Virtual Machine Allocation in Cloud Computing for Minimizing Total Execution Time on Each Machine

Size: px
Start display at page:

Download "Virtual Machine Allocation in Cloud Computing for Minimizing Total Execution Time on Each Machine"

Transcription

1 Virtual Machine Allocation in Cloud Computing for Minimizing Total Execution Time on Each Machine Quyet Thang NGUYEN Nguyen QUANG-HUNG Nguyen HUYNH TUONG Van Hoai TRAN Nam THOAI Faculty of Computer Science & Engineering Ho Chi Minh city University of Technology Vietnam 268 Ly Thuong Kiet Ho Chi Minh Vietnam Abstract This paper considers a virtual machine allocation problem. Each physical machine in cloud has a lot of virtual machines. Each job needs to use a number of virtual machines during a given and fixed period. The objective aims to minimize the cost induced by total execution time on each physical machine. This allocation problem is proved to be N P -hard. Additionally three mixed integer linear mathematical models are constructed to represent and solve the problem. The performance comparison of the three proposed models is analyzed through some empirical results. Keywords: virtual machine allocation; cloud computing; MILP. I. INTRODUCTION Cloud computing is driven by economies of scale. A cloud system uses virtualization technology to provide cloud resources (e.g. CPU memory) to users in form of virtual machines. Virtual machine which is a sandbox for user application fits well in the education environment to provide computational resources for the needs in teaching and research. According to resource owner s view they want to reduce operation costs which induces electronic bill of large-scale data center system. Virtual Machine (VM) allocation problem in virtualized data centers is a challenging topic. The VM allocation problem can be seen in static and dynamic mapping. A VM allocation aims to map each VM to physical machines (PMs) to optimize a given objective function. The objective function can be maximizing performance minimizing power/energy consumption or maximize provider s profit etc. Static VM allocation can be seen as a d-dimensional Vector Bin Packing problem (V BP d ) [5] [6] in which VMs are items and physical machines are bins. The V BP d (d 1) bin packing problem is NP- Hard. A dynamic VM allocation differs from static VM allocation is that in dynamic VM allocation a system event (e.g. low CPU utilization system temperature hardware/software failure etc.) can trigger a re-mapping of the set of VMs and the set of PMs. Virtualization software (e.g. XEN KVM VMWare server ESXi) currently supports to execute more than one operating systems (OS) on the same physical machine i.e. some VMs can share same physical hardware. In this study we consider VM allocation problem in a cloud composed by m physical machines. Each of these machines can supply a number of operations demanded at any instant. These operations could be executed independently and in parallel though virtual machine generation mechanism. Depending to physical material each machine has an upper-bound on the maximum number of virtual machines allocated at the same time. Each user/task in system could demands a service which needs a number of virtual machines in a particular period. The objective aims to find a feasible assignment satisfying the demand of all users in order to reduce the total energy consumption of the whole system. With assumption that power consumption on a physical machine does not increase so much when cloud system needs to use more virtual machines the objective could be transformed as minimizing the total execution time on each physical machine. Our main contribution is not only about determining some polynomial cases and N P -Hard proof but also about proposing some Mixed Integer Linear Programming (MILP) model. Some experimental results show the performance of these proposed models on a well-known free solver COIN-OR CBC. The paper is organized as follows. In Section II some related works are discussed. Section III some notation used in this paper is introduced and the considered problem is addressed in detail. NP-completeness of problem will be presented in section IV. Then several linear mathematical models describing the considered problem are proposed in Section V. Section VI presents the computational experiments and analysis. Section VII concludes this study and future works are discussed. II. RELATED WORK A. Background Virtual machine is a software entity which is executed and managed by a Virtual Machine Monitor (VMM) or hypervisor such as XEN KVM VMware ESXi server etc. There are three generic problems of multi-dimensional packing multiprocessor scheduling bin packing and the knapsack problem [5]. In [5] they considered on vector scheduling problem or namely vector bin packing problem. The vector scheduling problem is how to schedule n dimensional tasks on m parallel machines so as to minimize the maximum load over dimensions of these all parallel machines. In [6] they studied First Fit and Best Fit Decrease (FFD and BFD) heuristics of d-dimensional vector bin packing problem and apply these heuristics to VM allocation problem. B. Virtual machine allocation Sotomayor et al. [7] proposed lease and virtual machine to provide computational resource for short-term resource needs in teaching and researching. They presented First-Come-First-Serve (FCFS) and backfilling scheduling algorithms for schedule user leases and using a greedy algorithm to map all identical VMs which belongs to same user lease onto same physical machine. Disadvantage of the greedy VM allocation algorithm is that two different leases could not be mapped to same physical machines. In [9] the authors proposed two power-aware VM allocation algorithms that represent some combinations of First Fit Decrease (FFD) and shortest duration time heuristics. Although the VM allocation algorithms can reduce total energy consumption for computing physical machines these VM allocation algorithms in [9] however do not lead to optimal solution. Mathematical programming approach has been applied in traditional scheduling problems on non-virtualized systems (e.g. high performance computing cluster) for many years in order to find an optimal schedule for performance [11] [10] or minimize energy consumption of heterogeneous computer clusters [12]. These works did not use virtualization and were not suitable for virtual machine /13/$ IEEE 241

