento di

More information

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems

More information

A Game Theoretic Formulation of the Service Provisioning Problem in Cloud Systems

A Game Theoretic Formulation of the Service Provisioning Problem in Cloud Systems A Game Theoretic Formulation of the Service Provisioning Problem in Cloud Systems Danilo Ardagna 1, Barbara Panicucci 1, Mauro Passacantando 2 1 Politecnico di Milano,, Italy 2 Università di Pisa, Dipartimento

More information

Power Aware Live Migration for Data Centers in Cloud using Dynamic Threshold

Power Aware Live Migration for Data Centers in Cloud using Dynamic Threshold Richa Sinha et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 2041-2046 Power Aware Live Migration for Data Centers in Cloud using Dynamic Richa Sinha, Information Technology L.D. College of Engineering, Ahmedabad,

More information

Dynamic Resource allocation in Cloud

Dynamic Resource allocation in Cloud Dynamic Resource allocation in Cloud ABSTRACT: Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of the touted gains in the cloud model come from

More information

Task Scheduling for Efficient Resource Utilization in Cloud

Task Scheduling for Efficient Resource Utilization in Cloud Summer 2014 Task Scheduling for Efficient Resource Utilization in Cloud A Project Report for course COEN 241 Under the guidance of, Dr.Ming Hwa Wang Submitted by : Najuka Sankhe Nikitha Karkala Nimisha

More information

EPOBF: ENERGY EFFICIENT ALLOCATION OF VIRTUAL MACHINES IN HIGH PERFORMANCE COMPUTING CLOUD

EPOBF: ENERGY EFFICIENT ALLOCATION OF VIRTUAL MACHINES IN HIGH PERFORMANCE COMPUTING CLOUD Journal of Science and Technology 51 (4B) (2013) 173-182 EPOBF: ENERGY EFFICIENT ALLOCATION OF VIRTUAL MACHINES IN HIGH PERFORMANCE COMPUTING CLOUD Nguyen Quang-Hung, Nam Thoai, Nguyen Thanh Son Faculty

More information

Virtual Machine Consolidation for Datacenter Energy Improvement

Virtual Machine Consolidation for Datacenter Energy Improvement Virtual Machine Consolidation for Datacenter Energy Improvement Sina Esfandiarpoor a, Ali Pahlavan b, Maziar Goudarzi a,b a Energy Aware System (EASY) Laboratory, Computer Engineering Department, Sharif

More information

A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems

A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Zomaya Present by Leping Wang 1/25/2012 Outline Background

More information

Optimal Allocation of renewable Energy Parks: A Two Stage Optimization Model. Mohammad Atef, Carmen Gervet German University in Cairo, EGYPT

Optimal Allocation of renewable Energy Parks: A Two Stage Optimization Model. Mohammad Atef, Carmen Gervet German University in Cairo, EGYPT Optimal Allocation of renewable Energy Parks: A Two Stage Optimization Model Mohammad Atef, Carmen Gervet German University in Cairo, EGYPT JFPC 2012 1 Overview Egypt & Renewable Energy Prospects Case

More information

INCREASING SERVER UTILIZATION AND ACHIEVING GREEN COMPUTING IN CLOUD

INCREASING SERVER UTILIZATION AND ACHIEVING GREEN COMPUTING IN CLOUD INCREASING SERVER UTILIZATION AND ACHIEVING GREEN COMPUTING IN CLOUD M.Rajeswari 1, M.Savuri Raja 2, M.Suganthy 3 1 Master of Technology, Department of Computer Science & Engineering, Dr. S.J.S Paul Memorial

More information

International Journal of Digital Application & Contemporary research Website: www.ijdacr.com (Volume 2, Issue 9, April 2014)

International Journal of Digital Application & Contemporary research Website: www.ijdacr.com (Volume 2, Issue 9, April 2014) Green Cloud Computing: Greedy Algorithms for Virtual Machines Migration and Consolidation to Optimize Energy Consumption in a Data Center Rasoul Beik Islamic Azad University Khomeinishahr Branch, Isfahan,

More information

Paul Brebner, Senior Researcher, NICTA, [email protected]

