INTERFACE INCLUSION PROBLEMS IN LAMINATED MEDIUM
|
|
|
- Elmer Allison
- 10 years ago
- Views:
Transcription
1 JOURNAL OF THEORETICAL AND APPLIED MECHANICS 3,39,21 INTERFACE INCLUSION PROBLEMS IN LAMINATED MEDIUM Bogdn Rogowki Mrcin Pwlik Deprtment o Mechnic o Mteril, Technicl Univerity o Łódź e-mil: [email protected] A moduli perturbtion method i ued to contruct the olution or the contct tine in the incluion problem o compoite lminte under tte o torionl deormtion. The incluion i conidered to be embedded t the interce o the lminte. The ollowing olution hvebeenobtined:i)theexctolutionortheincluioninmedium coniting o two lyer nd two hl- pce,ii) irt-order ccurte olution or lyered medium coniting on + m) contituent,iii) n pproximtive olution or phyiclly inhomogeneou medium the limiting ce o the lyered medium. Key word: niotropy, lyered medi, incluion, perturbtion method, torion interce 1. Introduction The tre nlyi o lminted iber-reinorced compoite mteril h beenubjectoincreingimportnceduetotheexpndedueouchmteril in divere modern engineering ppliction. Thi nlyi i not ey becue compoite lminte very oten contin interlminr incluion, crck or delmintion, which h been oberved common nd unvoidble occurrence in mny prcticl itution. It i well known tht tudie o the incluion problem or bonded multiphe medium require pecil phyicl nd nlyticl conidertion tht re not encountered in thoe correponding to their homogeneou counterpr. In the multiphe ytem, the olution rie not only rom geometric dicontinuity but lo rom the mteril dicontinuity. The plne incluion problem or two iotropic plne olved by men o ingulr integrl eqution method w conidered by Grilickiǐ nd Sulim
2 622 B. Rogowki, M. Pwlik 1975). Some incluion problem nd comprehenive lit o reerence up to the yer 1982 re preented in the book by Alekndrov nd Michitrin 1983). Jevtuhenko et l.1995) preented ome plne contct problem or lyered medium with n interce incluion in the rmework o the homogenition theory. The problem o n interce incluion between diimilr orthotropic hl-pce w conidered by Rogowki1993). In thi pper, the problem o n interce incluion in lyered compoite or in phyiclly nonhomogeneou medium i conidered in the rmework o the modulu perturbtion pproch. Thi method w pplied by Go1991), Fn ey l.1992) to the olution to ome rcture nd inhomogeneity problem, repectively. The nlyi dier rom the previou tudie in number o pect. Firt, by uing the modulu perturbtion pproch cloed-orm olution or the torionl contct tine o compoite which conit o two diimilr lyer nd two diimilr hl-pce i obtined. Thi olution h lo n dvntge over the previou nlye by implicity nd nlyticl orm o the reult. Further, we how tht the perturbtion nlyi ctully provide the irt-order ccurcy olution to the contct tine o n elticlly nonhomogeneou medium with rbitrry, piecewie contntlyered) or continuouly vrying eltic moduli in the depthwie direction. 2. Reerencette We ue cylindricl coordinte nd denote them by r, ϑ, z). Conider n N-lyered compoite lminte contining n intercil rigid circulr thin incluionotherdiu loctedbetweenthetwolyerndtwitedby mllngle ϕbymenothetorque Tppliedtothedic.Theincluion my repreent the reinou or cementing mteril, which i ued to trner the nchoring lod to the geologicl medium, or intnce. A the reerence tte we chooe the olution to the two-phe counterprt problem obtined by Rogowki1993). I the circumerentil xiymmetric diplcement o the rigid dic i then the contct tree re νr,)=ϕ r r 2.1) σ zϑ r,)= 4 π ϕ 1) i µ i r 2 r 2 r< 1) i z 2.2)
3 Interce incluion problem in lminted medium 623 ndtherigidrottion ϕ othedicigivenby ϕ = 3T 16µ 1 +µ 2 ) 3 2.3) Ineqution2.2)nd2.3)µ i ithevergehermoduluotheorthotropic mteril,i.e. µ i = G ri G zi, G ri nd G zi rethemterilhermoduli,nd i=1,2reertobodie1nd2,repectively.thetre σ zϑ r,z)ndthe diplcement ν r,z)inidethebimterilmediumregivenbyormule Rogowki, 1993) ν i) ξ i,η i )= 2 π π ϕ r 2 tn 1 ξ i ξ ) i 1+ξi 2 σ i) zϑ ξ i,η i )= 4 π ϕ µ i η i ξ 2 i +η2 i 1 η 2 i 1+ξ 2 i 2.4) Thetwoetotheobltepheroidlcoordinte ξ i,η i )rereltedtothe cylindricl coordinte r, z) by the eqution r 2 = 2 1+ξ 2 i )1 η2 i ) iz=ξ i η i ξ i 1 η i 1 2.5) where i = G ri /G zi ithemeureotheorthotropynd i =1repreent n iotropic mteril. Solution2.1)-2.4) correpond to the bimteril ininite medium, which i choen the reerence tte or the th order olution. 3. Moduli perturbtion nlyi 3.1. Compoite coniting o two diimilr lyer nd two diimilr hlpce Nowthequetionihowthetorque Tndtherottion ϕwillberelted withechotherintheceolyeredmedium.theexctnwertothi quetion would require the exct olution. A review o the exiting literture revel tht the exct nlyticl olution to thi problem i not vilble. In thi pper we obtin cloed-orm olution to the problem without retriction on the rnge o pplicbility, uing the moduli perturbtion nlyi. Conider ninterceincluioninytemotwolyerbondedtotheincluionnd to two hl-pce. The rnge o convergence o the perturbtion olution will