2 scheduling. Recently there are some interesting works using mathematical programming for scheduling problems on virtualized systems (we focused on virtualized datacenters) such as [4]. Speitkamp and Bichler [4] proposed mathematical programming model for server consolidation in which each service was implemented in a VM to reduce number of used physical machine. Some Integer Liner Programming (ILP) models were proposed for static server allocation problem (SSAP) and extended version of the SSAP. They also claimed that the SSAP is strongly NP-Hard. There were about 600 virtual machines tested on their ILP models. For solving these ILP models they also used both first-fit and best-fit heuristics on the allocation problem. However the ILP models did not address arrival time of user requests or advanced reservation lease. The VM allocation which is mapping of set of various VMs onto set of heterogeneous physical machines with objective to minimizing total energy consumption of physical machines in a single virtualized datacenter was studied [3] [1]. Beloglazov et al. [1] considered a dynamic VM allocation (with migration) where each VM was concerned on two dimensions: CPU usage and power consumption (Watt). Beloglazov et al. claimed that the VM allocation problem is NP-Hard and they proposed Modified Best Fit Decreasing (MBFD) algorithm that maps each VM to heterogeneous physical machines (these machines are not equals in power consumption) such that to minimize increasing power consumption on each placement of VM and some other algorithms on migration of VMs. The MBFD is however a best-fit heuristic. Therefore the mapping of the MBFD is not optimal. Í. Goiri et al. [3] considered an energy-aware scheduling problem with similar VM allocation. In [3] they calculated score of each assignment of each VM onto a physical machine concerns hardware and software requirements power consumption system temperature; their scheduling algorithm was called scorebased scheduler. The score-based algorithm is of hill-climbing search on (N +1)xM matrix each cell is a score on each assignment of each VM to a physical machine with time complexity of O(kxNxM) (k is number of iterations). The score-based algorithm can be optimal cost-based VM allocation. Remark that VM allocation in [3] and in [1] did not consider on starting time of requests. This is an essential difference with our study - VM allocation to jobs with starting constraint for minimizing total execution time on each machine. III. PROBLEM STATEMENT We first define terms that will be used in this paper. A. Terminology notation Notation used in this paper is given below. n: number of jobs (J 1 J 2... J n) s i: starting time of job J i p i: processing time of job J i R i: number of virtual machines needed for job J i ɛ(t): set of jobs executed at time t (ɛ(t) = J i s i t < s i + p i}) T : the last execution time (T = max i [1n] (s i + p i)) m: number of physical machines (M 1 M 2... M m). v j: maximum number of virtual machines allocated from physical machine M j In this paper we deal with VM allocation problem of m physical machines. Physical machine M j can allocate at most v j virtual machines at any time. Each user/task J i in system could demand a service which needs R i virtual machines executed in period [s i s i + p i). The objective function is about minimizing the total execution time on each physical machine (if there exists a set of feasible assignments satisfying the requirement of all users). In order to determine status of N P -hardness of this optimization problem we first determine corresponding decision version as follows. B. Decision problem Decision problem VIRMACALLOC is described as follow. Data input: Given n jobs J 1... J n have to be scheduled without preemption on m parallel machines (m 1). Each job is described by a starting time s i processing time p i a number of virtual machines needed for executing R i. All machines are available at time zero and each one can support a number of virtual machines v j. Question: Does exist a resource assignment such that the total execution time on each machine used is not greater than a given value y? This decision problem will be proved to be N P -complete in the next section. IV. COMPLEXITY A. Some special cases Proposition 1: If all jobs are executed on different (disjoint) time windows the decision problem could be answered in polynomial time. Proof: Feasible decision for each job could be determined directly and independently. Hence this special case can be solved in polynomial time. Proposition 2: If nw = 1 R i = R ( i = 1... n) the decision problem could be answered in polynomial time. Proof: Since the requirement is identical for all jobs we could assign the job (in numerical order) to execute on the physical machines which correspond to the order of non-increasing of v j: i.e. on each physical machine unused virtual machines will be assigned to the jobs until the virtual machines are assigned completely and then we consider the next physical machine). This algorithm has complexity of O(n). Proposition 3: If s i = s ( i = 1... n) and v j = v ( j = 1... m) the decision problem could be answered in polynomial time. Proof: It follows the previous proposition (Proposition 2). In the following the NP-completeness of the considered scheduling problem is proved due to the special case where v j = v ( j = 1... m). B. NP-completeness Theorem 1: Problem VIRMACALLOC is N P -complete. Proof: We prove that PART IT ION VIRMACALLOC i.e. decision problem VIRMACALLOC belongs to N P -complete class by a reduction to PART IT ION which is known to be is N P -complete [2].. Recall that problem PART IT ION is described as follow. Data: Finite set A of r elements a 1 a 2... a r with integer sizes s(a k ) k 1 k r r k=1 s(a k) = 2B. Question: Is there a subset A 1 of indices such that k A 1 s(a k ) = k 12...r}\A 1 s(a k ) = B? Given an arbitrary instance of PART IT ION we construct an instance of VIRMACALLOC as follows: n = m = r for each job J i with i n}: s i = 0 p i = 1 R i = a i for physical machine M j with j m}: v j = B y = 2. ( ) Given a feasible solution to PART IT ION we can define a solution to VIRMACALLOC by assigning a virtual machine of M 1 for a subset of jobs corresponding to A 1 the remaining jobs will be executed on virtual machines allocated from M 2. This assignment satisfies the conditions and the answer to problem VIRMACALLOC is Yes since the exexcution time on M 1 (and on M 2 resp.) is 1. ( ) If there exists a feasible solution to problem VIRMACALLOC then there exists a virtual-machine allocation such that all virtual machines are allocated from two machines at 242

