Analysis of the influence of application deployment on energy consumption
|
|
|
- Megan Stokes
- 10 years ago
- Views:
Transcription
1 Analysis of the influence of application deployment on energy consumption M. Gribaudo, Nguyen T.T. Ho, B. Pernici, G. Serazzi Dip. Elettronica, Informazione e Bioingegneria Politecnico di Milano
2 Motivation 2 Data centers in clouds are the dominant contributor to CO 2 footprint Impact of application profile Response time CPU utilization Memory usage Understand the influence of application deployment on energy consumption in cloud environments
3 ECO 2 Clouds project 3 European project ( Develop energy efficient solutions for deployment of workloads on Cloud infrastructures 3 Data Centers: EPCC - UK HLRS - Germany INRIA - France ECO 2 Clouds architecture
4 ECO 2 Clouds project 4 Eco 2 Clouds monitoring environment
5 What is our approach? 5 Investigate different ways to deploy an application in clouds, analyze simultaneously energy consumption and system performances for each deployment configuration Sample application Controlled workload Workload parameters service time, service time distribution, population, arrival rate ECO 2 Clouds platform Clouds environment Queueing models JMT simulator Measurements simulation results (performance, power) Validation Expertiment Analysis models correctness Modelling
6 Application profile and experimental platform 6 Sample application profile Data loading: 3 mins Data processing: 30 mins System characteristics One class workload One bottleneck Bottleneck can migrate depending on number of application instances, or access pattern Cloud environment ECO 2 Clouds platform, Zabbix monitoring system Modeling technique Queueing networks JMT tools
7 Different deployment strategies 7 Configuration 1 Configuration 2 Synchronous and Asynchronous parallel execution
8 Different deployment strategies 8 Configuration 3: Sequential execution Configuration 4 Configuration 5 Synchronous and Asynchronous parallel execution with minimal resources
9 Implemented models using queueing networks 9 Configuration 1 Synchronous parallel execution
10 Implemented models using queueing networks 10 Configuration 4 Synchronous parallel execution with minimal resources
11 Power model 11 Simple power model [Fan et al.]: P(u) = P idle + (P busy P idle ) * u (eq. 1) Power model using multiple physical hosts: P(u) = P idle * #hosts + (P busy P idle ) * u * N (eq. 2) where #hosts = ceil(n/maxvm) Energy model: E = P(u) * R (eq. 3)
12 Validation 12 Validate Configuration 1 and Configuration 4 Configuration 1 Configuration 4
13 Further analysis 13 Energy consumption of each configuration
14 Further analysis 14 System response time of each configuration
15 Exploitation and use of the modeling approach 15 Examine different deployment configurations of specific application profile on ECO 2 Clouds platform Use queueing models to model each configuration Validate models correctness Use models for predictions and suggest optimal deployment strategy
16 Future work 16 Use the work at different scales (application instances, task instances) Extend to other types of application such as web services Extend to two-classes workload and find optimal mixed workload considering saving energy consumption Extend the work to consider adaptation at runtime
17 Thank you Q & A 1
