a Data Science Univ. Piraeus [GR]
|
|
|
- Bernadette Manning
- 10 years ago
- Views:
Transcription
1 a Data Science Univ. Piraeus [GR] The Data Science Lab members June 2015 What is Data Science source: quora.com! Looking at data! Tools and methods used to analyze large amounts of data! Anything you can do to get knowledge out of data! finding and gathering data,! data mining and preprocessing,! EDA, statistics, machine learning,! natural language processing,! data visualization, 2
2 A short of history source: wikipedia.org! (1997) C.F. Jeff Wu gave the inaugural lecture entitled Statistics = Data Science? at the Univ. Michigan, and advocated that statistics be renamed data science and statisticians data scientists.! (2001) W.S. Cleveland introduced the notion of data science as an independent discipline, extending the field of statistics to incorporate advances in computing with data! (2008) D.J. Patil and J. Hammerbacher coined the term "data scientist" to define their jobs at LinkedIn and Facebook, resp. 3 Data Science is multi-disciplinary image source: 4
3 Data Scientist is a key player has been called as the sexiest job of the 21st century (*) (*) T.H. Davenport & D.J. Patil (2012) HBR 5 image source: Who we are! 8 faculty from! 4 departments Statistics & Insurance Sc. Maritime Studies Digital Systems Informatics 6
4 What we aim at! 3 pillars Education: Research: Networking:! Train our students to become highly-skilled Data Scientists! Advance research in Data Science / Big Data Analytics! Develop skills and competencies in modern Big Data exploration! Co-advise PhD students and postdoc researchers! Establish a sustainable network of researchers and practitioners in the field! Our overall goal: to join UniPi forces towards excellence in this emerging interdisciplinary domain!! 7 Main research topics! Big data management! Mining massive datasets! Data, text, audio analytics! Mobility data exploration! Social network analysis! Semantic integration! Data privacy! Data visualization 8
5 Projects and prototypes 9 DataStories seminar series 10
6 Useful links - I! Events:! IEEE Int. Conf. on Data Science and Advanced Analytics! IEEE Int. Conf. on Big Data!! Journals:! IEEE Trans. Big Data (IEEE)! Data Science & Analytics (Springer)! Big Data Research (Elsevier)! 11 Useful links - II! Textbooks, Monographs, Reports:! H.V. Jagadish et al. (2014) Big Data and its Technical Challenges! W.H. Inmon & D. Linstedt (2014) Data Architecture: A Primer for the Data Scientist: Big Data, Data Warehouse and Data Vault! J. Hopcroft & R. Kannan (2014) Foundations of Data Science! A.M. Townsend (2013) Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia! M. Stonebraker (2012) What Does Big Data Mean?! M. Loukides (2010) What is Data Science?! T. Hey et al. (eds.) (2009) The Fourth Paradigm: Data-Intensive Scientific Discovery! 12
7 Contact us! Are you a student?! We are seeking motivated students (at MSc or PhD level) to work with on DataSci-related topics! Are you a colleague from academia or a person from industry or public sector?! We are happy to present our activities and discuss potential collaboration If interested, send an [email protected] In any case, stay diploma theses proposals! Empirical Comparison of Complex Event Recognition Engines! Complex Event Recognition for Maritime Surveillance! Reasoning with ontologies for real time event recognition! ChoroChronos! Cleaning and Prediction of Trajectory Data! Context aware recommendation techniques! Hermoupolis: On the Simulation of our LifeSteps! Hospital Performance Based on Financial and Clinical Data! Partitioning of RDF graphs! Reverse Top k Queries for Fast Data! Semantic data integration! Sentiment Analysis on Twitter Data! Spatio Temporal Textual Data Management on Twitter Data! Health Data Analytics! Data Clustering on the Million Song Dataset 14
