Mastering Big Data. Steve Hoskin, VP and Chief Architect INFORMATICA MDM. October 2015
|
|
|
- Kory Gregory
- 10 years ago
- Views:
Transcription
1 Mastering Big Data Steve Hoskin, VP and Chief Architect INFORMATICA MDM October 2015
2 Agenda About Big Data MDM and Big Data The Importance of Relationships Big Data Use Cases
3 About Big Data Big Data is the term for a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications. Big Data is also sometimes used as a generic label for the Hadoop frameworks that allow for the processing and management of these data sets
4 Need for Hadoop
5 HDFS is not the only place for Big Data
6 Big Data Stack without Big Data? Don t need really Big Data to be able to gain the benefits of the Big Data Stack Scalable batch execution environment Reduced database costs Open source projects provide capabilities Machine Learning Graph Analytics
7 Downsides? Numerous distributions with frequent releases Steep learning curves Solutions only work for the 80% - how to build the rest? Currently better suited to analytics than operational use cases Its just tooling still need to build/buy business solutions So many choices, potential dead-ends Requires different hardware deployment
8 A Master Data Management Primer Data Acquisition Data Quality and Enrichment Authoring Matching & Deduplication Relationship Discovery and Management Survivorship - aka Golden Record and Best Version of Truth Search Workflow Governance Real-time consumption Publishing and consumption
9 Hadoop is a good fit for these MDM functions Today Data Acquisition Data Quality and Enrichment Authoring Matching & Deduplication Relationship Discovery and Management Survivorship - aka Golden Record and Best Version of Truth Search Workflow Governance Operational consumption Publishing
10 Intelligent Layers of Big Data Catalog, Relate & Score Big Data Catalog
11 Intelligent Layers of Big Data Organize, Fix & Enrich Trusted Reference Data Catalog, Relate & Score Big Data Catalog
12 Intelligent Layers of Big Data De-dup, Enrich & Relate Big Data Relationship Management Organize, Fix & Enrich Trusted Reference Data Catalog, Relate & Score Big Data Catalog
13 Intelligent Layers of Big Data Big Data Consumption and Analytics De-dup, Enrich & Relate Big Data Relationship Management Organize, Fix & Enrich Trusted Reference Data Catalog, Relate & Score Big Data Catalog
14 What data do we have, and how useful is it? Content Inference Sensitive Data Tracking Stewardship Smart Suggestions Crawl Index Cluster Classify Relate Infer Semantics Catalog of Data Assets Relationships Quality Score Statistics Rules Glossary Ratings All IT Repositories Applications, Business Semantics 3rd Party BI, Modeling, Big Data User Ratings, Feedback, Operational Stats
15 Big Data Quality Make Sense of Big Data Ingest Deliver
16 Big Data Quality Make Sense of Big Data Explore: Identify common patterns Find outliers Help ask the right questions Ingest Deliver
17 Big Data Quality Make Sense of Big Data Explore: Identify common patterns Find outliers Help ask the right questions Recommend: Suggest actions based on the data Recommend the next best step Predict outcomes Ingest Deliver
18 Big Data Quality Make Sense of Big Data Explore: Identify common patterns Find outliers Help ask the right questions Recommend: Suggest actions based on the data Recommend the next best step Predict outcomes Learn: From system recommendations From user actions From data itself Ingest Deliver
19 Big Data Quality Make Sense of Big Data Explore: Identify common patterns Find outliers Help ask the right questions Recommend: Suggest actions based on the data Recommend the next best step Predict outcomes Learn: From system recommendations From user actions From data itself Ingest Deliver
20 Relationships & Social MDM
21 Relationships & Social MDM John Q. Jones 1 John Quincy Jones Jonathan Quincy Jones Location Product Customer Single Person View ASSERTED Account
22 Relationships & Social MDM John Q. Jones 1 John Quincy Jones Jonathan Quincy Jones Location Product Customer Single Person View ASSERTED Account Purchase History Claims Product Reviews Complaints Payment 2 Family & Business Relationship Transactional Data Social Data View of Person Relationships OBSERVED
23 Relationships & Social MDM John Q. Jones 1 John Quincy Jones Jonathan Quincy Jones Location Product Customer Single Person View ASSERTED Account Purchase History Claims Product Reviews Complaints Payment RFM Calculation Fraud Detection Product Sentiment Customer Churn 2 Family & Business Relationship Transactional Data Social Data View of Person Relationships OBSERVED 3 Customer Segmentation Churn Prediction Sentiment Analysis Fraud Management Complete View of Person Interactions and Predictions DERIVED