3 most (due to y = 2 and all jobs start at the same time). Since all machines have the same capacity assume that all jobs are served from the first machine M 1 or two first machines M 1 and M 2. Due to the fact that n i=1 Ri = r i=1 ai = 2B the first machine M1 with capacity B could not support all of jobs. So we need two first machines to serve this job set. Moreover the maximum number of virtual machines could be used from these two machines is v 1 + v 2 = B + B = 2B which corresponds exactly to the number of virtual machines needed. So there is no redundant resource from these two machines. Hence the total virtual machines that serve the jobs executed on M 1 is equal to v 1 = B and the sub-set of jobs defines then A 1. Consequently the answer to PART IT ION is Yes. V. MIXED INTEGER LINEAR MATHEMATICAL MODEL There are many objectives that have been defined in literature such as minimizing the system execution cost minimizing the number of physical machines needed minimizing the number of physical machines executed per time unit... (refers to [1] [4] [7] [9]). Mathematical models proposed in this paper use the below objective: Minimizing the total execution time on each machine. A. Constraints Before building mathematical models for the problem its constraints should be listed out here. Constraint 1: 1) The number of virtual machines assigned to job J i must be exactly its requirement (R i) 2) At any time total number of virtual machines used in physical machine (J i) does not exceed its capacity (v j). 3) No virtual machine can execute 2 jobs at the same time. 4) Once a virtual machine is assigned for a job that job must be executed continuously until complete on that virtual machine. B. Objective function The objective used for the problem is about minimizing the total execution time on each physical machine. To model the objective function intermediate variables are defined as below: 1 machine Mj is used at t j [1 m] t [0 T ] Then the objective function can be formulated as: min m T j=1 t=0 Note that value of the y jt variables will be calculated from decision variables in each following mathematical model. C. Mathematical model 1 The decision variables in this model are defined as below: x ijkt = 1 Job Ji is executed using k th VM on M j at time t y jt i [1 n] j [1 m] k [1 v j] t [0 T ]. Then the y jt variable can be calculated by: max x ijkt j [1 m] t [0 T ] i [1n]k [1v j ] or y jt x ijkt i [1 n] and k [1 v j] since they are in binary and the objective is relational to minimizing each value of y jt for all j [1 m] and for all t [0 T ]. Constraints are formulated as below: 243 Constraint 1: v m j x ijkt = R i i [1 n] t [s i s i + p i) j=1 k=1 Constraint 2: v n j x ijkt v j j [1 m] t [0 T ] i=1 k=1 Constraint 3: n x ijkt 1 j [1 m] k [1 v max] t [0 T ] i=1 Constraint 4: x ijkt = x ijksi i [1 n] j [1 m] k [1 v j] t (s i s i+p i) and x ijkt = 0 i [1 n] j [1 m] k [1 v j] t / [s i s i+p i) D. Mathematical model 2 In this model the t factor is removed from the decision variable. The decision variable is represented as below: 1 Job Ji is executed using k x ijk = th VM on M j i [1 n] j [1 m] k [1 v max]. Then the y jt variables can be calculated by: max x ijk i ɛ(t)k [1v j ] or y jt x ijk i ɛ(t) k [1 v j] as all of them are binary values. Constraints are then represented as below: Constraint 1: v m j x ijk = R i i [1 n] Constraint 2: j=1 k=1 v j x ijk v j j [1 m] t [0 T ] i ɛ(t) k=1 Constraint 3: x ijk 1 j [1 m] k [1 v j] t [0 T ] i ɛ(t) Constraint 4: predetermined implicitly through decision variables definition. E. Mathematical model 3 The decision variable in this model is defined as: x ij = k Job Ji is executed on machine M j using k VM i [1 n] j [1 m]. In this case the y jt variables are calculated by: x ij > 0 1 i [1 n] j [1 m] t [0 T ] or x ij y jt 0 where x ij is integer number and y jt is binary number. And constraints are formulated as:

4 Constraint 1: x ij = R i i Constraint 2: x ij v j j t j i ɛ(t) Constraint 3: predetermined implicitly Constraint 4: predetermined implicitly VI. EMPIRICAL RESULTS To test the effectiveness of the models we have used COIN-OR CBC (free version) a well-known solver to implement proposed MILP models and compared their computational times. We have measured the performance of models on personal computer with the following configuration: Intel Core i5 2.50GHz 4GB memory run on Ubuntu operating system. In this experiment according to each couple (n m) = (number of jobs number of machines) the necessary data test set are generated as below: Processing time p i is generated randomly by integer uniform distribution in [1 3]; Number of virtual machine required by a job R i is generated randomly by integer uniform distribution in [1 5]; Starting time for a job s i is chosen with equal probability for each value in range [0 9] Number of virtual machine for a physical machine v j is generated randomly by integer uniform distribution in [1 5]; For each (n m) couple 10 instances are generated executed using COIN-OR CBC solver and then below information are extracted from the result: computational time that the solver needs to execute the model number of iterations the solver has gone through to archive the optimal solution total number of cuts the solvers has done using its cutting algorithms. Below tables show the average and maximum values accumulated from the solver output: Fig. 1. CBC experiment result for model Fig. 2. CBC experiment result for model 2 We can conclude the following from the experiment result: Fig. 3. CBC experiment result for model 3 When the number of jobs increased the third model is the most effective one to solve. It is because when eliminating parameters from the model several constraints are removed and no new constraint is added. The complexity does not depend only on the number of jobs but it depends on other parameters also. We can see this when seeing the much difference between the average time and maximum time the solver needs to solve models. VII. CONCLUSION In this paper we have considered the resource allocation problem in cloud computing where each physical machine in cloud has a lot of virtual machine and each job needs to use a number of virtual machines during a given and fixed period. The objective aims to minimize the cost induced by total execution time on each physical machine. We prove that this allocation problem is N P -hard. Three mixed integer linear mathematical models are then proposed to represent the considering optimization problem. The performance comparison of the three proposed models is analyzed through some empirical results. Further research can be undertaken to prove whether VIRMACALLOC is weakly or strongly N P -complete. Another research direction should focus on improving solver performance with some optimization technical. Applying relaxation techniques and model-based heuristics for solving will be also an interesting research topic. REFERENCES [1] A. Beloglazov J. Abawajy and R. Buyya Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing Future Generation Computer Systems vol. 28 no. 5 pp DOI: /j.future [2] Garey M.R. et Johnson D.S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Company San Francisco. [3] Í. Goiri F. Julià R. Nou J. Berral J. Guitart and J. Torres Energyaware Scheduling in Virtualized Datacenters IEEE International Conference on Cluster Computing (CLUSTER 2010) pp [4] B. Speitkamp and M. Bichler A Mathematical Programming Approach for Server Consolidation Problems in Virtualized Data Centers IEEE Transactions on Services Computing 3 (4) pp [5] Chandra Chekuri S. Khanna On Multi-Dimensional Packing Problems SODA 1999 pp [6] R. Panigrahy K. Talwar and L. Uyeda Heuristics for Vector Bin Packing research.microsoft.com [7] B. Sotomayor K. Keahey and I. Foster Combining batch execution and leasing using virtual machines HPDC 08 Proceedings of the 17th international symposium on High performance distributed computing pp DOI: / [8] B. Sotomayor Provisioning Computational Resources Using Virtual Machines and Leases PhD Thesis submited to The University of Chicago. US 2010.