Computational Science and Informatics (Data Science) Programs at GMU
Computational Science and Informatics (Data Science) Programs at GMU Kirk Borne George Mason University School of Physics, Astronomy, & Computational Sciences http://spacs.gmu.edu/ Outline Graduate Program
Oracle Big Data Strategy Simplified Infrastrcuture
Big Data Oracle Big Data Strategy Simplified Infrastrcuture Selim Burduroğlu Global Innovation Evangelist & Architect Education & Research Industry Business Unit Oracle Confidential Internal/Restricted/Highly
UNIVERSITY OF INFINITE AMBITIONS. MASTER OF SCIENCE COMPUTER SCIENCE DATA SCIENCE AND SMART SERVICES
UNIVERSITY OF INFINITE AMBITIONS. MASTER OF SCIENCE COMPUTER SCIENCE DATA SCIENCE AND SMART SERVICES MASTER S PROGRAMME COMPUTER SCIENCE - DATA SCIENCE AND SMART SERVICES (DS3) This is a specialization
3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India
3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India Call for Papers Cloud computing has emerged as a de facto computing
Manjula Ambur NASA Langley Research Center April 2014
Manjula Ambur NASA Langley Research Center April 2014 Outline What is Big Data Vision and Roadmap Key Capabilities Impetus for Watson Technologies Content Analytics Use Potential use cases What is Big
I. Justification and Program Goals
MS in Data Science proposed by Department of Computer Science, B. Thomas Golisano College of Computing and Information Sciences Department of Information Sciences and Technologies, B. Thomas Golisano College
International Journal of Engineering Research ISSN: 2348-4039 & Management Technology November-2015 Volume 2, Issue-6
International Journal of Engineering Research ISSN: 2348-4039 & Management Technology Email: [email protected] November-2015 Volume 2, Issue-6 www.ijermt.org Modeling Big Data Characteristics for Discovering
Big Data Management Assessed Coursework Two Big Data vs Semantic Web F21BD
Big Data Management Assessed Coursework Two Big Data vs Semantic Web F21BD Boris Mocialov (H00180016) MSc Software Engineering Heriot-Watt University, Edinburgh April 5, 2015 1 1 Introduction The purpose
RFI Summary: Executive Summary
RFI Summary: Executive Summary On February 20, 2013, the NIH issued a Request for Information titled Training Needs In Response to Big Data to Knowledge (BD2K) Initiative. The response was large, with
CLUSTER ANALYSIS WITH R
CLUSTER ANALYSIS WITH R [cluster analysis divides data into groups that are meaningful, useful, or both] LEARNING STAGE ADVANCED DURATION 3 DAY WHAT IS CLUSTER ANALYSIS? Cluster Analysis or Clustering
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# So What is Data Science?" Doing Data Science" Data Preparation" Roles" This Lecture" What is Data Science?" Data Science aims to derive knowledge!
Big Data and Semantic Web in Manufacturing. Nitesh Khilwani, PhD Chief Engineer, Samsung Research Institute Noida, India
Big Data and Semantic Web in Manufacturing Nitesh Khilwani, PhD Chief Engineer, Samsung Research Institute Noida, India Outline Big data in Manufacturing Big data Analytics Semantic web technologies Case
An interdisciplinary model for analytics education
An interdisciplinary model for analytics education Raffaella Settimi, PhD School of Computing, DePaul University Drew Conway s Data Science Venn Diagram http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
Big Data Governance Certification Self-Study Kit Bundle
Big Data Governance Certification Bundle This certification bundle provides you with the self-study materials you need to prepare for the exams required to complete the Big Data Governance Certification.