18 References Global e-sustainability Initiative (GeSI). SMART 2020: Enabling the Low Carbon Economy in the Information Age Saurabh Kumar Garg and Rajkumar Buyya: Green Cloud Computing and Environmental Sustainability, in Harnessing Green IT: Principles and Practices, pp, S. Murugesan and G. Gangadharan (eds), Wiley Press, UK, October Mayo, R. N. and Ranganathan P., Energy Consumption in Mobile Devices: Why Future Systems Need Requirements-Aware Energy Scale-Down. Proceedings of 3rd International Workshop on Power-Aware Computer Systems, San Diego, CA, USA. 4. M. Vitali and B. Pernici: A Survey on Energy Eciency in Information Systems, Journal on Cooperative Information Systems, March 2014, 5. P. Melia, M. Schiavina, M. Gatto, L. Bonaventura, S. Masina, R. Casagrande: Integrating Field Data into Individualbased Models of the Migration of European Eel Larvae. Marine Ecology Progress Series. Vol. 487: , Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Zomaya: Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems, Advances in Computers, Volume 82, Vol. 2, pp, Elsevier, Amsterdam, The Netherlands, March Nowak, A., Leymann, F., Schleicher, D., Schumm, D., Wagner, S.: Green Business Process Patterns. In: Proceedings of the 18 th Conference on Pattern Languages of Programs, ACM (2011) 8. Ying Song, Yuzhong Sun, Weisong Shi: A Two-Tiered On-Demand Resource Allocation Mechanism for VM-Based Data Centers, IEEE Transactions on Services Computing, Vol. 6:1, pp , Xiaobo Fan, Wolf-Dietrich Weber, Luiz Andre Barroso: Power Provisioning for a Warehouse-sized Computer. In Proceedings of the ACM International Symposium on Computer Architecture, San Diego, CA, June Cinzia Cappiello, Sumit Datre, Maria Grazia Fugini, Paco Melia, Barbara Pernici, Pierluigi Plebani, Michael Gienger, Axel Tenschert: Monitoring and Assessing Energy Consumption and CO2 Emissions in Cloud-based Systems. Proc. IEEE International Conference on Systems, Man, and Cybernetics (SMC), M. Bertoli, G. Casale, G. Serazzi: JMT: Performance Engineering Tools for System Modeling. ACM SIGMETRICS Performance Evaluation Review, Volume 36 Issue 4, New York, US, March 2009, 10-15, ACM press. 12. B. Pernici and U. Wajid, Assessment of the Environmental Impact of Applications in Federated Clouds. SmartGreens 2014, Barcelona, April 2014
19 Implemented models using queueing networks Input params N=1, D storage = 3 mins D app = 30 mins Performance indices U storage = 3/(3+30)= 0,091 U app = 30/(3+30)= 0,909 R = = 33 mins 1
20 Implemented models using queueing networks Configuration 2 Asynchronous parallel execution 2
21 Implemented models using queueing networks Configuration 3 sequential execution 2
22 Implemented models using queueing networks Configuration 5 Asynchronous parallel execution with minimal resources 2
23 Experiments Infrastructure configurations Site: HLRS Physical node: 2 x QuadCore Intel 2.83 GHz, 32 GB RAM Storage VM: Medium size (CPU = 1; Mem = 2048 MB) App VM: Custom (CPU = 1; Mem = 4096 MB) 2
24 Experiments Modify the Eels application Allow 3 different running modes: simutaneous, delay and sequential Data are loaded into different folders Allow writing logs to record time to load data and time to execute the application 2
25 How many experiments? Two different configurations Configuration 1 and 4 1 physical host 6 different experiments with #VMs = 1,..., 6 Multiple physical hosts #VMs = 7, 12, 15 2
26 Experiments Monitoring power Import energy templates Collect power measures (of the application and storage) between the execution period of the application 2
27 Experiments Problems that I encountered Modify the Eels applications Prepare running environment on HLRS: VM images, Oceanographic data Understand different parameters in Zabbix monitoring system Unstable running environment when updates occur during the experiments 2
28 Power model identify parameters P(u) = P_idle + (P_busy - P_idle) * u * N VM Mean CPU User Use Ref. Mean CPU Mean Power U x #VMs 1 instance 1 0, , , , instances 2 0, , , , instances 3 0, , , , instances 4 0, , , , instances 5 0, , , , instances 6 0,624 0, , ,744 2
29 Power model identify parameters 300 power model power model Linear (power model) ,5 1 1,5 2 2,5 3 3,5 4 Slope 23, Intercept 153,
30 Exploitation Switching energy consumption 3
31 Exploitation System response time 3
Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing
Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing Deep Mann ME (Software Engineering) Computer Science and Engineering Department Thapar University Patiala-147004
CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms
CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose,
A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems
A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Zomaya Present by Leping Wang 1/25/2012 Outline Background
Green Cloud: Smart Resource Allocation and Optimization using Simulated Annealing Technique
Green Cloud: Smart Resource Allocation and Optimization using Simulated Annealing Technique AkshatDhingra M.Tech Research Scholar, Department of Computer Science and Engineering, Birla Institute of Technology,
Dynamic resource management for energy saving in the cloud computing environment
Dynamic resource management for energy saving in the cloud computing environment Liang-Teh Lee, Kang-Yuan Liu, and Hui-Yang Huang Department of Computer Science and Engineering, Tatung University, Taiwan
International Journal of Digital Application & Contemporary research Website: www.ijdacr.com (Volume 2, Issue 9, April 2014)
Green Cloud Computing: Greedy Algorithms for Virtual Machines Migration and Consolidation to Optimize Energy Consumption in a Data Center Rasoul Beik Islamic Azad University Khomeinishahr Branch, Isfahan,
A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing
A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing Liang-Teh Lee, Kang-Yuan Liu, Hui-Yang Huang and Chia-Ying Tseng Department of Computer Science and Engineering,
Good practices for Cloud Computing Energy Consumption and CO2 Emissions Optimisations White Paper
Good practices for Cloud Computing Energy Consumption and CO2 Emissions Optimisations White Paper ECO 2 Clouds project participants Contacts: [email protected] Web: http://eco2clouds.eu September
Green Cloud Computing 班 級 : 資 管 碩 一 組 員 :710029011 黃 宗 緯 710029021 朱 雅 甜
Green Cloud Computing 班 級 : 資 管 碩 一 組 員 :710029011 黃 宗 緯 710029021 朱 雅 甜 Outline Introduction Proposed Schemes VM configuration VM Live Migration Comparison 2 Introduction (1/2) In 2006, the power consumption
Europass Curriculum Vitae
Europass Curriculum Vitae Personal information Surname(s) / First name(s) Address(es) DEIB, Politecnico di Milano, via Giuseppe Ponzio 34/5, 20133 Milano (MI), Italy Telephone(s) +39 0223993424 Email(s)
Cloud Computing Simulation Using CloudSim
Cloud Computing Simulation Using CloudSim Ranjan Kumar #1, G.Sahoo *2 # Assistant Professor, Computer Science & Engineering, Ranchi University, India Professor & Head, Information Technology, Birla Institute
Power Aware Live Migration for Data Centers in Cloud using Dynamic Threshold
Richa Sinha et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 2041-2046 Power Aware Live Migration for Data Centers in Cloud using Dynamic Richa Sinha, Information Technology L.D. College of Engineering, Ahmedabad,
EPOBF: ENERGY EFFICIENT ALLOCATION OF VIRTUAL MACHINES IN HIGH PERFORMANCE COMPUTING CLOUD
Journal of Science and Technology 51 (4B) (2013) 173-182 EPOBF: ENERGY EFFICIENT ALLOCATION OF VIRTUAL MACHINES IN HIGH PERFORMANCE COMPUTING CLOUD Nguyen Quang-Hung, Nam Thoai, Nguyen Thanh Son Faculty
Energy Conscious Virtual Machine Migration by Job Shop Scheduling Algorithm
Energy Conscious Virtual Machine Migration by Job Shop Scheduling Algorithm Shanthipriya.M 1, S.T.Munusamy 2 ProfSrinivasan. R 3 M.Tech (IT) Student, Department of IT, PSV College of Engg & Tech, Krishnagiri,
USING VIRTUAL MACHINE REPLICATION FOR DYNAMIC CONFIGURATION OF MULTI-TIER INTERNET SERVICES
USING VIRTUAL MACHINE REPLICATION FOR DYNAMIC CONFIGURATION OF MULTI-TIER INTERNET SERVICES Carlos Oliveira, Vinicius Petrucci, Orlando Loques Universidade Federal Fluminense Niterói, Brazil ABSTRACT In