24 Relationships & Social MDM John Q. Jones 1 John Quincy Jones Jonathan Quincy Jones Purchase History Claims Product Reviews RFM Calculation Fraud Detection Product Sentiment Governance Visualization Prediction Location Product Customer Single Person View ASSERTED Account Complaints Payment Customer Churn 2 Family & Business Relationship Transactional Data Social Data View of Person Relationships OBSERVED 3 Customer Segmentation Churn Prediction Sentiment Analysis Fraud Management Complete View of Person Interactions and Predictions DERIVED Social MDM
25 MDM Relationships Add Value 17
26 Common Graphs in MDM Organizational Hierarchy Social Network Product Hierarchy
27 Relate Business Entities in MDM Vertex/Node Party, Product, Claims, Complaints etc. BE s Edges Relationship (Accident, Bad Service etc.) Relationship
28 MDM Graph Database Asserted Data Customer BE Party BE Sales Person BE Product BE Observed Data Observed Data MDM GRAPH Transaction Data Relationship Social Data Derived Data Prediction
29 Big Data MDM Use Cases
30 Use Cases Financial Services Fraud Detection Risk & Portfolio Analysis Investment Recommendations Retail & Telco Proactive Customer Engagement Location Based Services Media & Entertainment Online & In-Game Behavior Customer X/Up-Sell Manufacturing Connected Vehicle Predictive Maintenance Healthcare & Pharma Predicting Patient Outcomes Total Cost of Care Drug Discovery Public Sector Health Insurance Exchanges Public Safety Tax Optimization Fraud Detection
31 Large Insurance Company Customer Intelligence Example Input Files 718 Million Records 7Use Cases 10 Nodes Hadoop Cloudera Informatica Datameer Business need Challenge Solution and results 360 degree view of consumers for marketing, planning, and analytics Discover and mine relationships Create highly targeted and individualized marketing programs Rich data environment across organizational business units, comprised of many source systems across various platforms Providing a consistent enterprise view of data across business units Seven use cases with increasing complexity Provides single platform to house customer and prospect data from disparate sources Provides for rapid intake of new data sources (structured and unstructured) Eliminates data intake and append bottleneck Empowers Analysts to explore all data elements Increases processing power for statistical analysis
32 Fraud & Intelligence System Use Case Unrelated Events? MDM can be leveraged to build linear scalable Fraud Management system that provides link analysis, data clustering and also offers very best search and match against large data volume
33 Fraud & Intelligence System Use Case Unrelated Events? Or Fraud MDM can be leveraged to build linear scalable Fraud Management system that provides link analysis, data clustering and also offers very best search and match against large data volume
34 Questions? 25
Bringing Strategy to Life Using an Intelligent Data Platform to Become Data Ready. Informatica Government Summit April 23, 2015
Bringing Strategy to Life Using an Intelligent Platform to Become Ready Informatica Government Summit April 23, 2015 Informatica Solutions Overview Power the -Ready Enterprise Government Imperatives Improve
Ganzheitliches Datenmanagement
Ganzheitliches Datenmanagement für Hadoop Michael Kohs, Senior Sales Consultant @mikchaos The Problem with Big Data Projects in 2016 Relational, Mainframe Documents and Emails Data Modeler Data Scientist
VIEWPOINT. High Performance Analytics. Industry Context and Trends
VIEWPOINT High Performance Analytics Industry Context and Trends In the digital age of social media and connected devices, enterprises have a plethora of data that they can mine, to discover hidden correlations
Understanding Your Customer Journey by Extending Adobe Analytics with Big Data
SOLUTION BRIEF Understanding Your Customer Journey by Extending Adobe Analytics with Big Data Business Challenge Today s digital marketing teams are overwhelmed by the volume and variety of customer interaction
SAP Predictive Analytics: An Overview and Roadmap. Charles Gadalla, SAP @cgadalla SESSION CODE: 603
SAP Predictive Analytics: An Overview and Roadmap Charles Gadalla, SAP @cgadalla SESSION CODE: 603 Advanced Analytics SAP Vision Embed Smart Agile Analytics into Decision Processes to Deliver Business
BEYOND BI: Big Data Analytic Use Cases
BEYOND BI: Big Data Analytic Use Cases Big Data Analytics Use Cases This white paper discusses the types and characteristics of big data analytics use cases, how they differ from traditional business intelligence
How To Make Sense Of Data With Altilia
HOW TO MAKE SENSE OF BIG DATA TO BETTER DRIVE BUSINESS PROCESSES, IMPROVE DECISION-MAKING, AND SUCCESSFULLY COMPETE IN TODAY S MARKETS. ALTILIA turns Big Data into Smart Data and enables businesses to