4 624 B. Rogowki, M. Pwlik be without n retriction i we chooe bimteril ininite medium with two verge moduli correponding to the upper nd the lower ilm the reerence tte,i.e. µ i =µ i) +µ i) )/2,where µ i) nd µ i) rethevergeher moduli o the ith ilm nd o the ith ubtrte, repectively. Then introducing mteril prmeter κ i = µ i) µ i) µ 1) +µ 1) +µ 2) +µ 2) 3.1) wehve κ i 1,1).Theprmeterκ i denotethertioothechngeothe vergehermoduluothe ithlyerilm)tothemoduluothereerence bimterilmedium.alterntively κ i denotethertioothechngeothe verge her modulu o the ith ubtrte to the modulu o the reerence medium. During the trnormtion, the pplied torque T i kept contnt butthetwitngleϕndthetrinenergyrellowedtochnge.theenergy conervtionlwrequirethttheextrworkdonebythetorque Tbeequl totheenergychngeinthewholebody.totheirt-orderccurcyinthe modulivrition κ i or < z <h i nd κ i or z >h i theequtiono the energy conervtion red 1 2 Tδϕ = κ i i=1 A i) σ i) zϑ ν i) da i + A i) σ i) zϑ ν i) da i ) 3.2) where δϕ itherottionchnge, σ i) zϑ nd ν i) retheknowntreend diplcementorthereerencebimterilmedium,nd A i) denotethe,ai) boundry urce o the trnorming region. For the preent o geometry A i) conitothethreehorizontlplne: z= + nd z=h 1,z= h 2 nd A i) conitothetwoplne: z=h+1 + nd z= h + 2.There integrlontheplne z=iequl Tϕ.Theright-hndideoEq.3.2) denote the irt order energy vrition due to the moduli trnormtion. Eq. 3.2)reducetotheollowingexpreionor δϕ /ϕ δϕ = ϕ 2 i=1 [ κ i 1+ 2π σ i) zϑ Tϕ ν i) ) z=±h ± i ] rdr 3.3) SubtitutingEq.2.4) 1 nd2.5)with µ i =µ i) +µ i) )/2ndnoticingtht i ziequl 1) or <z h 1 nd 1) z+h 1 1) 1) )or z h 1 i.e. ξ 1) = 1) h 1/,ndlterntively ξ 2) = 2) h 2/ortheplne z=h 1
5 Interce incluion problem in lminted medium 625 nd z= h 2,repectively,ndthenintegrtingwerrivettheollowing expreionor δϕ /ϕ δϕ ϕ = κ 1 [ 2I 1) h 1 ) [ 1 ] κ 2) 2 2I h 2 wheretheintegrl Iξ i),ξi) = i) h i/,ioundtobe 1+ 2π σ i) zϑ Tϕ ν i) ) z=±h ± i =1 6 π ξi) ξ i) Iξ i) )=2 π tn 1 ξ i) ξ i) = i) h i rdr= π 2 tn 1 ξ i ξ i 1+ξ 2 i + ξi) π ) 1 ξ 2 i ξi) )2 ) ξi 4 [ 3+2ξ i) i) 1+ξ )2) ln )2 ξ i) )2 ) ] 1 3.4) dξ i =2Iξ i) ) 1 ) ] 2 3.5) Theirtorderpproximtiono ϕ,ϕ 1 =ϕ +δϕ i κ i ),1torderolution ϕ 1 =ϕ [ 1 κ 1 2Iξ 1) ) 1 ) κ 2 2Iξ 2) ) 1 )] 3.6) The correponding higher order olution re obtined recurively rom the previouolution,otht ϕ 2 =ϕ +δϕ 1,i κ 2 i ),2ndorderolution { ϕ 2 = ϕ 1 κ 1 2Iξ 1) ) ) 1 κ 2 2Iξ 2) )+ ) 1 + [κ 1 2Iξ 1) ) 1 ) +κ 2 2Iξ 2) ) 1 )] 2 } Ingenerl,oneh κ n i ), nthorderolution, n>1 ] n ϕ n =ϕ [1+ 1) k[ κ 1 2Iξ 1) ) ) 1 +κ 2 2Iξ 2) )] k ) 1 k=1 3.7) 3.8) Itieenthttheumconvergetotheexctolution n inthernge o convergence, i.e. [ ϕ= lim ϕ n=ϕ 1+κ 1 2Iξ 1) ) n ) 1 +κ 2 2Iξ 2) )] 1= ) 1 3.9) = 3T 16 3 [ µ 1) 1 Iξ 1) ) ) +µ 1) Iξ1) )+µ2) 1 Iξ 2) ) ) +µ 2) ] 1 Iξ2) )
6 626 B. Rogowki, M. Pwlik i κ1 2Iξ 1) ) 1 ) +κ 2 2Iξ 2) ) 1 ) <1 3.1) Theweightingunction Iξ i) ),ξi) = i) h i/,vnih h i ndpprochunity h i,ndmonotonicllyincreewith ξ i).theinequlity ineq.3.1)itiiedince κ 1 +κ 2 <1nd 2Iξ i) ) 1 1,1)orny vlue o the mteril nd geometric prmeter. The perturbtion olution or ϕ in Eq.3.9) perectly mtche the exct olutioninbothlimitingbimterilce,i.e. i) h i/ nd i) h i/, correponding to the ce o the bimteril ininite medium, with the interce incluion, mde entirely o the hl-pce mteril or, lterntively, o two lyerbytrnormingtothetwohlpceregion z >h i,repectively. ItcnbeeenromEq3.5)nd3.9)thttheweightingunction Iξ i) ) nd 1 Iξ i) )givethertioothetrinenergytoredinthetrnorming region o the ilm nd o the ubtrt, repectively, to the totl trin energy tored in the reerence bimteril medium. The eective contct tine hould hve the orm µ e =µ 1) 1 Iξ 1) ) ) +µ 1) Iξ1) )+µ2) 1 Iξ 2) ) ) +µ 2) Iξ2) )3.11) Hence,itcnbeidtht µ e ithevergehermoduluweightedbythe trin energy denity ditribution Nonhomogeneou medium with piecewie contnt moduli The modulu perturbtion pproch provide nturl chnnel or extenion to more complicted problem. Uing the previouly preented nlyi, itcnbehownthtthetwitngleotheinterceincluioninthen+m)th lyer o the compoite lminte cn be obtined with the eective tine [ µ e =µ 1) 1 I + n i=1 zn 1) )] n µ 1) [ zi 1) ) i i I I ϕ= [ +µ 2) 1 I z i 1 1) i 1 T 16 3 µ e 3.12) )] + zm 2) )] m + n i=1 3.13) µ 2) [ zi 2) ) i z i 1 2) )] i 1 i I I