Discover Viterbi: New Programs in Computer Science
Discover Viterbi: New Programs in Computer Science Gaurav S. Sukhatme Professor and Chairman USC Computer Science Department Meghan McKenna Balding Graduate & Professional Programs April 23, 2013 WebEx
MLg. Big Data and Its Implication to Research Methodologies and Funding. Cornelia Caragea TARDIS 2014. November 7, 2014. Machine Learning Group
Big Data and Its Implication to Research Methodologies and Funding Cornelia Caragea TARDIS 2014 November 7, 2014 UNT Computer Science and Engineering Data Everywhere Lots of data is being collected and
Industry 4.0 and Big Data
Industry 4.0 and Big Data Marek Obitko, [email protected] Senior Research Engineer 03/25/2015 PUBLIC PUBLIC - 5058-CO900H 2 Background Joint work with Czech Institute of Informatics, Robotics and
Introduction to Data Science: CptS 483-06 Syllabus First Offering: Fall 2015
Course Information Introduction to Data Science: CptS 483-06 Syllabus First Offering: Fall 2015 Credit Hours: 3 Semester: Fall 2015 Meeting times and location: MWF, 12:10 13:00, Sloan 163 Course website:
The Data Engineer. Mike Tamir Chief Science Officer Galvanize. Steven Miller Global Leader Academic Programs IBM Analytics
The Data Engineer Mike Tamir Chief Science Officer Galvanize Steven Miller Global Leader Academic Programs IBM Analytics Alessandro Gagliardi Lead Faculty Galvanize Businesses are quickly realizing that
Discover Viterbi: Computer Science
Discover Viterbi: Computer Science Gaurav S. Sukhatme Professor and Chairman USC Computer Science Department Meghan Balding Graduate & Professional Programs November 2, 2015 WebEx Quick Facts Will I be
A Statistical Text Mining Method for Patent Analysis
A Statistical Text Mining Method for Patent Analysis Department of Statistics Cheongju University, [email protected] Abstract Most text data from diverse document databases are unsuitable for analytical
Indian Journal of Science The International Journal for Science ISSN 2319 7730 EISSN 2319 7749 2016 Discovery Publication. All Rights Reserved
Indian Journal of Science The International Journal for Science ISSN 2319 7730 EISSN 2319 7749 2016 Discovery Publication. All Rights Reserved Perspective Big Data Framework for Healthcare using Hadoop
Statistics for BIG data
Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSA-Bulletine 2014) Before
Lluis Belanche + Alfredo Vellido. Intelligent Data Analysis and Data Mining
Lluis Belanche + Alfredo Vellido Intelligent Data Analysis and Data Mining a.k.a. Data Mining II Office 319, Omega, BCN EET, office 107, TR 2, Terrassa [email protected] skype, gtalk: avellido Tels.:
Computer Science Electives and Clusters
Course Number CSCI- Computer Science Electives and Clusters Computer Science electives belong to one or more groupings called clusters. Undergraduate students with the proper prerequisites are permitted
Chapter ML:XI. XI. Cluster Analysis
Chapter ML:XI XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained Cluster
A Multitier Fraud Analytics and Detection Approach
A Multitier Fraud Analytics and Detection Approach Jay Schindler, PhD MPH DISCLAIMER: The views and opinions expressed in this presentation are those of the author and do not necessarily represent official
Biomedical Informatics: Computer Applications in Health Care and Biomedicine
An Overview of Biomedical Date 1/19/06 Biomedical : Computer Applications in Health Care and Biomedicine Edward H. Shortliffe, MD, PhD Department of Biomedical Columbia University Asian Pacific Association
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
Complexity and Scalability in Semantic Graph Analysis Semantic Days 2013
Complexity and Scalability in Semantic Graph Analysis Semantic Days 2013 James Maltby, Ph.D 1 Outline of Presentation Semantic Graph Analytics Database Architectures In-memory Semantic Database Formulation
A Capability Maturity Model for Scientific Data Management
A Capability Maturity Model for Scientific Data Management 1 A Capability Maturity Model for Scientific Data Management Kevin Crowston & Jian Qin School of Information Studies, Syracuse University July
Big Data Governance Certification Self-Study Kit Bundle
Big Data Governance Certification Bundle This certification bundle provides you with the self-study materials you need to prepare for the exams required to complete the Big Data Governance Certification.
Data Warehousing in the Age of Big Data
Data Warehousing in the Age of Big Data Krish Krishnan AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD * PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Morgan Kaufmann is an imprint of Elsevier
Business Intelligence: Recent Experiences in Canada
Business Intelligence: Recent Experiences in Canada Leopoldo Bertossi Carleton University School of Computer Science Ottawa, Canada : Faculty Fellow of the IBM Center for Advanced Studies 2 Business Intelligence
Federico Rajola. Customer Relationship. Management in the. Financial Industry. Organizational Processes and. Technology Innovation.