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager Big Data: The Datafication Of Everything Thoughts Devices Processes Thoughts Things Processes Run the Business Organize data to do something
IBM Big Data in Government
IBM Big in Government Turning big data into smarter decisions Deepak Mohapatra Sr. Consultant Government IBM Software Group [email protected] The Big Paradigm Shift 2 Big Creates A Challenge And an
Real World Application and Usage of IBM Advanced Analytics Technology
Real World Application and Usage of IBM Advanced Analytics Technology Anthony J. Young Pre-Sales Architect for IBM Advanced Analytics February 21, 2014 Welcome Anthony J. Young Lives in Austin, TX Focused
Apigee Insights Increase marketing effectiveness and customer satisfaction with API-driven adaptive apps
White provides GRASP-powered big data predictive analytics that increases marketing effectiveness and customer satisfaction with API-driven adaptive apps that anticipate, learn, and adapt to deliver contextual,
The Future of Data Management with Hadoop and the Enterprise Data Hub
The Future of Data Management with Hadoop and the Enterprise Data Hub Amr Awadallah Cofounder & CTO, Cloudera, Inc. Twitter: @awadallah 1 2 Cloudera Snapshot Founded 2008, by former employees of Employees
Big Data and New Paradigms in Information Management. Vladimir Videnovic Institute for Information Management
Big Data and New Paradigms in Information Management Vladimir Videnovic Institute for Information Management 2 "I am certainly not an advocate for frequent and untried changes laws and institutions must
Extend your analytic capabilities with SAP Predictive Analysis
September 9 11, 2013 Anaheim, California Extend your analytic capabilities with SAP Predictive Analysis Charles Gadalla Learning Points Advanced analytics strategy at SAP Simplifying predictive analytics
The Future of Data Management
The Future of Data Management with Hadoop and the Enterprise Data Hub Amr Awadallah (@awadallah) Cofounder and CTO Cloudera Snapshot Founded 2008, by former employees of Employees Today ~ 800 World Class
CONNECTING DATA WITH BUSINESS
CONNECTING DATA WITH BUSINESS Big Data and Data Science consulting Business Value through Data Knowledge Synergic Partners is a specialized Big Data, Data Science and Data Engineering consultancy firm
Big Data for Investment Research Management
IDT Partners www.idtpartners.com Big Data for Investment Research Management Discover how IDT Partners helps Financial Services, Market Research, and Investment Management firms turn big data into actionable
Knowledgent White Paper Series. Developing an MDM Strategy WHITE PAPER. Key Components for Success
Developing an MDM Strategy Key Components for Success WHITE PAPER Table of Contents Introduction... 2 Process Considerations... 3 Architecture Considerations... 5 Conclusion... 9 About Knowledgent... 10
DATAMEER WHITE PAPER. Beyond BI. Big Data Analytic Use Cases
DATAMEER WHITE PAPER Beyond BI Big Data Analytic Use Cases This white paper discusses the types and characteristics of big data analytics use cases, how they differ from traditional business intelligence
Big Data and Analytics in Government
Big Data and Analytics in Government Nov 29, 2012 Mark Johnson Director, Engineered Systems Program 2 Agenda What Big Data Is Government Big Data Use Cases Building a Complete Information Solution Conclusion
2015 Analyst and Advisor Summit. Advanced Data Analytics Dr. Rod Fontecilla Vice President, Application Services, Chief Data Scientist
2015 Analyst and Advisor Summit Advanced Data Analytics Dr. Rod Fontecilla Vice President, Application Services, Chief Data Scientist Agenda Key Facts Offerings and Capabilities Case Studies When to Engage
SAS Fraud Framework for Banking
SAS Fraud Framework for Banking Including Social Network Analysis John C. Brocklebank, Ph.D. Vice President, SAS Solutions OnDemand Advanced Analytics Lab SAS Fraud Framework for Banking Agenda Introduction
5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014
5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for
Integrating a Big Data Platform into Government:
Integrating a Big Data Platform into Government: Drive Better Decisions for Policy and Program Outcomes John Haddad, Senior Director Product Marketing, Informatica Digital Government Institute s Government
The Future of Business Analytics is Now! 2013 IBM Corporation
The Future of Business Analytics is Now! 1 The pressures on organizations are at a point where analytics has evolved from a business initiative to a BUSINESS IMPERATIVE More organization are using analytics
Submitted to: Service Definition Document for BI / MI Data Services
Submitted to: Service Definition Document for BI / MI Data Services Table of Contents 1. Introduction... 3 2. Data Quality Management... 4 3. Master Data Management... 4 3.1 MDM Implementation Methodology...