5 [9] N. Q. Hung N. Thoai and N. T. Son Performance constraint and power-aware allocation for user requests in virtual computing lab Journal of Science and Technology (Vietnam) vol. 49 4A no. Special on Int. Conf. on Advanced Computing and Applications (ACOMP2011) pp [10] J. R. Correa and M. R. Wagner LP-based online scheduling : from single to parallel machines Math. Program. Ser. A (2009) vol. 119 pp [11] A. Schulz Scheduling unrelated machines by randomized rounding SIAM Journal on Discrete Mathematics vol. 15 no. 4 p [12] I. Al Azzoni Power-Aware Linear Programming Based Scheduling for Heterogeneous Computer Clusters Future Generation Computer Systems vol. 28 no. 5 pp May

EPOBF: ENERGY EFFICIENT ALLOCATION OF VIRTUAL MACHINES IN HIGH PERFORMANCE COMPUTING CLOUD

EPOBF: ENERGY EFFICIENT ALLOCATION OF VIRTUAL MACHINES IN HIGH PERFORMANCE COMPUTING CLOUD Journal of Science and Technology 51 (4B) (2013) 173-182 EPOBF: ENERGY EFFICIENT ALLOCATION OF VIRTUAL MACHINES IN HIGH PERFORMANCE COMPUTING CLOUD Nguyen Quang-Hung, Nam Thoai, Nguyen Thanh Son Faculty

More information

International Journal of Advance Research in Computer Science and Management Studies

International Journal of Advance Research in Computer Science and Management Studies Volume 3, Issue 6, June 2015 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

Multi-dimensional Affinity Aware VM Placement Algorithm in Cloud Computing

Multi-dimensional Affinity Aware VM Placement Algorithm in Cloud Computing Multi-dimensional Affinity Aware VM Placement Algorithm in Cloud Computing Nilesh Pachorkar 1, Rajesh Ingle 2 Abstract One of the challenging problems in cloud computing is the efficient placement of virtual

More information

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems

More information

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004 Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February

More information

Capacity Planning for Virtualized Servers 1

Capacity Planning for Virtualized Servers 1 Capacity Planning for Virtualized Servers 1 Martin Bichler, Thomas Setzer, Benjamin Speitkamp Department of Informatics, TU München 85748 Garching/Munich, Germany (bichler setzer benjamin.speitkamp)@in.tum.de

More information

Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing

Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing Deep Mann ME (Software Engineering) Computer Science and Engineering Department Thapar University Patiala-147004

More information

A Mathematical Programming Approach for Server Consolidation Problems in Virtualized Data Centers. Benjamin Speitkamp and Martin Bichler

A Mathematical Programming Approach for Server Consolidation Problems in Virtualized Data Centers. Benjamin Speitkamp and Martin Bichler IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. X, XXXXXXX 2010 1 A Mathematical Programming Approach for Server Consolidation Problems in Virtualized Data Centers Benjamin Speitkamp and Martin Bichler

More information

Martin Bichler, Benjamin Speitkamp

Martin Bichler, Benjamin Speitkamp Martin Bichler, Benjamin Speitkamp TU München, Munich, Germany Today's data centers offer many different IT services mostly hosted on dedicated physical servers. Server virtualization provides a new technical

More information

HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE

HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE Subodha Kumar University of Washington subodha@u.washington.edu Varghese S. Jacob University of Texas at Dallas vjacob@utdallas.edu

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

Keywords Distributed Computing, On Demand Resources, Cloud Computing, Virtualization, Server Consolidation, Load Balancing

Keywords Distributed Computing, On Demand Resources, Cloud Computing, Virtualization, Server Consolidation, Load Balancing Volume 5, Issue 1, January 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Survey on Load

More information

Dynamic resource management for energy saving in the cloud computing environment

Dynamic resource management for energy saving in the cloud computing environment Dynamic resource management for energy saving in the cloud computing environment Liang-Teh Lee, Kang-Yuan Liu, and Hui-Yang Huang Department of Computer Science and Engineering, Tatung University, Taiwan

More information

Application Placement on a Cluster of Servers (extended abstract)

Application Placement on a Cluster of Servers (extended abstract) Application Placement on a Cluster of Servers (extended abstract) Bhuvan Urgaonkar, Arnold Rosenberg and Prashant Shenoy Department of Computer Science, University of Massachusetts, Amherst, MA 01003 {bhuvan,

More information

How To Find An Optimal Search Protocol For An Oblivious Cell

How To Find An Optimal Search Protocol For An Oblivious Cell The Conference Call Search Problem in Wireless Networks Leah Epstein 1, and Asaf Levin 2 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il 2 Department of Statistics,

More information

Consolidation of VMs to improve energy efficiency in cloud computing environments

Consolidation of VMs to improve energy efficiency in cloud computing environments Consolidation of VMs to improve energy efficiency in cloud computing environments Thiago Kenji Okada 1, Albert De La Fuente Vigliotti 1, Daniel Macêdo Batista 1, Alfredo Goldman vel Lejbman 1 1 Institute

More information

Minimizing the Number of Machines in a Unit-Time Scheduling Problem

Minimizing the Number of Machines in a Unit-Time Scheduling Problem Minimizing the Number of Machines in a Unit-Time Scheduling Problem Svetlana A. Kravchenko 1 United Institute of Informatics Problems, Surganova St. 6, 220012 Minsk, Belarus kravch@newman.bas-net.by Frank

More information

Security-Aware Beacon Based Network Monitoring

Security-Aware Beacon Based Network Monitoring Security-Aware Beacon Based Network Monitoring Masahiro Sasaki, Liang Zhao, Hiroshi Nagamochi Graduate School of Informatics, Kyoto University, Kyoto, Japan Email: {sasaki, liang, nag}@amp.i.kyoto-u.ac.jp

More information

Dynamic Load Balancing of Virtual Machines using QEMU-KVM

Dynamic Load Balancing of Virtual Machines using QEMU-KVM Dynamic Load Balancing of Virtual Machines using QEMU-KVM Akshay Chandak Krishnakant Jaju Technology, College of Engineering, Pune. Maharashtra, India. Akshay Kanfade Pushkar Lohiya Technology, College

More information

Optimal Service Pricing for a Cloud Cache

Optimal Service Pricing for a Cloud Cache Optimal Service Pricing for a Cloud Cache K.SRAVANTHI Department of Computer Science & Engineering (M.Tech.) Sindura College of Engineering and Technology Ramagundam,Telangana G.LAKSHMI Asst. Professor,

More information

Server Consolidation with Migration Control for Virtualized Data Centers

Server Consolidation with Migration Control for Virtualized Data Centers *Manuscript Click here to view linked References Server Consolidation with Migration Control for Virtualized Data Centers Tiago C. Ferreto 1,MarcoA.S.Netto, Rodrigo N. Calheiros, and César A. F. De Rose

More information

Embedded Systems 20 REVIEW. Multiprocessor Scheduling

Embedded Systems 20 REVIEW. Multiprocessor Scheduling Embedded Systems 0 - - Multiprocessor Scheduling REVIEW Given n equivalent processors, a finite set M of aperiodic/periodic tasks find a schedule such that each task always meets its deadline. Assumptions:

More information

Duplicating and its Applications in Batch Scheduling

Duplicating and its Applications in Batch Scheduling Duplicating and its Applications in Batch Scheduling Yuzhong Zhang 1 Chunsong Bai 1 Shouyang Wang 2 1 College of Operations Research and Management Sciences Qufu Normal University, Shandong 276826, China

More information

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 12902

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 12902 Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Embedded Systems 20 BF - ES

Embedded Systems 20 BF - ES Embedded Systems 20-1 - Multiprocessor Scheduling REVIEW Given n equivalent processors, a finite set M of aperiodic/periodic tasks find a schedule such that each task always meets its deadline. Assumptions:

More information

Stiffie's On Line Scheduling Algorithm

Stiffie's On Line Scheduling Algorithm A class of on-line scheduling algorithms to minimize total completion time X. Lu R.A. Sitters L. Stougie Abstract We consider the problem of scheduling jobs on-line on a single machine and on identical

More information

Towards energy-aware scheduling in data centers using machine learning

Towards energy-aware scheduling in data centers using machine learning Towards energy-aware scheduling in data centers using machine learning Josep Lluís Berral, Íñigo Goiri, Ramon Nou, Ferran Julià, Jordi Guitart, Ricard Gavaldà, and Jordi Torres Universitat Politècnica

More information

A CP Scheduler for High-Performance Computers

A CP Scheduler for High-Performance Computers A CP Scheduler for High-Performance Computers Thomas Bridi, Michele Lombardi, Andrea Bartolini, Luca Benini, and Michela Milano {thomas.bridi,michele.lombardi2,a.bartolini,luca.benini,michela.milano}@

More information

A Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem

A Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem A Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem Sayedmohammadreza Vaghefinezhad 1, Kuan Yew Wong 2 1 Department of Manufacturing & Industrial Engineering, Faculty of Mechanical

More information

A Heuristic Location Selection Strategy of Virtual Machine Based on the Residual Load Factor

A Heuristic Location Selection Strategy of Virtual Machine Based on the Residual Load Factor Journal of Computational Information Systems 9: 18 (2013) 7389 7396 Available at http://www.jofcis.com A Heuristic Location Selection Strategy of Virtual Machine Based on the Residual Load Factor Gaochao

More information

DATA CENTER WORKLOAD CONSOLIDATION BASED ON TRUNCATED SINGULAR VALUE DECOMPOSITION OF WORKLOAD PROFILES

DATA CENTER WORKLOAD CONSOLIDATION BASED ON TRUNCATED SINGULAR VALUE DECOMPOSITION OF WORKLOAD PROFILES DATA CENTER WORKLOAD CONSOLIDATION BASED ON TRUNCATED SINGULAR VALUE DECOMPOSITION OF WORKLOAD PROFILES Thomas Setzer Technische Universität München setzer@in.tum.de Abstract In today s data centers, typically

More information

An Experimental Study of Load Balancing of OpenNebula Open-Source Cloud Computing Platform

An Experimental Study of Load Balancing of OpenNebula Open-Source Cloud Computing Platform An Experimental Study of Load Balancing of OpenNebula Open-Source Cloud Computing Platform A B M Moniruzzaman 1, Kawser Wazed Nafi 2, Prof. Syed Akhter Hossain 1 and Prof. M. M. A. Hashem 1 Department

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

An Energy-aware Multi-start Local Search Metaheuristic for Scheduling VMs within the OpenNebula Cloud Distribution

An Energy-aware Multi-start Local Search Metaheuristic for Scheduling VMs within the OpenNebula Cloud Distribution An Energy-aware Multi-start Local Search Metaheuristic for Scheduling VMs within the OpenNebula Cloud Distribution Y. Kessaci, N. Melab et E-G. Talbi Dolphin Project Team, Université Lille 1, LIFL-CNRS,

More information

THE energy efficiency of data centers - the essential

THE energy efficiency of data centers - the essential IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XXX, NO. XXX, APRIL 213 1 Profiling-based Workload Consolidation and Migration in Virtualized Data Centres Kejiang Ye, Zhaohui Wu, Chen Wang,

More information

Classification - Examples

Classification - Examples Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking

More information

Energy Constrained Resource Scheduling for Cloud Environment

Energy Constrained Resource Scheduling for Cloud Environment Energy Constrained Resource Scheduling for Cloud Environment 1 R.Selvi, 2 S.Russia, 3 V.K.Anitha 1 2 nd Year M.E.(Software Engineering), 2 Assistant Professor Department of IT KSR Institute for Engineering

More information

Batch Scheduling of Deteriorating Products

Batch Scheduling of Deteriorating Products Decision Making in Manufacturing and Services Vol. 1 2007 No. 1 2 pp. 25 34 Batch Scheduling of Deteriorating Products Maksim S. Barketau, T.C. Edwin Cheng, Mikhail Y. Kovalyov, C.T. Daniel Ng Abstract.

More information

NP-Completeness and Cook s Theorem

NP-Completeness and Cook s Theorem NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:

More information

Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers

Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers Íñigo Goiri, J. Oriol Fitó, Ferran Julià, Ramón Nou, Josep Ll. Berral, Jordi Guitart and Jordi Torres

More information

Offline sorting buffers on Line

Offline sorting buffers on Line Offline sorting buffers on Line Rohit Khandekar 1 and Vinayaka Pandit 2 1 University of Waterloo, ON, Canada. email: rkhandekar@gmail.com 2 IBM India Research Lab, New Delhi. email: pvinayak@in.ibm.com

More information

ENERGY EFFICIENT VIRTUAL MACHINE ASSIGNMENT BASED ON ENERGY CONSUMPTION AND RESOURCE UTILIZATION IN CLOUD NETWORK

ENERGY EFFICIENT VIRTUAL MACHINE ASSIGNMENT BASED ON ENERGY CONSUMPTION AND RESOURCE UTILIZATION IN CLOUD NETWORK International Journal of Computer Engineering & Technology (IJCET) Volume 7, Issue 1, Jan-Feb 2016, pp. 45-53, Article ID: IJCET_07_01_006 Available online at http://www.iaeme.com/ijcet/issues.asp?jtype=ijcet&vtype=7&itype=1

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Efficient Scheduling Of On-line Services in Cloud Computing Based on Task Migration