Paul Brebner, Senior Researcher, NICTA, Paul.Brebner@nicta.com.au Is your Cloud Elastic Enough? Part 2 Paul Brebner, Senior Researcher, NICTA, [email protected] Paul Brebner is a senior researcher in the e-government project at National ICT Australia (NICTA,

More information

Power Aware Load Balancing for Cloud Computing

Power Aware Load Balancing for Cloud Computing , October 19-21, 211, San Francisco, USA Power Aware Load Balancing for Cloud Computing Jeffrey M. Galloway, Karl L. Smith, Susan S. Vrbsky Abstract With the increased use of local cloud computing architectures,

More information

Precise VM Placement Algorithm Supported by Data Analytic Service

Precise VM Placement Algorithm Supported by Data Analytic Service Precise VM Placement Algorithm Supported by Data Analytic Service Dapeng Dong and John Herbert Mobile and Internet Systems Laboratory Department of Computer Science, University College Cork, Ireland {d.dong,

More information

Setting deadlines and priorities to the tasks to improve energy efficiency in cloud computing

Setting deadlines and priorities to the tasks to improve energy efficiency in cloud computing Setting deadlines and priorities to the tasks to improve energy efficiency in cloud computing Problem description Cloud computing is a technology used more and more every day, requiring an important amount

More information

Virtual Machine Allocation in Cloud Computing for Minimizing Total Execution Time on Each Machine

Virtual Machine Allocation in Cloud Computing for Minimizing Total Execution Time on Each Machine Virtual Machine Allocation in Cloud Computing for Minimizing Total Execution Time on Each Machine Quyet Thang NGUYEN Nguyen QUANG-HUNG Nguyen HUYNH TUONG Van Hoai TRAN Nam THOAI Faculty of Computer Science

More information

Network Virtualization and Energy Efficiency

Network Virtualization and Energy Efficiency Network Virtualization and Energy Efficiency University of Passau Gergö Lovász, Andreas Fischer, and Hermann de Meer Outline 1. Power Consumption of ICT 2. Economic Principle and Energy Efficiency Benchmarks

More information

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents

More information

A Comparative Study of Load Balancing Algorithms in Cloud Computing

A Comparative Study of Load Balancing Algorithms in Cloud Computing A Comparative Study of Load Balancing Algorithms in Cloud Computing Reena Panwar M.Tech CSE Scholar Department of CSE, Galgotias College of Engineering and Technology, Greater Noida, India Bhawna Mallick,

More information

CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms

CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose,

More information

Keywords Distributed Computing, On Demand Resources, Cloud Computing, Virtualization, Server Consolidation, Load Balancing

Keywords Distributed Computing, On Demand Resources, Cloud Computing, Virtualization, Server Consolidation, Load Balancing Volume 5, Issue 1, January 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Survey on Load

More information

A Framework of Dynamic Power Management for Sustainable Data Center

A Framework of Dynamic Power Management for Sustainable Data Center A Framework of Dynamic Power Management for Sustainable Data Center San Hlaing Myint, and Thandar Thein Abstract Sustainability of cloud data center is to be addressed in terms of environmental and economic

More information

OpenStack Neat: a framework for dynamic and energy-efficient consolidation of virtual machines in OpenStack clouds

OpenStack Neat: a framework for dynamic and energy-efficient consolidation of virtual machines in OpenStack clouds CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE Concurrency Computat.: Pract. Exper. (2014) Published online in Wiley Online Library (wileyonlinelibrary.com)..3314 OpenStack Neat: a framework for

More information

Elastic VM for Rapid and Optimum Virtualized

Elastic VM for Rapid and Optimum Virtualized Elastic VM for Rapid and Optimum Virtualized Resources Allocation Wesam Dawoud PhD. Student Hasso Plattner Institute Potsdam, Germany 5th International DMTF Academic Alliance Workshop on Systems and Virtualization

More information

Falloc: Fair Network Bandwidth Allocation in IaaS Datacenters via a Bargaining Game Approach

Falloc: Fair Network Bandwidth Allocation in IaaS Datacenters via a Bargaining Game Approach Falloc: Fair Network Bandwidth Allocation in IaaS Datacenters via a Bargaining Game Approach Fangming Liu 1,2 In collaboration with Jian Guo 1,2, Haowen Tang 1,2, Yingnan Lian 1,2, Hai Jin 2 and John C.S.