This Symposium brought to you by www.ttcus.com
This Symposium brought to you by www.ttcus.com Linkedin/Group: Technology Training Corporation @Techtrain Technology Training Corporation www.ttcus.com Big Data Analytics as a Service (BDAaaS) Big Data
Big Data overview. Livio Ventura. SICS Software week, Sept 23-25 Cloud and Big Data Day
Big Data overview SICS Software week, Sept 23-25 Cloud and Big Data Day Livio Ventura Big Data European Industry Leader for Telco, Energy and Utilities and Digital Media Agenda some data on Data Big Data
More Data in Less Time
More Data in Less Time Leveraging Cloudera CDH as an Operational Data Store Daniel Tydecks, Systems Engineering DACH & CE Goals of an Operational Data Store Load Data Sources Traditional Architecture Operational
Big Data Analytics Platform @ Nokia
Big Data Analytics Platform @ Nokia 1 Selecting the Right Tool for the Right Workload Yekesa Kosuru Nokia Location & Commerce Strata + Hadoop World NY - Oct 25, 2012 Agenda Big Data Analytics Platform
Using SAP Master Data Technologies to Enable Key Business Capabilities in Johnson & Johnson Consumer
Using SAP Master Data Technologies to Enable Key Business Capabilities in Johnson & Johnson Consumer Terry Bouziotis: Director, IT Enterprise Master Data Management JJHCS Bob Delp: Sr. MDM Program Manager
Three Open Blueprints For Big Data Success
White Paper: Three Open Blueprints For Big Data Success Featuring Pentaho s Open Data Integration Platform Inside: Leverage open framework and open source Kickstart your efforts with repeatable blueprints
Big Data and Your Data Warehouse Philip Russom
Big Data and Your Data Warehouse Philip Russom TDWI Research Director for Data Management April 5, 2012 Sponsor Speakers Philip Russom Research Director, Data Management, TDWI Peter Jeffcock Director,
Big Data Analytics. An Introduction. Oliver Fuchsberger University of Paderborn 2014
Big Data Analytics An Introduction Oliver Fuchsberger University of Paderborn 2014 Table of Contents I. Introduction & Motivation What is Big Data Analytics? Why is it so important? II. Techniques & Solutions
Oracle Big Data Building A Big Data Management System
Oracle Big Building A Big Management System Copyright 2015, Oracle and/or its affiliates. All rights reserved. Effi Psychogiou ECEMEA Big Product Director May, 2015 Safe Harbor Statement The following
Safe Harbor Statement
Safe Harbor Statement The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment
Predictive Analytics: Turn Information into Insights
Predictive Analytics: Turn Information into Insights Pallav Nuwal Business Manager; Predictive Analytics, India-South Asia [email protected] +91.9820330224 Agenda IBM Predictive Analytics portfolio
Bruhati Technologies. About us. ISO 9001:2008 certified. Technology fit for Business
Bruhati Technologies ISO 9001:2008 certified Technology fit for Business About us 1 Strong, agile and adaptive Leadership Geared up technologies for and fast moving long lasting With sound understanding
Addressing Open Source Big Data, Hadoop, and MapReduce limitations
Addressing Open Source Big Data, Hadoop, and MapReduce limitations 1 Agenda What is Big Data / Hadoop? Limitations of the existing hadoop distributions Going enterprise with Hadoop 2 How Big are Data?