Efficient Scheduling Of On-line Services in Cloud Computing Based on Task Migration Efficient Scheduling Of On-line Services in Cloud Computing Based on Task Migration 1 Harish H G, 2 Dr. R Girisha 1 PG Student, 2 Professor, Department of CSE, PESCE Mandya (An Autonomous Institution under

More information

EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set

EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set Amhmed A. Bhih School of Electrical and Electronic Engineering Princy Johnson School of Electrical and Electronic Engineering Martin

More information

Maximizing Profit in Cloud Computing System via Resource Allocation

Maximizing Profit in Cloud Computing System via Resource Allocation Maximizing Profit in Cloud Computing System via Resource Allocation Hadi Goudarzi and Massoud Pedram University of Southern California, Los Angeles, CA 90089 {hgoudarz,pedram}@usc.edu Abstract With increasing

More information

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

More information

Truthful Mechanisms for Value-Based Scheduling in Cloud Computing

Truthful Mechanisms for Value-Based Scheduling in Cloud Computing Truthful Mechanisms for Value-Based Scheduling in Cloud Computing Jonathan Yaniv Truthful Mechanisms for Value-Based Scheduling in Cloud Computing Research Thesis Submitted in partial fulfillment of the

More information

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

Virtual Machine Resource Allocation for Service Hosting on Heterogeneous Distributed Platforms

Virtual Machine Resource Allocation for Service Hosting on Heterogeneous Distributed Platforms Virtual Machine Resource Allocation for Service Hosting on Heterogeneous Distributed Platforms Mark Stillwell, Frédéric Vivien INRIA, France Email: mark.stillwell@inrialpes.fr, Frederic.Vivien@inria.fr

More information

The Multi-Item Capacitated Lot-Sizing Problem With Safety Stocks In Closed-Loop Supply Chain

The Multi-Item Capacitated Lot-Sizing Problem With Safety Stocks In Closed-Loop Supply Chain International Journal of Mining Metallurgy & Mechanical Engineering (IJMMME) Volume 1 Issue 5 (2013) ISSN 2320-4052; EISSN 2320-4060 The Multi-Item Capacated Lot-Sizing Problem Wh Safety Stocks In Closed-Loop

More information

Scheduling Parallel Jobs with Monotone Speedup 1

Scheduling Parallel Jobs with Monotone Speedup 1 Scheduling Parallel Jobs with Monotone Speedup 1 Alexander Grigoriev, Marc Uetz Maastricht University, Quantitative Economics, P.O.Box 616, 6200 MD Maastricht, The Netherlands, {a.grigoriev@ke.unimaas.nl,

More information

Resource-Aware Scheduling for Data Centers with Heterogenous Servers

Resource-Aware Scheduling for Data Centers with Heterogenous Servers MISTA 2015 Resource-Aware Scheduling for Data Centers with Heterogenous Servers Tony T. Tran + Peter Yun Zhang Heyse Li + Douglas G. Down J. Christopher Beck + Abstract This paper presents an algorithm

More information

Dynamic Resource allocation in Cloud

Dynamic Resource allocation in Cloud Dynamic Resource allocation in Cloud ABSTRACT: Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of the touted gains in the cloud model come from

More information

An Optimization Approach for Cooperative Communication in Ad Hoc Networks

An Optimization Approach for Cooperative Communication in Ad Hoc Networks An Optimization Approach for Cooperative Communication in Ad Hoc Networks Carlos A.S. Oliveira and Panos M. Pardalos University of Florida Abstract. Mobile ad hoc networks (MANETs) are a useful organizational

More information

Avoiding Overload Using Virtual Machine in Cloud Data Centre

Avoiding Overload Using Virtual Machine in Cloud Data Centre Avoiding Overload Using Virtual Machine in Cloud Data Centre Ms.S.Indumathi 1, Mr. P. Ranjithkumar 2 M.E II year, Department of CSE, Sri Subramanya College of Engineering and Technology, Palani, Dindigul,

More information

A Distributed Approach to Dynamic VM Management

A Distributed Approach to Dynamic VM Management A Distributed Approach to Dynamic VM Management Michael Tighe, Gastón Keller, Michael Bauer and Hanan Lutfiyya Department of Computer Science The University of Western Ontario London, Canada {mtighe2 gkeller2

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm. Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

More information

Advanced Load Balancing Mechanism on Mixed Batch and Transactional Workloads

Advanced Load Balancing Mechanism on Mixed Batch and Transactional Workloads Advanced Load Balancing Mechanism on Mixed Batch and Transactional Workloads G. Suganthi (Member, IEEE), K. N. Vimal Shankar, Department of Computer Science and Engineering, V.S.B. Engineering College,

More information

The Probabilistic Model of Cloud Computing

The Probabilistic Model of Cloud Computing A probabilistic multi-tenant model for virtual machine mapping in cloud systems Zhuoyao Wang, Majeed M. Hayat, Nasir Ghani, and Khaled B. Shaban Department of Electrical and Computer Engineering, University

More information

An Enhanced Cost Optimization of Heterogeneous Workload Management in Cloud Computing

An Enhanced Cost Optimization of Heterogeneous Workload Management in Cloud Computing An Enhanced Cost Optimization of Heterogeneous Workload Management in Cloud Computing 1 Sudha.C Assistant Professor/Dept of CSE, Muthayammal College of Engineering,Rasipuram, Tamilnadu, India Abstract:

More information

Cloud Storage and Online Bin Packing

Cloud Storage and Online Bin Packing Cloud Storage and Online Bin Packing Doina Bein, Wolfgang Bein, and Swathi Venigella Abstract We study the problem of allocating memory of servers in a data center based on online requests for storage.