Resource Allocation Avoiding SLA Violations in Cloud Framework for SaaS
Resource Allocation Avoiding SLA Violations in Cloud Framework for SaaS Shantanu Sasane Abhilash Bari Kaustubh Memane Aniket Pathak Prof. A. A.Deshmukh University of Pune University of Pune University
Setting deadlines and priorities to the tasks to improve energy efficiency in cloud computing
Setting deadlines and priorities to the tasks to improve energy efficiency in cloud computing Problem description Cloud computing is a technology used more and more every day, requiring an important amount
Two-Level Cooperation in Autonomic Cloud Resource Management
Two-Level Cooperation in Autonomic Cloud Resource Management Giang Son Tran, Laurent Broto, and Daniel Hagimont ENSEEIHT University of Toulouse, Toulouse, France Email: {giang.tran, laurent.broto, daniel.hagimont}@enseeiht.fr
Energy Constrained Resource Scheduling for Cloud Environment
Energy Constrained Resource Scheduling for Cloud Environment 1 R.Selvi, 2 S.Russia, 3 V.K.Anitha 1 2 nd Year M.E.(Software Engineering), 2 Assistant Professor Department of IT KSR Institute for Engineering
Profit Maximization and Power Management of Green Data Centers Supporting Multiple SLAs
Profit Maximization and Power Management of Green Data Centers Supporting Multiple SLAs Mahdi Ghamkhari and Hamed Mohsenian-Rad Department of Electrical Engineering University of California at Riverside,
An Energy-aware Multi-start Local Search Metaheuristic for Scheduling VMs within the OpenNebula Cloud Distribution
An Energy-aware Multi-start Local Search Metaheuristic for Scheduling VMs within the OpenNebula Cloud Distribution Y. Kessaci, N. Melab et E-G. Talbi Dolphin Project Team, Université Lille 1, LIFL-CNRS,
Power Aware Load Balancing for Cloud Computing
, October 19-21, 211, San Francisco, USA Power Aware Load Balancing for Cloud Computing Jeffrey M. Galloway, Karl L. Smith, Susan S. Vrbsky Abstract With the increased use of local cloud computing architectures,
Environments, Services and Network Management for Green Clouds
Environments, Services and Network Management for Green Clouds Carlos Becker Westphall Networks and Management Laboratory Federal University of Santa Catarina MARCH 3RD, REUNION ISLAND IARIA GLOBENET 2012
Hierarchical Approach for Green Workload Management in Distributed Data Centers
Hierarchical Approach for Green Workload Management in Distributed Data Centers Agostino Forestiero, Carlo Mastroianni, Giuseppe Papuzzo, Mehdi Sheikhalishahi Institute for High Performance Computing and
Enhancing the Scalability of Virtual Machines in Cloud
Enhancing the Scalability of Virtual Machines in Cloud Chippy.A #1, Ashok Kumar.P #2, Deepak.S #3, Ananthi.S #4 # Department of Computer Science and Engineering, SNS College of Technology Coimbatore, Tamil
An Energy-Aware Methodology for Live Placement of Virtual Machines with Variable Profiles in Large Data Centers
An Energy-Aware Methodology for Live Placement of Virtual Machines with Variable Profiles in Large Data Centers Rossella Macchi: Danilo Ardagna: Oriana Benetti: Politecnico di Milano eni s.p.a. Politecnico
An Energy Aware Cloud Load Balancing Technique using Dynamic Placement of Virtualized Resources
pp 81 86 Krishi Sanskriti Publications http://www.krishisanskriti.org/acsit.html An Energy Aware Cloud Load Balancing Technique using Dynamic Placement of Virtualized Resources Sumita Bose 1, Jitender
Energy-Efficient Management of Virtual Machines in Data Centers for Cloud Computing
Energy-Efficient Management of Virtual Machines in Data Centers for Cloud Computing Anton Beloglazov Supervisor: Prof. Rajkumar Buyya The Cloud Computing and Distributed Systems (CLOUDS) Lab CIS Department,
Load Balancing Algorithm Based on Estimating Finish Time of Services in Cloud Computing