MDM and Data Warehousing Complement Each Other
Master Management MDM and Warehousing Complement Each Other Greater business value from both 2011 IBM Corporation Executive Summary Master Management (MDM) and Warehousing (DW) complement each other There
The New Landscape of Business Intelligence & Analytics New Opportunities, Roles and Outcomes. Summit 2015 Orlando London Frankfurt Madrid Mexico City
The New Landscape of Business Intelligence & Analytics New Opportunities, Roles and Outcomes Michael Corcoran Sr. Vice President & CMO Dr. Rado Kotorov Vice President, Market Strategy Summit 2015 Orlando
MDM for the Enterprise: Complementing and extending your Active Data Warehousing strategy. Satish Krishnaswamy VP MDM Solutions - Teradata
MDM for the Enterprise: Complementing and extending your Active Data Warehousing strategy Satish Krishnaswamy VP MDM Solutions - Teradata 2 Agenda MDM and its importance Linking to the Active Data Warehousing
Master Your Data and Your Business Using Informatica MDM. Ravi Shankar Sr. Director, MDM Product Marketing
Master Your and Your Business Using Informatica MDM Ravi Shankar Sr. Director, MDM Product Marketing 1 Driven Enterprise Timely Trusted Relevant 2 Agenda Critical Business Imperatives Addressed by MDM
Predictive Customer Intelligence
Sogeti 2015 Damiaan Zwietering [email protected] Predictive Customer Intelligence Customer expectations are driving companies towards being customer centric Find me Using visualization and analytics
Big Data & QlikView. Democratizing Big Data Analytics. David Freriks Principal Solution Architect
Big Data & QlikView Democratizing Big Data Analytics David Freriks Principal Solution Architect TDWI Vancouver Agenda What really is Big Data? How do we separate hype from reality? How does that relate
Business Intelligence mit SAP: Strategie, Neuerungen, Nutzen. Andreas Forster / Solution Advisor June 2013
Business Intelligence mit SAP: Strategie, Neuerungen, Nutzen Andreas Forster / Solution Advisor June 2013 Agenda SAP Business Intelligence Vision SAP BusinessObjects Suite SAP BusinessObjects BI and SAP
Chukwa, Hadoop subproject, 37, 131 Cloud enabled big data, 4 Codd s 12 rules, 1 Column-oriented databases, 18, 52 Compression pattern, 83 84
Index A Amazon Web Services (AWS), 50, 58 Analytics engine, 21 22 Apache Kafka, 38, 131 Apache S4, 38, 131 Apache Sqoop, 37, 131 Appliance pattern, 104 105 Application architecture, big data analytics
Driving Better Marketing Results with Big Data and Analytics David Corrigan, IBM, Director of Product Marketing
Driving Better Marketing Results with Big Data and Analytics David Corrigan, IBM, Director of Product Marketing Optimizing Marketing with Big Data and Analytics Leverage Social Media Datacentric Marketing
Are You Ready for Big Data?
Are You Ready for Big Data? Jim Gallo National Director, Business Analytics April 10, 2013 Agenda What is Big Data? How do you leverage Big Data in your company? How do you prepare for a Big Data initiative?