7 Interce incluion problem in lminted medium 627 Here I )ideinedbyeq.3.5), z i ithe zcoordinteotheinterce betweenthe ithnd i+1)thlyerilm),othtthelyerthickneigiven by h i =z i z i 1,i=1,2,...n,with z =.Arigorounlyiotheerror bound or the perturbtion ormul in Eq.3.13) i not yet vilble. Hence, it i necery to exmine the ollowing inequlity 1 { n µ 1) +µ 2) i=1 n + µ 2) [ i I i=1 µ1) µ 1) +µ 2) zi 2) i I µ 1) [ i I zi 1) ) i I ) z i 1 2) i 1 I zn 1) ) n µ 2) µ 1) +µ 2) z i 1 1) i 1 )] + )]} 3.14) I zm 1) ) m < Nonhomogeneou medium with continuouly vrying moduli When the eltic modulu i unction o ptil coordinte then the problem become more complicted compred to the homogeneou ce. It i noted tht the perturbtion olution cn be obtined in tht ce under ome retriction. The olution to the problem o rigid interce dic in the bimteril nonhomogeneou medium with continuouly vrying moduli G i) zz),i=1,2,ndcontntprmeter i), G i) r z)= 2 i Gi) zz),cnbe contructedbytkingthelimit z i z i 1 nd z i z i 1 nd n in Eq.3.13). The eective contct tine h then the integrl orm µ e = 1) di 1) z/) G 1) z z)dz+ 2) dz di 2) z /) G 2) z z)dz 3.15) d z where di 1) z/) dz = 3i) [1+2 i) ) 2 z 2 ) 2 + i) ) 2 z 2 ) ] π 2 ln i) ) 2 z ) When the eltic medium conit o two nonhomogeneou lyer o the thickne h 1 nd h 2 ndthehermoduli G 1) z z)nd G2) z z )with G i) r z)=i) )2 G i) z z),i) = cont bonded to two homogeneou hl-pce withthemoduli G 1) z, G i) r = i) ) 2 G i) z thentheolutionorthecontct tine cn be obtined
8 628 B. Rogowki, M. Pwlik [ 1) µ e =µ 1) 1 I h 1)] + 1) h 1 di 1) z/) dz [ 2) +µ 2) 1 I G 1) z z)dz+2) h 2 h 1 di 2) )] + z /) d z G 2) z z )dz 3.17) When rigid incluion i embedded in nonhomogeneou ininite medium withthehermoduli G z z)nd G r z)= 2 G z z)thenthecontcttine igivenbytheeqution µ e = 32 π [1+2 2 z 2 ) 2 ln 1+ 2 ) ] 2 z 2 2G z z)dz 3.18) The diiculty with the perturbtion method i tht in pecil ce the expreionorthecontcttinegivenbyeq3.15)or3.18)myreducetodivergent integrl. We expect tht thee ormule hve imilr rnge o vlidity Eq.3.13) Two-contituentcompoite Rogowki1995) perormed n integrl eqution nlyi to tudy n xiymmetric torion interce incluion, which pper between boundry lyer nd diimilr hl-pcefig. 2). In thi nlyi the olution o the irt-order ccurcy h the orm o Eq.3.12), wherein our nottion) µ e =µ 1 +µ 2 ) [1 η3) 3πξ 3 η2m+1)= µ 1 µ 1 +µ 2 + η5) 5πξ 5 ] +... µ1 µ ) 2 n 1 1 µ n=1 1 +µ 2 n 2m+1 Inprticulr,i µ 1 =µ 2 theneq.3.19)yield [ µ e =2µ πh πh ] +... ξ = h ) 3.2) Solution3.18)nd3.19)revlidi h 1 />1.Themoduliperturbtion pproch, ee Eq.3.11), give µ e =µ 2 +µ 1 I 1 h) 3.21)
9 Interce incluion problem in lminted medium 629 Fig. 1. Incluion geometry, coordinte nd nottion Fig. 2. Two-phe counterprt o the interce incluion problem
10 63 B. Rogowki, M. Pwlik Fig. 3. Torionl tine o the rigid dic on two-phe orthotropic hl-pce; Eq.3.11)or µ 2) ==µ 2), µ1) =µ, µ 1) =µ, ξ 1) =ξ = h/ oror µ 1 =µ 2 [ 1 h)] µ e=µ 1 1+I Eqution3.21) nd3.22) cn be rewritten ollow { µ e =µ 1 +µ 2 ) 1 µ [ 1 1 h)]} 1 I µ 1 +µ ) 3.23) ndor µ 1 =µ 2 { µ e=2µ [ 1 h)]} 1 I 3.24) 2 Forthickboundrylyer h 1 /)>1Eq3.23)nd3.19)or3.24)nd 3.2) give the reult which dier le thn one percent. Perturbtion olution 3.21),3.22)revlidloormllvlueo h 1 /.Forexmple,Eq.3.21) yield µ µ 1 or 1 h/=.1 µ e = µ µ 1 or 1 h/= ) µ µ 1 or 1 h/=1. Itheincluioniembeddedttheiniteditnce hromthebimteril interceotheininitemediumwiththehermoduli µ 1 nd µ 2 inthe mteril 1 ) then Eq.3.11) yield 1 h [ 1 h)] µ e =µ 1 [1+I )]+µ 2 1 I 3.26)