Load Balancing Algorithm Based on Estimating Finish Time of Services in Cloud Computing Nguyen Khac Chien*, Nguyen Hong Son**, Ho Dac Loc*** * University of the People's Police, Ho Chi Minh city, Viet
Affinity Aware VM Colocation Mechanism for Cloud
Affinity Aware VM Colocation Mechanism for Cloud Nilesh Pachorkar 1* and Rajesh Ingle 2 Received: 24-December-2014; Revised: 12-January-2015; Accepted: 12-January-2015 2014 ACCENTS Abstract The most of
CloudSimDisk: Energy-Aware Storage Simulation in CloudSim
CloudSimDisk: Energy-Aware Storage Simulation in CloudSim Baptiste Louis, Karan Mitra, Saguna Saguna and Christer Åhlund Department of Computer Science, Electrical and Space Engineering Luleå University
The Comprehensive Performance Rating for Hadoop Clusters on Cloud Computing Platform
The Comprehensive Performance Rating for Hadoop Clusters on Cloud Computing Platform Fong-Hao Liu, Ya-Ruei Liou, Hsiang-Fu Lo, Ko-Chin Chang, and Wei-Tsong Lee Abstract Virtualization platform solutions
SierraVMI Sizing Guide
SierraVMI Sizing Guide July 2015 SierraVMI Sizing Guide This document provides guidelines for choosing the optimal server hardware to host the SierraVMI gateway and the Android application server. The
An Optimal Approach for an Energy-Aware Resource Provisioning in Cloud Computing
An Optimal Approach for an Energy-Aware Resource Provisioning in Cloud Computing Mrs. Mala Kalra # 1, Navtej Singh Ghumman #3 1 Assistant Professor, Department of Computer Science National Institute of
This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 12902
Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited
ENERGY-EFFICIENT TASK SCHEDULING ALGORITHMS FOR CLOUD DATA CENTERS
ENERGY-EFFICIENT TASK SCHEDULING ALGORITHMS FOR CLOUD DATA CENTERS T. Jenifer Nirubah 1, Rose Rani John 2 1 Post-Graduate Student, Department of Computer Science and Engineering, Karunya University, Tamil
A Survey of Energy Efficient Data Centres in a Cloud Computing Environment
A Survey of Energy Efficient Data Centres in a Cloud Computing Environment Akshat Dhingra 1, Sanchita Paul 2 Department of Computer Science and Engineering, Birla Institute of Technology, Ranchi, India
CLOUDDMSS: CLOUD-BASED DISTRIBUTED MULTIMEDIA STREAMING SERVICE SYSTEM FOR HETEROGENEOUS DEVICES
CLOUDDMSS: CLOUD-BASED DISTRIBUTED MULTIMEDIA STREAMING SERVICE SYSTEM FOR HETEROGENEOUS DEVICES 1 MYOUNGJIN KIM, 2 CUI YUN, 3 SEUNGHO HAN, 4 HANKU LEE 1,2,3,4 Department of Internet & Multimedia Engineering,
Load Balancing in cloud computing
Load Balancing in cloud computing 1 Foram F Kherani, 2 Prof.Jignesh Vania Department of computer engineering, Lok Jagruti Kendra Institute of Technology, India 1 [email protected], 2 [email protected]
Challenges and Importance of Green Data Center on Virtualization Environment
Challenges and Importance of Green Data Center on Virtualization Environment Abhishek Singh Department of Information Technology Amity University, Noida, Uttar Pradesh, India Priyanka Upadhyay Department
AN ADAPTIVE DISTRIBUTED LOAD BALANCING TECHNIQUE FOR CLOUD COMPUTING
AN ADAPTIVE DISTRIBUTED LOAD BALANCING TECHNIQUE FOR CLOUD COMPUTING Gurpreet Singh M.Phil Research Scholar, Computer Science Dept. Punjabi University, Patiala [email protected] Abstract: Cloud Computing
Keywords: Cloudsim, MIPS, Gridlet, Virtual machine, Data center, Simulation, SaaS, PaaS, IaaS, VM. Introduction
Vol. 3 Issue 1, January-2014, pp: (1-5), Impact Factor: 1.252, Available online at: www.erpublications.com Performance evaluation of cloud application with constant data center configuration and variable
International Journal of Computer & Organization Trends Volume20 Number1 May 2015
Performance Analysis of Various Guest Operating Systems on Ubuntu 14.04 Prof. (Dr.) Viabhakar Pathak 1, Pramod Kumar Ram 2 1 Computer Science and Engineering, Arya College of Engineering, Jaipur, India.