III JORNADAS DE DATA MINING
III JORNADAS DE DATA MINING EN EL MARCO DE LA MAESTRÍA EN DATA MINING DE LA UNIVERSIDAD AUSTRAL PRESENTACIÓN TECNOLÓGICA IBM Alan Schcolnik, Cognos Technical Sales Team Leader, IBM Software Group. IAE
Oracle Big Data Discovery Unlock Potential in Big Data Reservoir
Oracle Big Data Discovery Unlock Potential in Big Data Reservoir Gokula Mishra Premjith Balakrishnan Business Analytics Product Group September 29, 2014 Copyright 2014, Oracle and/or its affiliates. All
Tax Fraud in Increasing
Preventing Fraud with Through Analytics Satya Bhamidipati Data Scientist Business Analytics Product Group Copyright 2014 Oracle and/or its affiliates. All rights reserved. 2 Tax Fraud in Increasing 27%
Cloudera Enterprise Data Hub in Telecom:
Cloudera Enterprise Data Hub in Telecom: Three Customer Case Studies Version: 103 Table of Contents Introduction 3 Cloudera Enterprise Data Hub for Telcos 4 Cloudera Enterprise Data Hub in Telecom: Customer
Real-Time Big Data Analytics + Internet of Things (IoT) = Value Creation
Real-Time Big Data Analytics + Internet of Things (IoT) = Value Creation January 2015 Market Insights Report Executive Summary According to a recent customer survey by Vitria, executives across the consumer,
The Big Data Paradigm Shift. Insight Through Automation
The Big Data Paradigm Shift Insight Through Automation Agenda The Problem Emcien s Solution: Algorithms solve data related business problems How Does the Technology Work? Case Studies 2013 Emcien, Inc.
Utility Analytics, Challenges & Solutions. Session Three September 24, 2014
The Place Analytics Leaders Turn to for Answers Member.UtilityAnalytics.com Utility Analytics, Challenges & Solutions Session Three September 24, 2014 The Place Analytics Leaders Turn to for Answers Member.UtilityAnalytics.com
Are You Big Data Ready?
ACS 2015 Annual Canberra Conference Are You Big Data Ready? Vladimir Videnovic Business Solutions Director Oracle Big Data and Analytics Introduction Introduction What is Big Data? If you can't explain
Customer Case Studies on MDM Driving Real Business Value
Customer Case Studies on MDM Driving Real Business Value Dan Gage Oracle Master Data Management Master Data has Domain Specific Requirements CDI (Customer, Supplier, Vendor) PIM (Product, Service) Financial
A New Era Of Analytic
Penang egovernment Seminar 2014 A New Era Of Analytic Megat Anuar Idris Head, Project Delivery, Business Analytics & Big Data Agenda Overview of Big Data Case Studies on Big Data Big Data Technology Readiness
Business Intelligence. Advanced visualization. Reporting & dashboards. Mobile BI. Packaged BI
Data & Analytics 1 Data & Analytics Solutions - Overview Information Management Business Intelligence Advanced Analytics Data governance Data modeling & architecture Master data management Enterprise data
Cisco Data Preparation
Data Sheet Cisco Data Preparation Unleash your business analysts to develop the insights that drive better business outcomes, sooner, from all your data. As self-service business intelligence (BI) and
JOURNAL OF OBJECT TECHNOLOGY
JOURNAL OF OBJECT TECHNOLOGY Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering JOT, 2008 Vol. 7, No. 8, November-December 2008 What s Your Information Agenda? Mahesh H. Dodani,
Reinventing Business Intelligence through Big Data
Reinventing Business Intelligence through Big Data Dr. Flavio Villanustre VP, Technology and lead of the Open Source HPCC Systems initiative LexisNexis Risk Solutions Reed Elsevier LEXISNEXIS From RISK
PREDICTIVE ANALYTICS DEMYSTIFIED
PREDICTIVE ANALYTICS DEMYSTIFIED 12.12.2014 Agenda Introduction Who we are! What is Predictive Analytics? Who needs Predictive Analytics? How to build Predictive Models? Demonstration: IBM SPSS Success
Demonstration of SAP Predictive Analysis 1.0, consumption from SAP BI clients and best practices
September 10-13, 2012 Orlando, Florida Demonstration of SAP Predictive Analysis 1.0, consumption from SAP BI clients and best practices Vishwanath Belur, Product Manager, SAP Predictive Analysis Learning
Master Data Management What is it? Why do I Care? What are the Solutions?