11 Interce incluion problem in lminted medium 631 Thi eqution yield 1.88µ µ 2 or 1 h/=.1 µ e = µ µ 2 or 1 h/= µ µ 2 or 1 h/= ) 4. Concludingremrk We hve preented modulu perturbtion cheme or determining eltic contct tine ditributed by inhomogeneitie. Although inite element method, ee Luren nd Simo1992) or intnce, or boundry element method, ee e.g. Telle nd Brebbi1981), cn hndle thee type o inhomogeneity problem, the preent perturbtion procedure till how it dvntge by implicity nd nlyticl orm o the reult. The preented cloed-orm perturbtion olution3.11) my be pplicble without ny retriction, i.e. or ny combintion o the eltic contnt o mteril contituent, while the irt-order ccurte olution3.13),3.15), nd3.17) my be pplied in moderte rnge o mteril combintion o prcticl igniicnce. The eective eltic contnt o the lminted medium re given by Achenbch1975) nd Chritenen1979). I we conider lminted compoite coniting o lternting plne prllel lyer o two homogeneou iotropic mteril, then Achenbch nd Chritenen reult give G z = G 1 G 2 G 2 δ 1 +G 1 1 δ 1 ) G r =G 1 δ 1 +G 2 1 δ 1 ) where δ 1 =h 1 /h 1 +h 2 )ndwhere h 1,h 2 rethethickneend G 1, G 2 thehermoduliothetwoelticlyer.prlleltothebovetudieo eltic contct problem homogenized model with microlocl prmeter h lo been developed to evlute the eective tine o lyered body. The relted work re given by Kczyńki nd Mtyik1988, 1992), Mtyik nd Woźnik1987). From the olution preented in thi pper we conclude, tht eltic propertie o the boundry lyer inluence trongly the eective tine o lyered bodyndtheolutiondependloonthertioothelyerthicknetothe rdiu o contct region. The ormule mentioned in the literture do not decribe thee eect. By replcing the her modulu with the eective her modulu in eqution2.1),2.2) nd2.3) we obtin the olution.
12 632 B. Rogowki, M. Pwlik The mechnicl torion ield o lminted orthotropic medium under nd bove the interce incluion re given by: rottion 3T ϕ= 16µ 1e +µ 2e ) 3 4.1) diplcement [ ν i) ξ i,η i ) = ϕr1 2 tn 1 ξ i + ξ )] i π 1+ξi 2 = = ϕ 2 in π ϕr 1 r r 1 2 r 2 ) 4.2) z= ± r z= ± r tree σ i) zϑ ξ i,η i ) = 4 π ϕµ ie = η i ξ 2 i +η2 i 1 η 2 i 1+ξ 2 i 4 r π 1)i ϕµ ie z= ± r< 2 r 2 z= ± r> = 4.3) σ i) r 2 2 rϑ ξ i,η i ) = 4 π ϕgi) r 1+ξi 2)2 +ξi 2+η2 i )2= 4.4) z= ± r< = 4 3 π ϕgi) r r 2 z= ± r> r 2 2 treconcentrtionctor i=1,2) ξ i L I) zϑ = 3T 4π 5 1)i µ ie µ 1e +µ 2e z= ± r L I) rϑ = 3T 4π 5 i) Gr z= ± r + µ 1e +µ 2e 4.5) Intheboveolution µ ie,i=1,2,itheeectivecontcttineo the lower nd upper nonhomogeneou hl-pce, repectively. The oblte
13 Interce incluion problem in lminted medium 633 pheroidlcoordinteocitedwiththemterilprmeter i byeq. 2.5)recontinuouttheinterceincetheplne z=z i,r igivenby ξ i ξ i = iz i η i = ξ i ξ i 4.6) Thediplcement νndthetre σ zϑ recontinuouinthelminted medium,butthetre σ rϑ hjumpintheinterce,whichregivenby [σ i) rϑ ]= 4 π ϕ[gi+1) r G i) ξ r ]r2 i ξi 2)2 +ξi 4+ξ 2 i ) ξ i ξ i = iz i 4.7) We oberve tht both tre component hve qure root ingulritie r or r +,repectively.theeingulritierepreentedbythe tre concentrtion ctor, ee Eq.4.5). Whenthetorionlorcereditributedlongthecircle r=r,z=z ) intheinteriorothe ithlyer z i 1 <z z i )thentherottion ϕothe rigid incluion will be ϕ= 3T [1 2 16µ 1e +µ 2e ) 3 tn 1 ξ i + ξ )] i π 1+ξi 2 4.8) where ξ 1,η i,i=1,2,...,nrereltedto r=r nd z=z nd i, how Eq2.5), nd T i the reultnt torque o the pplied torionl orce. The imilrity between ormule4.2) nd4.8) reult rom Betti reciprocl theoremcompre the olution in the pper by Rogowki1998)). I the upper lyered hl-pce i lo loded in the me mnnerymmetriclly) then the rottion ϕotherigidincluionwillbe ϕ= 3T [2 2 16µ 1e +µ 2e ) 3 tn 1 ξ i + ξ i π 1+ξi 2 +tn 1 ξ j + ξ )] j 1+ξj 2 4.9) where ξ j iocitedwith i,i=1,2,...,n,nd ξ j iocitedwith j, j=1,2,...,m. Reerence 1. Alekndrov V.M., Michitrin S.M., 1983, Kontktnye zdchi dl tiel tonkimi pokrytymi i prolonkmi, Nuk, Mokw
14 634 B. Rogowki, M. Pwlik 2. Achenbch J.D., 1975, A Theory o Elticity with Microtructure or Directionlly Reinorced Compoite, Springer, Berlin 3. Chritenen R.M., 1979, Mechnic o Compoite Mteril, Whiley, New York 4. Fn H., Keer L.M., Mur T., 1992, Inhomogeneity Problem Reviited vi the Modulu Perturbtion Approch, Int. J. Solid Structure, 29, 2, Go H., 1991, Frcture Anlyi in Nonhomogeneou Mteril vi Moduli- Perturbtion Approch, Int. J. Solid Structure, 27, 2, Grilickiǐ D.V., Sulim G.T., 1975, Pieriodicheky zdch dl uprugoǐ plokoti tonkotennymi vkluchenymi, Prikl. Mtem. i Mekh., 39, 3, Jevtuhenko A.A., Kczyńki A., Mtyik S.J., 1995, Npryzhennoe otoynie loitovo uprugovo kompozit tonkim lineǐnym vklyucheniem, Prikl. Mtem. i Mekh., 59, 4, Kczyńki A., Mtyik S.J., 1988, Plne Contct Problem or Periodic Two-Lyered Eltic Compoite, Ingenieur Archiv, 58, Kczyńki A., Mtyik S.J., 1992, Modelling o Mechnicl Behviour o SomeLyeredSoil,Bull.otheInt.Aoc.oEng.Geology 1. Luren T.A., Simo J.C., 1992, A Study o Mechnic o Microindenttion Uing Finite Element, J. Mter. Re., 7, Mtyik S.J., Woźnik C., 1987, Micromorphic Eect in Modelling o Periodic Multilyered Eltic Compoite, Int. J. Eng. Sci., 5, Rogowki B., 1993, Internl Point Torque in Two-Phe Mteril. Interce Crck nd Incluion Problem, J. o Theoret. nd Applied Mechnic, 31, 1, Rogowki B., 1995, Interce Crck or Incluion in Two-Phe Hl-Spce Under Concentrted Torque, Zezyty Nukowe PŁ, Ser. Budownictwo, 46, Rogowki B., 1998, A Stticl Problem o Reiner-Sgoci Type o n Internlly Loded Orthotropic Hl-Spce, The Archive o Mechnicl Engineering ABM), XLV, 3, Telle J.C.F., Brebbi C.A., 1981, Boundry Element Solution or Hl- Plne Problem, Int. J. Solid Structure, 17, 12,