More information

High Availability-Aware Optimization Digest for Applications Deployment in Cloud

High Availability-Aware Optimization Digest for Applications Deployment in Cloud High Availability-Aware Optimization Digest for Applications Deployment in Cloud Manar Jammal ECE Depratment Western University London ON, Canada [email protected] Ali Kanso Ericsson Research Ericsson Montreal

More information

Self-organization of applications and systems to optimize resources usage in virtualized data centers

Self-organization of applications and systems to optimize resources usage in virtualized data centers Ecole des Mines de Nantes Self-organization of applications and systems to optimize resources usage in virtualized data centers Teratec 06/28 2012 Jean- Marc Menaud Ascola team EMNantes-INRIA, LINA Motivations

More information

BLACKBOARD LEARN TM AND VIRTUALIZATION Anand Gopinath, Software Performance Engineer, Blackboard Inc. Nakisa Shafiee, Senior Software Performance

BLACKBOARD LEARN TM AND VIRTUALIZATION Anand Gopinath, Software Performance Engineer, Blackboard Inc. Nakisa Shafiee, Senior Software Performance BLACKBOARD LEARN TM AND VIRTUALIZATION Anand Gopinath, Software Performance Engineer, Blackboard Inc. Nakisa Shafiee, Senior Software Performance Engineer, Blackboard Inc.. Introduction Anand Gopinath

More information

DDS-Enabled Cloud Management Support for Fast Task Offloading

DDS-Enabled Cloud Management Support for Fast Task Offloading DDS-Enabled Cloud Management Support for Fast Task Offloading IEEE ISCC 2012, Cappadocia Turkey Antonio Corradi 1 Luca Foschini 1 Javier Povedano-Molina 2 Juan M. Lopez-Soler 2 1 Dipartimento di Elettronica,

More information

Future Generation Computer Systems. Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing

Future Generation Computer Systems. Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing Future Generation Computer Systems 28 (2012) 755 768 Contents lists available at SciVerse ScienceDirect Future Generation Computer Systems journal homepage: www.elsevier.com/locate/fgcs Energy-aware resource

More information

Black-box Performance Models for Virtualized Web. Danilo Ardagna, Mara Tanelli, Marco Lovera, Li Zhang [email protected]

Black-box Performance Models for Virtualized Web. Danilo Ardagna, Mara Tanelli, Marco Lovera, Li Zhang ardagna@elet.polimi.it Black-box Performance Models for Virtualized Web Service Applications Danilo Ardagna, Mara Tanelli, Marco Lovera, Li Zhang [email protected] Reference scenario 2 Virtualization, proposed in early

More information

Simulating the electricity spot market from a Danish perspective

Simulating the electricity spot market from a Danish perspective Simulating the electricity spot market from a Danish perspective OptAli Industry Days, Copenhagen Mette Gamst and Thomas Sejr Jensen, Energinet.dk [email protected] and [email protected] 1 About Energinet.dk

More information

PERFORMANCE ANALYSIS OF SCHEDULING ALGORITHMS UNDER SCALABLE GREEN CLOUD Neeraj Mangla 1, Rishu Gulati 2

PERFORMANCE ANALYSIS OF SCHEDULING ALGORITHMS UNDER SCALABLE GREEN CLOUD Neeraj Mangla 1, Rishu Gulati 2 PERFORMANCE ANALYSIS OF SCHEDULING ALGORITHMS UNDER SCALABLE GREEN CLOUD Neeraj Mangla 1, Rishu Gulati 2 1 Associate Professor, Department Of Computer Science and Engineering, MMEC Maharishi Markandeshwar

More information

Resource Allocation Avoiding SLA Violations in Cloud Framework for SaaS

Resource Allocation Avoiding SLA Violations in Cloud Framework for SaaS Resource Allocation Avoiding SLA Violations in Cloud Framework for SaaS Shantanu Sasane Abhilash Bari Kaustubh Memane Aniket Pathak Prof. A. A.Deshmukh University of Pune University of Pune University