Master Data Management What is it? Why do I Care? What are the Solutions? Marty Pittman Architect IBM Software Group 2011 IBM Corporation Agenda MDM Introduction and Industry Trends IBM's MDM Vision IBM
SQL Server Master Data Services A Point of View
SQL Server Master Data Services A Point of View SUBRAHMANYA V SENIOR CONSULTANT [email protected] Abstract Is Microsoft s Master Data Services an answer for low cost MDM solution? Will
The Future of Big Data SAS Automotive Roundtable Los Angeles, CA 5 March 2015 Mike Olson Chief Strategy Officer, Cofounder @mikeolson
The Future of Big Data SAS Automotive Roundtable Los Angeles, CA 5 March 2015 Mike Olson Chief Strategy Officer, Cofounder @mikeolson 1 A New Platform for Pervasive Analytics Multiple big data opportunities
Session 805 -End-to-End SAP Lumira: Desktop to On-Premise, Cloud, and Mobile
September 9 11, 2013 Anaheim, California Session 805 -End-to-End SAP Lumira: Desktop to On-Premise, Cloud, and Mobile Ashish C. Morzaria, SAP Disclaimer This presentation outlines our general product direction
WHITE PAPER. Talend Infosense Solution Brief Master Data Management for Health Care Reference Data
WHITE PAPER Talend Infosense Solution Brief Master Data Management for Health Care Reference Data Table of contents BUSINESS ISSUE: SOCIAL COLLABORATION AND DATA STEWARDSHIP... 5 BUSINESS ISSUE: FEEDBACK
www.pwc.com Implementation of Big Data and Analytics Projects with Big Data Discovery and BICS March 2015
www.pwc.com Implementation of Big Data and Analytics Projects with Big Data Discovery and BICS Agenda Big Data Discovery Oracle Business Intelligence Cloud Services (BICS) Use Cases How to start and our
Microsoft Big Data. Solution Brief
Microsoft Big Data Solution Brief Contents Introduction... 2 The Microsoft Big Data Solution... 3 Key Benefits... 3 Immersive Insight, Wherever You Are... 3 Connecting with the World s Data... 3 Any Data,
An Integrated Big Data & Analytics Infrastructure June 14, 2012 Robert Stackowiak, VP Oracle ESG Data Systems Architecture
An Integrated Big Data & Analytics Infrastructure June 14, 2012 Robert Stackowiak, VP ESG Data Systems Architecture Big Data & Analytics as a Service Components Unstructured Data / Sparse Data of Value
Interactive data analytics drive insights
Big data Interactive data analytics drive insights Daniel Davis/Invodo/S&P. Screen images courtesy of Landmark Software and Services By Armando Acosta and Joey Jablonski The Apache Hadoop Big data has
April 2016 JPoint Moscow, Russia. How to Apply Big Data Analytics and Machine Learning to Real Time Processing. Kai Wähner. kwaehner@tibco.
April 2016 JPoint Moscow, Russia How to Apply Big Data Analytics and Machine Learning to Real Time Processing Kai Wähner [email protected] @KaiWaehner www.kai-waehner.de LinkedIn / Xing Please connect!
EVERYTHING THAT MATTERS IN ADVANCED ANALYTICS
EVERYTHING THAT MATTERS IN ADVANCED ANALYTICS Marcia Kaufman, Principal Analyst, Hurwitz & Associates Dan Kirsch, Senior Analyst, Hurwitz & Associates Steve Stover, Sr. Director, Product Management, Predixion
Cisco IT Hadoop Journey
Cisco IT Hadoop Journey Srini Desikan, Program Manager IT 2015 MapR Technologies 1 Agenda Hadoop Platform Timeline Key Decisions / Lessons Learnt Data Lake Hadoop s place in IT Data Platforms Use Cases
IBM AND NEXT GENERATION ARCHITECTURE FOR BIG DATA & ANALYTICS!