15 Interce incluion problem in lminted medium 635 Zgdnieni międzypowierzchniowej inkluzji w ośrodkch wrtwowych Strezczenie Z pomocą metody perturbcji modułów znleziono rozwiązni określjące kontktową ztywność w zgdnienich inkluzji umiezczonej n powierzchni klejeni wrtwowego kompozytu bedącego w tnie krętnej deormcji. Otrzymno ntępujące rozwiązni:i) dokłdne rozwiąznie dl inkluzji w ośrodku kłdjącym ię z dwóch wrtw i dwóch półprzetrzeni,ii) rozwiąznie o dokłdności pierwzego rzędu dl ośrodk n + m)-wrtwowego,iii) przybliżone rozwiąznie dl ośrodk izycznie niejednorodnego z modułmi ścinni zmienijącymi ię w poób ciągły, otrzymne jko przejście grniczne w rozwiązniu dl ośrodk wrtwowego. Mnucript received December 5, 2; ccepted or print Jnury 24, 21
Solution to Problem Set 1
CSE 5: Introduction to the Theory o Computtion, Winter A. Hevi nd J. Mo Solution to Prolem Set Jnury, Solution to Prolem Set.4 ). L = {w w egin with nd end with }. q q q q, d). L = {w w h length t let
COMPONENTS: COMBINED LOADING
LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of
Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding
1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde
5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.
5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued
Bayesian design of stochastic inventory systems
Byein deign of tochtic inventory ytem Tpn P Bgchi [email protected] NMIMS Shirpur Cmpu, Indi 425405 Abtrct Thi pper re-viit the Byein pproch to tet it efficcy in optimlly deigning the clicl (, Q) inventory
Basically, logarithmic transformations ask, a number, to what power equals another number?
Wht i logrithm? To nwer thi, firt try to nwer the following: wht i x in thi eqution? 9 = 3 x wht i x in thi eqution? 8 = 2 x Biclly, logrithmic trnformtion k, number, to wht power equl nother number? In
The Velocity Factor of an Insulated Two-Wire Transmission Line
The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the
Queueing systems with scheduled arrivals, i.e., appointment systems, are typical for frontal service systems,
MANAGEMENT SCIENCE Vol. 54, No. 3, March 28, pp. 565 572 in 25-199 ein 1526-551 8 543 565 inform doi 1.1287/mnc.17.82 28 INFORMS Scheduling Arrival to Queue: A Single-Server Model with No-Show INFORMS
2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration
Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting
Physics 43 Homework Set 9 Chapter 40 Key
Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x
Week 11 - Inductance
Week - Inductnce November 6, 202 Exercise.: Discussion Questions ) A trnsformer consists bsiclly of two coils in close proximity but not in electricl contct. A current in one coil mgneticlly induces n
Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur
Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives
Vectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
TITLE THE PRINCIPLES OF COIN-TAP METHOD OF NON-DESTRUCTIVE TESTING
TITLE THE PRINCIPLES OF COIN-TAP METHOD OF NON-DESTRUCTIVE TESTING Sung Joon Kim*, Dong-Chul Che Kore Aerospce Reserch Institute, 45 Eoeun-Dong, Youseong-Gu, Dejeon, 35-333, Kore Phone : 82-42-86-231 FAX
Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL
Excerpt from the Proceeding of the COMSO Conference 0 India Two Dimenional FEM Simulation of Ultraonic Wave Propagation in Iotropic Solid Media uing COMSO Bikah Ghoe *, Krihnan Balaubramaniam *, C V Krihnamurthy
Review guide for the final exam in Math 233
Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered
g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany
Lecture Notes to Accompny Scientific Computing An Introductory Survey Second Edition by Michel T Heth Boundry Vlue Problems Side conditions prescribing solution or derivtive vlues t specified points required
AREA OF A SURFACE OF REVOLUTION
AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.