Federico Rajola Customer Relationship Management in the Financial Industry Organizational Processes and Technology Innovation Second edition ^ Springer Contents 1 Introduction 1 1.1 Identification and
Professional Education for the Future of Health Informatics. Charles P. Friedman, PhD Schools of Information and Public Health University of Michigan
Professional Education for the Future of Health Informatics Charles P. Friedman, PhD Schools of Information and Public Health University of Michigan 1 Today s Menu What informatics is and isn t Informatics
Certificate Program in Applied Big Data Analytics in Dubai. A Collaborative Program offered by INSOFE and Synergy-BI
Certificate Program in Applied Big Data Analytics in Dubai A Collaborative Program offered by INSOFE and Synergy-BI Program Overview Today s manager needs to be extremely data savvy. They need to work
Database Marketing, Business Intelligence and Knowledge Discovery
Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski
Resume. Dr. Vedat COSKUN. Organisational E-mail Personal E-mail Personal Web Site Research Lab Web Site
Resume Dr. Vedat COSKUN Organisational E-mail Personal E-mail Personal Web Site Research Lab Web Site [email protected] [email protected] www.vedatcoskun.com www.nfclab.com Dr. Vedat Coskun is
Big Data Analytics. Prof. Dr. Lars Schmidt-Thieme
Big Data Analytics Prof. Dr. Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany 33. Sitzung des Arbeitskreises Informationstechnologie,
How To Become A Data Scientist
Programme Specification Awarding Body/Institution Teaching Institution Queen Mary, University of London Queen Mary, University of London Name of Final Award and Programme Title Master of Science (MSc)
1 st Symposium on Colossal Data and Networking (CDAN-2016) March 18-19, 2016 Medicaps Group of Institutions, Indore, India
1 st Symposium on Colossal Data and Networking (CDAN-2016) March 18-19, 2016 Medicaps Group of Institutions, Indore, India Call for Papers Colossal Data Analysis and Networking has emerged as a de facto
COMP9321 Web Application Engineering
COMP9321 Web Application Engineering Semester 2, 2015 Dr. Amin Beheshti Service Oriented Computing Group, CSE, UNSW Australia Week 11 (Part II) http://webapps.cse.unsw.edu.au/webcms2/course/index.php?cid=2411
Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov
Search and Data Mining: Techniques Applications Anya Yarygina Boris Novikov Introduction Data mining applications Data mining system products and research prototypes Additional themes on data mining Social
Workprogramme 2014-15
Workprogramme 2014-15 e-infrastructures DCH-RP final conference 22 September 2014 Wim Jansen einfrastructure DG CONNECT European Commission DEVELOPMENT AND DEPLOYMENT OF E-INFRASTRUCTURES AND SERVICES
Chapter 2 Big Data Panel at SIGDSS Pre-ICIS Conference 2013: A Swiss-Army Knife? The Profile of a Data Scientist
Chapter 2 Big Data Panel at SIGDSS Pre-ICIS Conference 2013: A Swiss-Army Knife? The Profile of a Data Scientist Barbara Dinter, David Douglas, Roger H.L. Chiang, Francesco Mari, Sudha Ram, and Detlef
EXPLORE THE WORLD OF BIG DATA
EXPLORE THE WORLD OF BIG DATA DATA ENGINEERING (MSc) GRADUATE PROGRAM BIG DATA AND DATA ENGINEERING Big data has turned out to have giant potential, but poses major challenges at the same time. On the
Information Processing, Big Data, and the Cloud
Information Processing, Big Data, and the Cloud James Horey Computational Sciences & Engineering Oak Ridge National Laboratory Fall Creek Falls 2010 Information Processing Systems Model Parameters Data-intensive
SPATIAL DATA CLASSIFICATION AND DATA MINING
, pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal
David G. Belanger, PhD, Senior Research Fellow, Stevens Institute of Technology, New Jersey, USA Topic: Big Data - The Next Phase Abstract
David G. Belanger, PhD, Senior Research Fellow, Stevens Institute of Technology, New Jersey, USA Dr. David Belanger is currently a Senior Research Fellow at Stevens Institute of Technology. In this role
EDISON Education for Data Intensive Science to Open New science frontiers
H2020 INFRASUPP-4 CSA Project EDISON Education for Data Intensive Science to Open New science frontiers Yuri Demchenko University of Amsterdam Outline Consortium members EDISON Project Concept and Objectives
Big Data Challenges and Success Factors. Deloitte Analytics Your data, inside out
Big Data Challenges and Success Factors Deloitte Analytics Your data, inside out Big Data refers to the set of problems and subsequent technologies developed to solve them that are hard or expensive to
PACE Predictive Analytics Center of Excellence @ San Diego Supercomputer Center, UCSD. Natasha Balac, Ph.D.