More information

Infrastructure as a Service (IaaS)

Infrastructure as a Service (IaaS) Infrastructure as a Service (IaaS) (ENCS 691K Chapter 4) Roch Glitho, PhD Associate Professor and Canada Research Chair My URL - http://users.encs.concordia.ca/~glitho/ References 1. R. Moreno et al.,

More information

Scheduling Parallel Jobs with Linear Speedup

Scheduling Parallel Jobs with Linear Speedup Scheduling Parallel Jobs with Linear Speedup Alexander Grigoriev and Marc Uetz Maastricht University, Quantitative Economics, P.O.Box 616, 6200 MD Maastricht, The Netherlands. Email: {a.grigoriev,m.uetz}@ke.unimaas.nl

More information

Virtualization Technology using Virtual Machines for Cloud Computing

Virtualization Technology using Virtual Machines for Cloud Computing International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Virtualization Technology using Virtual Machines for Cloud Computing T. Kamalakar Raju 1, A. Lavanya 2, Dr. M. Rajanikanth 2 1,

More information

A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing

A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing Liang-Teh Lee, Kang-Yuan Liu, Hui-Yang Huang and Chia-Ying Tseng Department of Computer Science and Engineering,

More information

Completion Time Scheduling and the WSRPT Algorithm

Completion Time Scheduling and the WSRPT Algorithm Completion Time Scheduling and the WSRPT Algorithm Bo Xiong, Christine Chung Department of Computer Science, Connecticut College, New London, CT {bxiong,cchung}@conncoll.edu Abstract. We consider the online

More information

Online Multi-Resource Scheduling for Minimum Task Completion Time in Cloud Servers

Online Multi-Resource Scheduling for Minimum Task Completion Time in Cloud Servers Online Multi-Resource Scheduling for Minimum Task Completion Time in Cloud Servers MohammadJavad NoroozOliaee Bechir Hamdaoui Mohsen Guizani # and Mahdi Ben Ghorbel # Oregon State University Oregon USA

More information

A dynamic optimization model for power and performance management of virtualized clusters

A dynamic optimization model for power and performance management of virtualized clusters A dynamic optimization model for power and performance management of virtualized clusters Vinicius Petrucci, Orlando Loques Univ. Federal Fluminense Niteroi, Rio de Janeiro, Brasil Daniel Mossé Univ. of

More information

Migration of Virtual Machines for Better Performance in Cloud Computing Environment

Migration of Virtual Machines for Better Performance in Cloud Computing Environment Migration of Virtual Machines for Better Performance in Cloud Computing Environment J.Sreekanth 1, B.Santhosh Kumar 2 PG Scholar, Dept. of CSE, G Pulla Reddy Engineering College, Kurnool, Andhra Pradesh,

More information

A Framework for Effective Placement of Virtual Machine Replicas for Highly Available Performance-sensitive Cloud-based Applications

A Framework for Effective Placement of Virtual Machine Replicas for Highly Available Performance-sensitive Cloud-based Applications A Framework for Effective Placement of Virtual Machine Replicas for Highly Available Performance-sensitive Cloud-based Applications Kyoungho An, Faruk Caglar, Shashank Shekhar, Aniruddha Gokhale Department

More information

Load Balancing Algorithm Based on Estimating Finish Time of Services in Cloud Computing

Load Balancing Algorithm Based on Estimating Finish Time of Services in Cloud Computing Load Balancing Algorithm Based on Estimating Finish Time of Services in Cloud Computing Nguyen Khac Chien*, Nguyen Hong Son**, Ho Dac Loc*** * University of the People's Police, Ho Chi Minh city, Viet

More information

Expansion of Data Center s Energetic Degrees of Freedom to Employ Green Energy Sources

Expansion of Data Center s Energetic Degrees of Freedom to Employ Green Energy Sources Proceedings of the 28th EnviroInfo 2014 Conference, Oldenburg, Germany September 10-12, 2014 Expansion of Data Center s Energetic Degrees of Freedom to Employ Green Energy Sources Stefan Janacek 1, Wolfgang

More information

Elastic Load Balancing in Cloud Storage

Elastic Load Balancing in Cloud Storage Elastic Load Balancing in Cloud Storage Surabhi Jain, Deepak Sharma (Lecturer, Department of Computer Science, Lovely Professional University, Phagwara-144402) (Assistant Professor, Department of Computer

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

More information

M. Sugumaran / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3), 2011, 1001-1006

M. Sugumaran / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3), 2011, 1001-1006 A Design of Centralized Meeting Scheduler with Distance Metrics M. Sugumaran Department of Computer Science and Engineering,Pondicherry Engineering College, Puducherry, India. Abstract Meeting scheduling

More information

R u t c o r Research R e p o r t. A Method to Schedule Both Transportation and Production at the Same Time in a Special FMS.

R u t c o r Research R e p o r t. A Method to Schedule Both Transportation and Production at the Same Time in a Special FMS. R u t c o r Research R e p o r t A Method to Schedule Both Transportation and Production at the Same Time in a Special FMS Navid Hashemian a Béla Vizvári b RRR 3-2011, February 21, 2011 RUTCOR Rutgers

More information

Scheduling using Optimization Decomposition in Wireless Network with Time Performance Analysis

Scheduling using Optimization Decomposition in Wireless Network with Time Performance Analysis Scheduling using Optimization Decomposition in Wireless Network with Time Performance Analysis Aparna.C 1, Kavitha.V.kakade 2 M.E Student, Department of Computer Science and Engineering, Sri Shakthi Institute

More information

Power Consumption Based Cloud Scheduler

Power Consumption Based Cloud Scheduler Power Consumption Based Cloud Scheduler Wu Li * School of Software, Shanghai Jiaotong University Shanghai, 200240, China. * Corresponding author. Tel.: 18621114210; email: defaultuser@sjtu.edu.cn Manuscript

More information

A Virtual Machine Consolidation Framework for MapReduce Enabled Computing Clouds

A Virtual Machine Consolidation Framework for MapReduce Enabled Computing Clouds A Virtual Machine Consolidation Framework for MapReduce Enabled Computing Clouds Zhe Huang, Danny H.K. Tsang, James She Department of Electronic & Computer Engineering The Hong Kong University of Science

More information

IOS110. Virtualization 5/27/2014 1

IOS110. Virtualization 5/27/2014 1 IOS110 Virtualization 5/27/2014 1 Agenda What is Virtualization? Types of Virtualization. Advantages and Disadvantages. Virtualization software Hyper V What is Virtualization? Virtualization Refers to

More information

Cost Effective Automated Scaling of Web Applications for Multi Cloud Services

Cost Effective Automated Scaling of Web Applications for Multi Cloud Services Cost Effective Automated Scaling of Web Applications for Multi Cloud Services SANTHOSH.A 1, D.VINOTHA 2, BOOPATHY.P 3 1,2,3 Computer Science and Engineering PRIST University India Abstract - Resource allocation