Review Problems for the Final of Math 121, Fall 2014
Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since
Raman imaging for surface characterisation of annealed electrical steel surfaces
Phy. Sttu Solidi A 211, No. 6, 1429 1438 (2014) / DOI 10.1002/p.201330277 Prt of Specil Iue on Engineering of Functionl Interfce Rmn imging for urfce chrcterition of nneled electricl teel urfce Crin Hmbrock
EQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint
Rotating DC Motors Part II
Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors
4. DC MOTORS. Understand the basic principles of operation of a DC motor. Understand the operation and basic characteristics of simple DC motors.
4. DC MOTORS Almost every mechnicl movement tht we see round us is ccomplished by n electric motor. Electric mchines re mens o converting energy. Motors tke electricl energy nd produce mechnicl energy.
Advanced Multiphase Modeling of Solidification
Advanced Multiphae Modeling o Solidiication with OpenFOAM A. Vakhruhev 1, A. Ludwig 2, M. Wu 1, Y. Tang 3, G. Hackl 3, G. Nitzl 4 1 Chritian Doppler Laboratory or Advanced roce Simulation o Solidiication
Figure 2.1. a. Block diagram representation of a system; b. block diagram representation of an interconnection of subsystems
Figure. a. Block diagram repreentation o a ytem; b. block diagram repreentation o an interconnection o ubytem REVIEW OF THE LAPLACE TRANSFORM Table. Laplace tranorm table Table. Laplace tranorm theorem
Math 22B, Homework #8 1. y 5y + 6y = 2e t
Math 22B, Homework #8 3.7 Problem # We find a particular olution of the ODE y 5y + 6y 2e t uing the method of variation of parameter and then verify the olution uing the method of undetermined coefficient.
Fatigue safety factor general formula proposition for the prestressed components subjected to arbitrary CA stress cycling process
tigue fety fctor generl forul opoition for the etreed coponent ubjected to rbitrry C tre cycling oce Dir Jelk Univerity of Split-ESB R. Bošković b.b., 21000 Split, Croti Tel:+ 385 21305991 x:+ 385 21463877
Lecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
Mixed Method of Model Reduction for Uncertain Systems
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol 4 No June Mixed Method of Model Reduction for Uncertain Sytem N Selvaganean Abtract: A mixed method for reducing a higher order uncertain ytem to a table reduced
6. Friction, Experiment and Theory
6. Friction, Experiment and Theory The lab thi wee invetigate the rictional orce and the phyical interpretation o the coeicient o riction. We will mae ue o the concept o the orce o gravity, the normal
Design Capacities for Structural Plywood
Deign Capacitie for Structural Plyood Alloale Stre Deign (ASD) The deign value in thi document correpond ith thoe pulihed in the 005 edition of the AF&PA American Wood Council Alloale Stre Deign (ASD)/RFD
LAB1 2D and 3D step-index waveguides. TE and TM modes.
LAB1 2D and 3D tep-index waveguide. T and TM mode. 1. Getting tarted 1.1. The purpoe o thi laboratory are: - T/TM mode propagation in 2D (lab waveguide) tep-index waveguide a a unction o guide peciic parameter
Detailed Investigation on Electromagnetic Noise in Permanent Magnet Brushless Motors for Hybrid Vehicles
Detiled Invetigtion on Electromgnetic Noie in Permnent Mgnet Bruhle Motor for Hybrid Vehicle Von der Fkultät für Ingenieurwienchften Abteilung Mchinenbu und Verfhrentechnik der Univerität Duiburg-Een zur
Graphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
Experiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review
Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 [email protected] December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1
Morningstar Fixed Income Style Box TM Methodology
Morningtar Fixed Income Style Box TM Methodology Morningtar Methodology Paper Augut 3, 00 00 Morningtar, Inc. All right reerved. The information in thi document i the property of Morningtar, Inc. Reproduction
Analysis of Mesostructure Unit Cells Comprised of Octet-truss Structures
Analyi of Meotructure Unit Cell Compried of Octet-tru Structure Scott R. Johnton *, Marque Reed *, Hongqing V. Wang, and David W. Roen * * The George W. Woodruff School of Mechanical Engineering, Georgia
A technical guide to 2014 key stage 2 to key stage 4 value added measures
A technical guide to 2014 key tage 2 to key tage 4 value added meaure CONTENTS Introduction: PAGE NO. What i value added? 2 Change to value added methodology in 2014 4 Interpretation: Interpreting chool
Engineer-to-Engineer Note
Engineer-to-Engineer Note EE-280 Technicl notes on using Anlog Devices DSPs, processors nd development tools Visit our Web resources http://www.nlog.com/ee-notes nd http://www.nlog.com/processors or e-mil
Uplift Capacity of K-Series Open Web Steel Joist Seats. Florida, Gainesville, FL 32611; email: [email protected]
Uplift Cpcity of K-Series Open Web Steel Joist Sets Perry S. Green, Ph.D, M.ASCE 1 nd Thoms Sputo, Ph.D., P.E., M.ASCE 2 1 Assistnt Professor, Deprtment of Civil nd Costl Engineering, University of Florid,
Control of Wireless Networks with Flow Level Dynamics under Constant Time Scheduling
Control of Wirele Network with Flow Level Dynamic under Contant Time Scheduling Long Le and Ravi R. Mazumdar Department of Electrical and Computer Engineering Univerity of Waterloo,Waterloo, ON, Canada
THE FLEXURE AND SHEAR DESIGN OF CORBEL (BRACKET)
http://silsipil96.blogspot.com/ [email protected] CHPTER 11 THE FLEXURE ND SHER DESIGN OF CORBEL (BRCKET 11.1 INTRODUCTION Corbel or brcket is reinorce concrete member is short-hnche cntilever se to spport
www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)
www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input
ANALYTICAL FORMULAS FOR OPTIONS EMBEDDED IN LIFE INSURANCE POLICIES
ANALYTICAL FORMULAS FOR OPTIONS EMBEDDED IN LIFE INSURANCE POLICIES Vnnucci Emnuele Dip.to di Sttitic e Mtemtic Applict ll Economi, Univerità di Pi (Preenting nd correponding uthor) Vi C. Ridolfi, - 564
Assessment of the structural integrity of cracked cylindrical geometries applying the EVTUBAG program
Rev. Téc. ng. Univ. Zuli. Vol. 32, Nº 3, 190-199, 2009 Assessment of the structurl integrity of crcked cylindricl geometries pplying the EVTUBAG progrm Luis Héctor Hernández Gómez 1, Guilllermo Urriolgoiti
Assessing the Discriminatory Power of Credit Scores
Aeing the Dicriminatory Power of Credit Score Holger Kraft 1, Gerald Kroiandt 1, Marlene Müller 1,2 1 Fraunhofer Intitut für Techno- und Wirtchaftmathematik (ITWM) Gottlieb-Daimler-Str. 49, 67663 Kaierlautern,
Distributions. (corresponding to the cumulative distribution function for the discrete case).
Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive
Factoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
All pay auctions with certain and uncertain prizes a comment
CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 1-2015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin
LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.
LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 64-83.
CHARACTERISTICS OF WAITING LINE MODELS THE INDICATORS OF THE CUSTOMER FLOW MANAGEMENT SYSTEMS EFFICIENCY
Annale Univeritati Apuleni Serie Oeconomica, 2(2), 200 CHARACTERISTICS OF WAITING LINE MODELS THE INDICATORS OF THE CUSTOMER FLOW MANAGEMENT SYSTEMS EFFICIENCY Sidonia Otilia Cernea Mihaela Jaradat 2 Mohammad
Bi-Objective Optimization for the Clinical Trial Supply Chain Management
Ian David Lockhart Bogle and Michael Fairweather (Editor), Proceeding of the 22nd European Sympoium on Computer Aided Proce Engineering, 17-20 June 2012, London. 2012 Elevier B.V. All right reerved. Bi-Objective
BUILT-IN DUAL FREQUENCY ANTENNA WITH AN EMBEDDED CAMERA AND A VERTICAL GROUND PLANE
Progre In Electromagnetic Reearch Letter, Vol. 3, 51, 08 BUILT-IN DUAL FREQUENCY ANTENNA WITH AN EMBEDDED CAMERA AND A VERTICAL GROUND PLANE S. H. Zainud-Deen Faculty of Electronic Engineering Menoufia
A Resolution Approach to a Hierarchical Multiobjective Routing Model for MPLS Networks
A Reolution Approach to a Hierarchical Multiobjective Routing Model for MPLS Networ Joé Craveirinha a,c, Rita Girão-Silva a,c, João Clímaco b,c, Lúcia Martin a,c a b c DEEC-FCTUC FEUC INESC-Coimbra International
QUADRATURE METHODS. July 19, 2011. Kenneth L. Judd. Hoover Institution
QUADRATURE METHODS Kenneth L. Judd Hoover Institution July 19, 2011 1 Integrtion Most integrls cnnot be evluted nlyticlly Integrls frequently rise in economics Expected utility Discounted utility nd profits
The International Association for the Properties of Water and Steam. Release on the Ionization Constant of H 2 O
The Interntionl Assocition for the Properties of Wter nd Stem Lucerne, Sitzerlnd August 7 Relese on the Ioniztion Constnt of H O 7 The Interntionl Assocition for the Properties of Wter nd Stem Publiction
** Dpt. Chemical Engineering, Kasetsart University, Bangkok 10900, Thailand
Modelling nd Simultion of hemicl Processes in Multi Pulse TP Experiment P. Phnwdee* S.O. Shekhtmn +. Jrungmnorom** J.T. Gleves ++ * Dpt. hemicl Engineering, Ksetsrt University, Bngkok 10900, Thilnd + Dpt.hemicl
The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism.
Instrutor: Longfei Li Mth 43 Leture Notes 16. Line Integrls The invention of line integrls is motivted by solving problems in fluid flow, fores, eletriity nd mgnetism. Line Integrls of Funtion We n integrte
addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix.
APPENDIX A: The ellipse August 15, 1997 Becuse of its importnce in both pproximting the erth s shpe nd describing stellite orbits, n informl discussion of the ellipse is presented in this ppendix. The
Applications to Physics and Engineering
Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics
6.2 Volumes of Revolution: The Disk Method
mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of
MBA 570x Homework 1 Due 9/24/2014 Solution
MA 570x Homework 1 Due 9/24/2014 olution Individual work: 1. Quetion related to Chapter 11, T Why do you think i a fund of fund market for hedge fund, but not for mutual fund? Anwer: Invetor can inexpenively
Solutions to Sample Problems for Test 3
22 Differential Equation Intructor: Petronela Radu November 8 25 Solution to Sample Problem for Tet 3 For each of the linear ytem below find an interval in which the general olution i defined (a) x = x
Performance of Multiple TFRC in Heterogeneous Wireless Networks
Performance of Multiple TFRC in Heterogeneou Wirele Network 1 Hyeon-Jin Jeong, 2 Seong-Sik Choi 1, Firt Author Computer Engineering Department, Incheon National Univerity, [email protected] *2,Correponding
Integration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
MECH 2110 - Statics & Dynamics
Chapter D Problem 3 Solution 1/7/8 1:8 PM MECH 11 - Static & Dynamic Chapter D Problem 3 Solution Page 7, Engineering Mechanic - Dynamic, 4th Edition, Meriam and Kraige Given: Particle moving along a traight
PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
Providing Protection in Multi-Hop Wireless Networks
Technicl Report, My 03 Proviing Protection in Multi-Hop Wirele Network Greg Kupermn MIT LIDS Cmrige, MA 039 [email protected] Eytn Moino MIT LIDS Cmrige, MA 039 [email protected] Atrct We conier the prolem of proviing
Increasing Q of Waveguide Pulse-Compression Cavities
Circuit nd Electromgnetic System Design Notes Note 61 3 July 009 Incresing Q of Wveguide Pulse-Compression Cvities Crl E. Bum University of New Mexico Deprtment of Electricl nd Computer Engineering Albuquerque
1) Assume that the sample is an SRS. The problem state that the subjects were randomly selected.