More information

Dynamic Load Balancing of Virtual Machines using QEMU-KVM

Dynamic Load Balancing of Virtual Machines using QEMU-KVM Dynamic Load Balancing of Virtual Machines using QEMU-KVM Akshay Chandak Krishnakant Jaju Technology, College of Engineering, Pune. Maharashtra, India. Akshay Kanfade Pushkar Lohiya Technology, College

More information

Energy Efficiency Embedded Service Lifecycle: Towards an Energy Efficient Cloud Computing Architecture

Energy Efficiency Embedded Service Lifecycle: Towards an Energy Efficient Cloud Computing Architecture Energy Efficiency Embedded Service Lifecycle: Towards an Energy Efficient Cloud Computing Architecture On behalf of the ASCETiC Consortium Project Number 610874 Instrument Collaborative Project Start Date

More information

ABB Technology Days Fall 2013 System 800xA Server and Client Virtualization. ABB Inc 3BSE074389 en. October 29, 2013 Slide 1

ABB Technology Days Fall 2013 System 800xA Server and Client Virtualization. ABB Inc 3BSE074389 en. October 29, 2013 Slide 1 ABB Technology Days Fall 2013 System 800xA Server and Client ization October 29, 2013 Slide 1 System 800xA ization Customers specify it Customers harmonize with IT Training environments Lower cost of ownership

More information

AN ADAPTIVE DISTRIBUTED LOAD BALANCING TECHNIQUE FOR CLOUD COMPUTING

AN ADAPTIVE DISTRIBUTED LOAD BALANCING TECHNIQUE FOR CLOUD COMPUTING AN ADAPTIVE DISTRIBUTED LOAD BALANCING TECHNIQUE FOR CLOUD COMPUTING Gurpreet Singh M.Phil Research Scholar, Computer Science Dept. Punjabi University, Patiala [email protected] Abstract: Cloud Computing

More information

Genetic Algorithms for Energy Efficient Virtualized Data Centers

Genetic Algorithms for Energy Efficient Virtualized Data Centers Genetic Algorithms for Energy Efficient Virtualized Data Centers 6th International DMTF Academic Alliance Workshop on Systems and Virtualization Management: Standards and the Cloud Helmut Hlavacs, Thomas

More information

Profit-Maximizing Resource Allocation for Multi-tier Cloud Computing Systems under Service Level Agreements

Profit-Maximizing Resource Allocation for Multi-tier Cloud Computing Systems under Service Level Agreements Profit-Maximizing Resource Allocation for Multi-tier Cloud Computing Systems under Service Level Agreements Hadi Goudarzi and Massoud Pedram University of Southern California Department of Electrical Engineering

More information

Cloud Computing Architectures and Design Issues

Cloud Computing Architectures and Design Issues Cloud Computing Architectures and Design Issues Ozalp Babaoglu, Stefano Ferretti, Moreno Marzolla, Fabio Panzieri {babaoglu, sferrett, marzolla, panzieri}@cs.unibo.it Outline What is Cloud Computing? A

More information

Cost Effective Automated Scaling of Web Applications for Multi Cloud Services

Cost Effective Automated Scaling of Web Applications for Multi Cloud Services Cost Effective Automated Scaling of Web Applications for Multi Cloud Services SANTHOSH.A 1, D.VINOTHA 2, BOOPATHY.P 3 1,2,3 Computer Science and Engineering PRIST University India Abstract - Resource allocation

More information

A Middleware Strategy to Survive Compute Peak Loads in Cloud

A Middleware Strategy to Survive Compute Peak Loads in Cloud A Middleware Strategy to Survive Compute Peak Loads in Cloud Sasko Ristov Ss. Cyril and Methodius University Faculty of Information Sciences and Computer Engineering Skopje, Macedonia Email: [email protected]

More information

An Analysis of First Fit Heuristics for the Virtual Machine Relocation Problem

An Analysis of First Fit Heuristics for the Virtual Machine Relocation Problem An Analysis of First Fit Heuristics for the Virtual Machine Relocation Problem Gastón Keller, Michael Tighe, Hanan Lutfiyya and Michael Bauer Department of Computer Science The University of Western Ontario

More information