More information

The truck scheduling problem at cross-docking terminals

The truck scheduling problem at cross-docking terminals The truck scheduling problem at cross-docking terminals Lotte Berghman,, Roel Leus, Pierre Lopez To cite this version: Lotte Berghman,, Roel Leus, Pierre Lopez. The truck scheduling problem at cross-docking

More information

CACM:Current-aware Capacity Management in Consolidated Server Enclosures

CACM:Current-aware Capacity Management in Consolidated Server Enclosures :Current-aware Capacity Management in Consolidated Server Enclosures Hui Chen, Meina Song, Junde Song School of Computer Beijing University of Posts and Telecommunications Beijing, China 1876 Ada Gavrilovska,

More information

Energy Optimized Virtual Machine Scheduling Schemes in Cloud Environment

Energy Optimized Virtual Machine Scheduling Schemes in Cloud Environment Abstract Energy Optimized Virtual Machine Scheduling Schemes in Cloud Environment (14-18) Energy Optimized Virtual Machine Scheduling Schemes in Cloud Environment Ghanshyam Parmar a, Dr. Vimal Pandya b

More information

Energy Conscious Virtual Machine Migration by Job Shop Scheduling Algorithm

Energy Conscious Virtual Machine Migration by Job Shop Scheduling Algorithm Energy Conscious Virtual Machine Migration by Job Shop Scheduling Algorithm Shanthipriya.M 1, S.T.Munusamy 2 ProfSrinivasan. R 3 M.Tech (IT) Student, Department of IT, PSV College of Engg & Tech, Krishnagiri,

More information

Research Article Batch Scheduling on Two-Machine Flowshop with Machine-Dependent Setup Times

Research Article Batch Scheduling on Two-Machine Flowshop with Machine-Dependent Setup Times Hindawi Publishing Corporation Advances in Operations Research Volume 2009, Article ID 153910, 10 pages doi:10.1155/2009/153910 Research Article Batch Scheduling on Two-Machine Flowshop with Machine-Dependent

More information

Fault-Tolerant Application Placement in Heterogeneous Cloud Environments. Bart Spinnewyn, prof. Steven Latré

Fault-Tolerant Application Placement in Heterogeneous Cloud Environments. Bart Spinnewyn, prof. Steven Latré Fault-Tolerant Application Placement in Heterogeneous Cloud Environments Bart Spinnewyn, prof. Steven Latré Cloud Application Placement Problem (CAPP) Application Placement admission control: decide on

More information

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 8, No 2 Sofia 2008 Optimal Scheduling for Dependent Details Processing Using MS Excel Solver Daniela Borissova Institute of

More information

Improved Algorithms for Data Migration

Improved Algorithms for Data Migration Improved Algorithms for Data Migration Samir Khuller 1, Yoo-Ah Kim, and Azarakhsh Malekian 1 Department of Computer Science, University of Maryland, College Park, MD 20742. Research supported by NSF Award

More information

VIRTUAL RESOURCE MANAGEMENT FOR DATA INTENSIVE APPLICATIONS IN CLOUD INFRASTRUCTURES

VIRTUAL RESOURCE MANAGEMENT FOR DATA INTENSIVE APPLICATIONS IN CLOUD INFRASTRUCTURES U.P.B. Sci. Bull., Series C, Vol. 76, Iss. 2, 2014 ISSN 2286-3540 VIRTUAL RESOURCE MANAGEMENT FOR DATA INTENSIVE APPLICATIONS IN CLOUD INFRASTRUCTURES Elena Apostol 1, Valentin Cristea 2 Cloud computing

More information

Establishing a Mobile Conference Call Under Delay and Bandwidth Constraints

Establishing a Mobile Conference Call Under Delay and Bandwidth Constraints Establishing a Mobile Conference Call Under Delay and Bandwidth Constraints Amotz Bar-Noy Computer and Information Science Department Brooklyn College, CUNY, New York Email: amotz@sci.brooklyn.cuny.edu

More information

Affinity Aware VM Colocation Mechanism for Cloud

Affinity Aware VM Colocation Mechanism for Cloud Affinity Aware VM Colocation Mechanism for Cloud Nilesh Pachorkar 1* and Rajesh Ingle 2 Received: 24-December-2014; Revised: 12-January-2015; Accepted: 12-January-2015 2014 ACCENTS Abstract The most of

More information

A Cloud Data Center Optimization Approach Using Dynamic Data Interchanges

A Cloud Data Center Optimization Approach Using Dynamic Data Interchanges A Cloud Data Center Optimization Approach Using Dynamic Data Interchanges Efstratios Rappos Institute for Information and Communication Technologies, Haute Ecole d Ingénierie et de Geston du Canton de

More information

Common Approaches to Real-Time Scheduling

Common Approaches to Real-Time Scheduling Common Approaches to Real-Time Scheduling Clock-driven time-driven schedulers Priority-driven schedulers Examples of priority driven schedulers Effective timing constraints The Earliest-Deadline-First

More information

Resource grouping selection to minimize the maximum over capacity planning

Resource grouping selection to minimize the maximum over capacity planning 2012 International Conference on Industrial and Intelligent Information (ICIII 2012) IPCSIT vol.31 (2012) (2012) IACSIT Press, Singapore Resource grouping selection to minimize the maximum over capacity

More information

International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015

International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015 RESEARCH ARTICLE OPEN ACCESS Ensuring Reliability and High Availability in Cloud by Employing a Fault Tolerance Enabled Load Balancing Algorithm G.Gayathri [1], N.Prabakaran [2] Department of Computer

More information

GUEST OPERATING SYSTEM BASED PERFORMANCE COMPARISON OF VMWARE AND XEN HYPERVISOR

GUEST OPERATING SYSTEM BASED PERFORMANCE COMPARISON OF VMWARE AND XEN HYPERVISOR GUEST OPERATING SYSTEM BASED PERFORMANCE COMPARISON OF VMWARE AND XEN HYPERVISOR ANKIT KUMAR, SAVITA SHIWANI 1 M. Tech Scholar, Software Engineering, Suresh Gyan Vihar University, Rajasthan, India, Email:

More information

Power-aware Heuristic Vector based Virtual Machine Placement in

Power-aware Heuristic Vector based Virtual Machine Placement in Power-aware Heuristic Vector based Virtual Machine Placement in Heterogeneous Cloud Scenarios 1 Guan Le, 2 Ke Xu, 3 Meina Song, 4 Junde Song 1, First Author Beiing University of Posts and Telecommunications,

More information