The Bloor Group IBM AND NEXT GENERATION ARCHITECTURE FOR BIG DATA & ANALYTICS VENDOR PROFILE The IBM Big Data Landscape IBM can legitimately claim to have been involved in Big Data and to have a much broader
Integrating Hadoop. Into Business Intelligence & Data Warehousing. Philip Russom TDWI Research Director for Data Management, April 9 2013
Integrating Hadoop Into Business Intelligence & Data Warehousing Philip Russom TDWI Research Director for Data Management, April 9 2013 TDWI would like to thank the following companies for sponsoring the
Data Virtualization A Potential Antidote for Big Data Growing Pains
perspective Data Virtualization A Potential Antidote for Big Data Growing Pains Atul Shrivastava Abstract Enterprises are already facing challenges around data consolidation, heterogeneity, quality, and
KnowledgeSEEKER Marketing Edition
KnowledgeSEEKER Marketing Edition Predictive Analytics for Marketing The Easiest to Use Marketing Analytics Tool KnowledgeSEEKER Marketing Edition is a predictive analytics tool designed for marketers
IDC MaturityScape Benchmark: Big Data and Analytics in Government. Adelaide O Brien Research Director IDC Government Insights June 20, 2014
IDC MaturityScape Benchmark: Big Data and Analytics in Government Adelaide O Brien Research Director IDC Government Insights June 20, 2014 IDC MaturityScape Benchmark: Big Data and Analytics in Government
Turning Big Data into More Effective Customer Experiences. Experience the Difference with Lily Enterprise
Turning Big into More Effective Experiences Experience the Difference with Lily Enterprise Table of Contents Confidentiality Purpose of this Document The Conceptual Solution About NGDATA The Solution The
The Business Analyst s Guide to Hadoop
White Paper The Business Analyst s Guide to Hadoop Get Ready, Get Set, and Go: A Three-Step Guide to Implementing Hadoop-based Analytics By Alteryx and Hortonworks (T)here is considerable evidence that
Safe Harbor Statement
Defining a Roadmap to Big Data Success Robert Stackowiak, Oracle Vice President, Big Data 17 November 2015 Safe Harbor Statement The following is intended to outline our general product direction. It is
TEXT ANALYTICS INTEGRATION
TEXT ANALYTICS INTEGRATION A TELECOMMUNICATIONS BEST PRACTICES CASE STUDY VISION COMMON ANALYTICAL ENVIRONMENT Structured Unstructured Analytical Mining Text Discovery Text Categorization Text Sentiment
Redefining Role of Business Analyst in the paradigm of Big Data in Healthcare
2014 BA Convention Redefining Role of Business Analyst in the paradigm of Big Data in Healthcare - Somnath Mukherjee, General Manager, HCL Technologies Ltd. 2014 BA Convention 2 Click Agenda to edit Master
Klarna Tech Talk: Mind the Data! Jeff Pollock InfoSphere Information Integration & Governance
Klarna Tech Talk: Mind the Data! Jeff Pollock InfoSphere Information Integration & Governance IBM s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice
Voice. listen, understand and respond. enherent. wish, choice, or opinion. openly or formally expressed. May 2010. - Merriam Webster. www.enherent.
Voice wish, choice, or opinion openly or formally expressed - Merriam Webster listen, understand and respond May 2010 2010 Corp. All rights reserved. www..com Overwhelming Dialog Consumers are leading
BIG DATA & ANALYTICS. Transforming the business and driving revenue through big data and analytics
BIG DATA & ANALYTICS Transforming the business and driving revenue through big data and analytics Collection, storage and extraction of business value from data generated from a variety of sources are
Protecting Big Data Data Protection Solutions for the Business Data Lake
White Paper Protecting Big Data Data Protection Solutions for the Business Data Lake Abstract Big Data use cases are maturing and customers are using Big Data to improve top and bottom line revenues. With
Informatica Data Quality Product Family
Brochure Informatica Product Family Deliver the Right Capabilities at the Right Time to the Right Users Benefits Reduce risks by identifying, resolving, and preventing costly data problems Enhance IT productivity
Transforming Data Into Business Value. Dr. Rado Kotorov Chief Innovation Officer & VP November 30th, 2015
Transforming Data Into Business Value Dr. Rado Kotorov Chief Innovation Officer & VP November 30th, 2015 1 Information Builders at a Glance Dedicated Software and Services Business Intelligence & Analytics
Achieving Business Value through Big Data Analytics Philip Russom
Achieving Business Value through Big Data Analytics Philip Russom TDWI Research Director for Data Management October 3, 2012 Sponsor 2 Speakers Philip Russom Research Director, Data Management, TDWI Brian
IDC MaturityScape Benchmark: Big Data and Analytics in Government
IDC MaturityScape Benchmark: Big Data and Analytics in Government Adelaide O Brien Research Director, IDC [email protected] Presentation to ACT-IAC Emerging Technology SIG July, 2014 IDC MaturityScape Benchmark:
How to avoid building a data swamp
How to avoid building a data swamp Case studies in Hadoop data management and governance Mark Donsky, Product Management, Cloudera Naren Korenu, Engineering, Cloudera 1 Abstract DELETE How can you make