Energy Efficient Resource Management in Virtualized Cloud Data Centers
2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing Energy Efficient Resource Management in Virtualized Cloud Data Centers Anton Beloglazov* and Rajkumar Buyya Cloud Computing
Scaling in a Hypervisor Environment
Scaling in a Hypervisor Environment Richard McDougall Chief Performance Architect VMware VMware ESX Hypervisor Architecture Guest Monitor Guest TCP/IP Monitor (BT, HW, PV) File System CPU is controlled
GUEST OPERATING SYSTEM BASED PERFORMANCE COMPARISON OF VMWARE AND XEN HYPERVISOR
GUEST OPERATING SYSTEM BASED PERFORMANCE COMPARISON OF VMWARE AND XEN HYPERVISOR ANKIT KUMAR, SAVITA SHIWANI 1 M. Tech Scholar, Software Engineering, Suresh Gyan Vihar University, Rajasthan, India, Email:
Elastic VM for Rapid and Optimum Virtualized
Elastic VM for Rapid and Optimum Virtualized Resources Allocation Wesam Dawoud PhD. Student Hasso Plattner Institute Potsdam, Germany 5th International DMTF Academic Alliance Workshop on Systems and Virtualization
An Efficient Hybrid P2P MMOG Cloud Architecture for Dynamic Load Management. Ginhung Wang, Kuochen Wang
1 An Efficient Hybrid MMOG Cloud Architecture for Dynamic Load Management Ginhung Wang, Kuochen Wang Abstract- In recent years, massively multiplayer online games (MMOGs) become more and more popular.
Efficient and Enhanced Load Balancing Algorithms in Cloud Computing
, pp.9-14 http://dx.doi.org/10.14257/ijgdc.2015.8.2.02 Efficient and Enhanced Load Balancing Algorithms in Cloud Computing Prabhjot Kaur and Dr. Pankaj Deep Kaur M. Tech, CSE P.H.D [email protected],
Energy Optimized Virtual Machine Scheduling Schemes in Cloud Environment
Abstract Energy Optimized Virtual Machine Scheduling Schemes in Cloud Environment (14-18) Energy Optimized Virtual Machine Scheduling Schemes in Cloud Environment Ghanshyam Parmar a, Dr. Vimal Pandya b
NetworkCloudSim: Modelling Parallel Applications in Cloud Simulations
2011 Fourth IEEE International Conference on Utility and Cloud Computing NetworkCloudSim: Modelling Parallel Applications in Cloud Simulations Saurabh Kumar Garg and Rajkumar Buyya Cloud Computing and
ADAPTIVE LOAD BALANCING ALGORITHM USING MODIFIED RESOURCE ALLOCATION STRATEGIES ON INFRASTRUCTURE AS A SERVICE CLOUD SYSTEMS
ADAPTIVE LOAD BALANCING ALGORITHM USING MODIFIED RESOURCE ALLOCATION STRATEGIES ON INFRASTRUCTURE AS A SERVICE CLOUD SYSTEMS Lavanya M., Sahana V., Swathi Rekha K. and Vaithiyanathan V. School of Computing,
Reallocation and Allocation of Virtual Machines in Cloud Computing Manan D. Shah a, *, Harshad B. Prajapati b
Proceedings of International Conference on Emerging Research in Computing, Information, Communication and Applications (ERCICA-14) Reallocation and Allocation of Virtual Machines in Cloud Computing Manan
International Journal of Advance Research in Computer Science and Management Studies
Volume 3, Issue 6, June 2015 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