PACE Predictive Analytics Center of Excellence @ San Diego Supercomputer Center, UCSD Natasha Balac, Ph.D. Brief History of SDSC 1985-1997: NSF national supercomputer center; managed by General Atomics
Sunnie Chung. Cleveland State University
Sunnie Chung Cleveland State University Data Scientist Big Data Processing Data Mining 2 INTERSECT of Computer Scientists and Statisticians with Knowledge of Data Mining AND Big data Processing Skills:
Data Driven Discovery In the Social, Behavioral, and Economic Sciences
Data Driven Discovery In the Social, Behavioral, and Economic Sciences Simon Appleford, Marshall Scott Poole, Kevin Franklin, Peter Bajcsy, Alan B. Craig, Institute for Computing in the Humanities, Arts,
DISIT Lab, competence and project idea on bigdata. reasoning
DISIT Lab, competence and project idea on bigdata knowledge modeling, OD/LD and reasoning Paolo Nesi Dipartimento di Ingegneria dell Informazione, DINFO Università degli Studi di Firenze Via S. Marta 3,
Big Data Analytics. Lucas Rego Drumond
Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Big Data Analytics Big Data Analytics 1 / 36 Outline
Subject Description Form
Subject Description Form Subject Code Subject Title COMP417 Data Warehousing and Data Mining Techniques in Business and Commerce Credit Value 3 Level 4 Pre-requisite / Co-requisite/ Exclusion Objectives
Automating Big Data Management, by DISIT Lab Distributed [Systems and Internet, Data Intelligence] Technologies Lab Prof. Ph.D. Eng.
Automating Big Data Management, by DISIT Lab Distributed [Systems and Internet, Data Intelligence] Technologies Lab Prof. Ph.D. Eng. Paolo Nesi Dipartimento di Ingegneria dell Informazione, DINFO Università
Data Science Certificate Program
Information Technologies Programs Data Science Certificate Program Accelerate Your Career extension.uci.edu/datascience Offered in partnership with University of California, Irvine Extension s professional
Proposal for the Theme on Big Data. Analytics. Qiang Yang, HKUST Jiannong Cao, PolyU Qi-man Shao, CUHK. May 2015
Proposal for the Theme on Big Data Analytics May 2015 Qiang Yang, HKUST Jiannong Cao, PolyU Qi-man Shao, CUHK Motivation The world's technological per-capita capacity to store information doubled every
Towards Multi-modal Cognitive Big Data Informatics: Real World Case Studies & Future Challenges Professor AMIR HUSSAIN, PhD, Fellow UK HEA, Senior Member IEEE Founding Chief-Editor: Cognitive Computation
Programme Specification Postgraduate Programmes
Programme Specification Postgraduate Programmes Awarding Body/Institution Teaching Institution University of London Goldsmiths, University of London Name of Final Award and Programme Title MSc Data Science
Big Data and Science: Myths and Reality
Big Data and Science: Myths and Reality H.V. Jagadish http://www.eecs.umich.edu/~jag Six Myths about Big Data It s all hype It s all about size It s all analysis magic Reuse is easy It s the same as Data
Curriculum of the research and teaching activities. Matteo Golfarelli
Curriculum of the research and teaching activities Matteo Golfarelli The curriculum is organized in the following sections I Curriculum Vitae... page 1 II Teaching activity... page 2 II.A. University courses...