12.1 Homework for t Hypothei Tet 1) Below are the etimate of the daily intake of calcium in milligram for 38 randomly elected women between the age of 18 and 24 year who agreed to participate in a tudy
Optical Illusion. Sara Bolouki, Roger Grosse, Honglak Lee, Andrew Ng
Optical Illuion Sara Bolouki, Roger Groe, Honglak Lee, Andrew Ng. Introduction The goal of thi proect i to explain ome of the illuory phenomena uing pare coding and whitening model. Intead of the pare
Numerical Methods of Approximating Definite Integrals
6 C H A P T E R Numericl Methods o Approimting Deinite Integrls 6. APPROXIMATING SUMS: L n, R n, T n, AND M n Introduction Not only cn we dierentite ll the bsic unctions we ve encountered, polynomils,
Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006
dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.
Reinforced Concrete Design RECTANGULAR R/C CONCRETE BEAMS: TENSION STEEL ONLY
CHAPTER Reinored Conrete Deign RECTANGULAR R/C CONCRETE BEAMS: TENSION STEEL ONLY Fith Edition A. J. Clrk Shool o Engineering Deprtment o Civil nd Environmentl Engineering Prt I Conrete Deign nd Anli b
An efficient integral equation technique for the analysis of arbitrarily shaped capacitive waveguide circuits
RADIO SCIENCE, VOL. 46,, doi:10.1029/2010rs004458, 2011 An efficient integrl eqution technique for the nlysis of rbitrrily shped cpcitive wveguide circuits F. D. Quesd Pereir, 1 P. Ver Cstejón, 1 A. Álvrez
Many physical and chemical processes occur at different interfaces.
Adortion t the olid/g interfce Introduction Mny hyicl nd chemicl rocee occur t different interfce. Adortion (not to be confued with bortion) i one of the min nd bic urfce henomen. Adortion i found to occur
A Spam Message Filtering Method: focus on run time
, pp.29-33 http://dx.doi.org/10.14257/atl.2014.76.08 A Spam Meage Filtering Method: focu on run time Sin-Eon Kim 1, Jung-Tae Jo 2, Sang-Hyun Choi 3 1 Department of Information Security Management 2 Department
PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1
PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.
Analysis of Heat Transfer over a Stretching Rotating Disk by Using Homotopy Analysis Method
Vol. 5(16) Jul. 15, PP. 9-34 Anlysis of Het Trnsfer over Stretching Rotting Disk by Using Hootopy Anlysis Method M. Khki 1 *, E. Dbirin nd D.D. Gnji 3 1 Deprtent of Mechnicl Engineering, Islic Azd University,
Sensorless Force Estimation for Robots with Friction
Proc. Austrlsin Conference on Rootics nd Automtion Aucklnd, 7-9 Novemer Sensorless orce Estimtion for Roots with riction John W.L Simpson, Chris D Cook, Zheng Li School of Electricl, Computer nd Telecommunictions
Growing Self-Organizing Maps for Surface Reconstruction from Unstructured Point Clouds
Growing Self-Organizing Map for Surface Recontruction from Untructured Point Cloud Renata L. M. E. do Rêgo, Aluizio F. R. Araújo, and Fernando B.de Lima Neto Abtract Thi work introduce a new method for
Research Article An (s, S) Production Inventory Controlled Self-Service Queuing System
Probability and Statitic Volume 5, Article ID 558, 8 page http://dxdoiorg/55/5/558 Reearch Article An (, S) Production Inventory Controlled Self-Service Queuing Sytem Anoop N Nair and M J Jacob Department
Economics Letters 65 (1999) 9 15. macroeconomists. a b, Ruth A. Judson, Ann L. Owen. Received 11 December 1998; accepted 12 May 1999
Economics Letters 65 (1999) 9 15 Estimting dynmic pnel dt models: guide for q mcroeconomists b, * Ruth A. Judson, Ann L. Owen Federl Reserve Bord of Governors, 0th & C Sts., N.W. Wshington, D.C. 0551,
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
Exponential and Logarithmic Functions
Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define
Transient turbulent flow in a pipe
Tranient turbulent flow in a pipe M. S. Ghidaoui A. A. Kolyhkin Rémi Vaillancourt CRM-3176 January 25 Thi work wa upported in part by the Latvian Council of Science, project 4.1239, the Natural Science
9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
PHY 140A: Solid State Physics. Solution to Homework #2
PHY 140A: Solid Stte Physics Solution to Homework # TA: Xun Ji 1 October 14, 006 1 Emil: [email protected] Problem #1 Prove tht the reciprocl lttice for the reciprocl lttice is the originl lttice.
Chapter 10 Stocks and Their Valuation ANSWERS TO END-OF-CHAPTER QUESTIONS
Chapter Stoc and Their Valuation ANSWERS TO EN-OF-CHAPTER QUESTIONS - a. A proxy i a document giving one peron the authority to act for another, typically the power to vote hare of common toc. If earning
International Journal of Heat and Mass Transfer
International Journal of Heat and Ma Tranfer 5 (9) 14 144 Content lit available at ScienceDirect International Journal of Heat and Ma Tranfer journal homepage: www.elevier.com/locate/ijhmt Technical Note
Linear energy-preserving integrators for Poisson systems
BIT manucript No. (will be inerted by the editor Linear energy-preerving integrator for Poion ytem David Cohen Ernt Hairer Received: date / Accepted: date Abtract For Hamiltonian ytem with non-canonical
Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.
The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only