PERFORMANCE ANALYSIS OF PaaS CLOUD COMPUTING SYSTEM
PERFORMANCE ANALYSIS OF PaaS CLOUD COMPUTING SYSTEM Akmal Basha 1 Krishna Sagar 2 1 PG Student,Department of Computer Science and Engineering, Madanapalle Institute of Technology & Science, India. 2 Associate
An Architecture Model of Sensor Information System Based on Cloud Computing
An Architecture Model of Sensor Information System Based on Cloud Computing Pengfei You, Yuxing Peng National Key Laboratory for Parallel and Distributed Processing, School of Computer Science, National
Future Generation Computer Systems. Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing
Future Generation Computer Systems 28 (2012) 755 768 Contents lists available at SciVerse ScienceDirect Future Generation Computer Systems journal homepage: www.elsevier.com/locate/fgcs Energy-aware resource
International Journal of Applied Science and Technology Vol. 2 No. 3; March 2012. Green WSUS
International Journal of Applied Science and Technology Vol. 2 No. 3; March 2012 Abstract 112 Green WSUS Seifedine Kadry, Chibli Joumaa American University of the Middle East Kuwait The new era of information
Virtual Machine Placement in Cloud systems using Learning Automata
2013 13th Iranian Conference on Fuzzy Systems (IFSC) Virtual Machine Placement in Cloud systems using Learning Automata N. Rasouli 1 Department of Electronic, Computer and Electrical Engineering, Qazvin
Efficient Data Management Support for Virtualized Service Providers
Efficient Data Management Support for Virtualized Service Providers Íñigo Goiri, Ferran Julià and Jordi Guitart Barcelona Supercomputing Center - Technical University of Catalonia Jordi Girona 31, 834
Achieving a High-Performance Virtual Network Infrastructure with PLUMgrid IO Visor & Mellanox ConnectX -3 Pro
Achieving a High-Performance Virtual Network Infrastructure with PLUMgrid IO Visor & Mellanox ConnectX -3 Pro Whitepaper What s wrong with today s clouds? Compute and storage virtualization has enabled
Run-time Resource Management in SOA Virtualized Environments. Danilo Ardagna, Raffaela Mirandola, Marco Trubian, Li Zhang
Run-time Resource Management in SOA Virtualized Environments Danilo Ardagna, Raffaela Mirandola, Marco Trubian, Li Zhang Amsterdam, August 25 2009 SOI Run-time Management 2 SOI=SOA + virtualization Goal:
Legacy Network Infrastructure Management Model for Green Cloud Validated Through Simulations
374 Legacy Network Infrastructure Management Model for Green Cloud Validated Through Simulations Sergio Roberto Villarreal, María Elena Villarreal, Carlos Becker Westphall, and Carla Merkle Westphall Network
Dell Virtualization Solution for Microsoft SQL Server 2012 using PowerEdge R820
Dell Virtualization Solution for Microsoft SQL Server 2012 using PowerEdge R820 This white paper discusses the SQL server workload consolidation capabilities of Dell PowerEdge R820 using Virtualization.