Crowdsourcing for Big Data Analytics
KYOTO UNIVERSITY Crowdsourcing for Big Data Analytics Hisashi Kashima (Kyoto University) Satoshi Oyama (Hokkaido University) Yukino Baba (Kyoto University) DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY
REGULATIONS AND CURRICULUM FOR THE MASTER S PROGRAMME IN INFORMATION ARCHITECTURE FACULTY OF HUMANITIES AALBORG UNIVERSITY
REGULATIONS AND CURRICULUM FOR THE MASTER S PROGRAMME IN INFORMATION ARCHITECTURE FACULTY OF HUMANITIES AALBORG UNIVERSITY SEPTEMBER 2015 Indhold PART 1... 4 PRELIMINARY REGULATIONS... 4 Section 1 Legal
Collaborations between Official Statistics and Academia in the Era of Big Data
Collaborations between Official Statistics and Academia in the Era of Big Data World Statistics Day October 20-21, 2015 Budapest Vijay Nair University of Michigan Past-President of ISI [email protected] What
Big Data and Analytics: Challenges and Opportunities
Big Data and Analytics: Challenges and Opportunities Dr. Amin Beheshti Lecturer and Senior Research Associate University of New South Wales, Australia (Service Oriented Computing Group, CSE) Talk: Sharif
Ph.D. in Bioinformatics and Computational Biology Degree Requirements
Ph.D. in Bioinformatics and Computational Biology Degree Requirements Credits Students pursuing the doctoral degree in BCB must complete a minimum of 90 credits of relevant work beyond the bachelor s degree;
Software Engineering for Big Data. CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo
Software Engineering for Big Data CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo Big Data Big data technologies describe a new generation of technologies that aim
Preliminary Syllabus for the course of Data Science for Business Analytics
Preliminary Syllabus for the course of Data Science for Business Analytics Miguel Godinho de Matos 1,2 and Pedro Ferreira 2,3 1 Cato_lica-Lisbon, School of Business and Economics 2 Heinz College, Carnegie
LINKED DATA EXPERIENCE AT MACMILLAN Building discovery services for scientific and scholarly content on top of a semantic data model
LINKED DATA EXPERIENCE AT MACMILLAN Building discovery services for scientific and scholarly content on top of a semantic data model 22 October 2014 Tony Hammond Michele Pasin Background About Macmillan
DATA MINING TECHNOLOGY. Keywords: data mining, data warehouse, knowledge discovery, OLAP, OLAM.
DATA MINING TECHNOLOGY Georgiana Marin 1 Abstract In terms of data processing, classical statistical models are restrictive; it requires hypotheses, the knowledge and experience of specialists, equations,
Good morning. It is a pleasure to be with you here today to talk about the value and promise of Big Data.
Good morning. It is a pleasure to be with you here today to talk about the value and promise of Big Data. 1 Advances in information technologies are transforming the fabric of our society and data represent
Big Data Management and Analytics
Big Data Management and Analytics Lecture Notes Winter semester 2015 / 2016 Ludwig-Maximilians-University Munich Prof. Dr. Matthias Renz 2015 Based on lectures by Donald Kossmann (ETH Zürich), as well
Your door to future governance solutions
Your door to future governance solutions www.egovlab.eu 2 3 not just in theory but also in practice 4 5 www.egovlab.eu * Word from egovlab s director Vasilis Koulolias: The power of information and communication
College of Health and Human Services. Fall 2013. Syllabus
College of Health and Human Services Fall 2013 Syllabus information placement Instructor description objectives HAP 780 : Data Mining in Health Care Time: Mondays, 7.20pm 10pm (except for 3 rd lecture
IMPROVING BUSINESS PROCESS MODELING USING RECOMMENDATION METHOD
Journal homepage: www.mjret.in ISSN:2348-6953 IMPROVING BUSINESS PROCESS MODELING USING RECOMMENDATION METHOD Deepak Ramchandara Lad 1, Soumitra S. Das 2 Computer Dept. 12 Dr. D. Y. Patil School of Engineering,(Affiliated