Comparison of the Power Consumption and Carbon Footprint of a Cloud Infrastructure against Standard Desktops
Comparison of the Power Consumption and Carbon Footprint of a Cloud Infrastructure against Standard Desktops Prof William J. Buchanan 1, Vincent Yampolsky 1, Alistair Lawson 1 and Bill Buchanan 2 1 Centre
SLA Driven Load Balancing For Web Applications in Cloud Computing Environment
SLA Driven Load Balancing For Web Applications in Cloud Computing Environment More Amar [email protected] Kulkarni Anurag [email protected] Kolhe Rakesh [email protected] Kothari Rupesh
Vocera Voice 4.3 and 4.4 Server Sizing Matrix
Vocera Voice 4.3 and 4.4 Server Sizing Matrix Vocera Server Recommended Configuration Guidelines Maximum Simultaneous Users 450 5,000 Sites Single Site or Multiple Sites Requires Multiple Sites Entities
How To Compare Load Sharing And Job Scheduling In A Network Of Workstations
A COMPARISON OF LOAD SHARING AND JOB SCHEDULING IN A NETWORK OF WORKSTATIONS HELEN D. KARATZA Department of Informatics Aristotle University of Thessaloniki 546 Thessaloniki, GREECE Email: [email protected]
Efficient Qos Based Resource Scheduling Using PAPRIKA Method for Cloud Computing
Efficient Qos Based Resource Scheduling Using PAPRIKA Method for Cloud Computing Hilda Lawrance* Post Graduate Scholar Department of Information Technology, Karunya University Coimbatore, Tamilnadu, India
CFCC: Covert Flows Confinement For VM Coalitions Ge Cheng, Hai Jin, Deqing Zou, Lei Shi, and Alex K. Ohoussou
CFCC: Covert Flows Confinement For VM Coalitions Ge Cheng, Hai Jin, Deqing Zou, Lei Shi, and Alex K. Ohoussou 服 务 计 算 技 术 与 系 统 教 育 部 重 点 实 验 室 (SCTS) 集 群 与 网 格 计 算 湖 北 省 重 点 实 验 室 (CGCL) Outline Background
A Middleware Strategy to Survive Compute Peak Loads in Cloud
A Middleware Strategy to Survive Compute Peak Loads in Cloud Sasko Ristov Ss. Cyril and Methodius University Faculty of Information Sciences and Computer Engineering Skopje, Macedonia Email: [email protected]
Performance Analysis of VM Scheduling Algorithm of CloudSim in Cloud Computing
IJECT Vo l. 6, Is s u e 1, Sp l-1 Ja n - Ma r c h 2015 ISSN : 2230-7109 (Online) ISSN : 2230-9543 (Print) Performance Analysis Scheduling Algorithm CloudSim in Cloud Computing 1 Md. Ashifuddin Mondal,
Efficient Virtual Machine Sizing For Hosting Containers as a Service
1 Efficient Virtual Machine Sizing For Hosting Containers as a Service Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, and Rajkumar Buyya Cloud Computing and Distributed Systems (CLOUDS)
Benchmarking the Performance of XenDesktop Virtual DeskTop Infrastructure (VDI) Platform
Benchmarking the Performance of XenDesktop Virtual DeskTop Infrastructure (VDI) Platform Shie-Yuan Wang Department of Computer Science National Chiao Tung University, Taiwan Email: [email protected]
Environmental and Green Cloud Computing
International Journal of Allied Practice, Research and Review Website: www.ijaprr.com (ISSN 2350-1294) Environmental and Green Cloud Computing Aruna Singh and Dr. Sanjay Pachauri Abstract - Cloud computing
Towards an understanding of oversubscription in cloud
IBM Research Towards an understanding of oversubscription in cloud Salman A. Baset, Long Wang, Chunqiang Tang [email protected] IBM T. J. Watson Research Center Hawthorne, NY Outline Oversubscription
Cloud Computing Architectures and Design Issues
Cloud Computing Architectures and Design Issues Ozalp Babaoglu, Stefano Ferretti, Moreno Marzolla, Fabio Panzieri {babaoglu, sferrett, marzolla, panzieri}@cs.unibo.it Outline What is Cloud Computing? A
Dynamic Resource allocation in Cloud
Dynamic Resource allocation in Cloud ABSTRACT: Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of the touted gains in the cloud model come from
004.738.5:378.091.214.18 ADJUSTING THE MASSIVELY OPEN ONLINE COURSES IN CLOUD COMPUTING ENVIRONMENT 9
004.738.5:378.091.214.18 ADJUSTING THE MASSIVELY OPEN ONLINE COURSES IN CLOUD COMPUTING ENVIRONMENT 9 Aleksandar Karadimce, MSc University of information science and technology St. Paul the Apostle Ohrid,
