Vision Paper Distributed Data Mining and Big Data
|
|
|
- Aubrey Rose
- 10 years ago
- Views:
Transcription
1 AUGUST 2012 Vision Paper Distributed Data Mining and Big Data Intel s Perspective on Data at the Edge Why You Should Read This Document This paper describes Intel s perspective on the analytics of big data generated by sensors and devices on the edge of networks. The paper includes a discussion of: The importance of data at the edge of networks where some of biggest big data is generated How big data is inherently different from the data managed by traditional data management or business intelligence platforms, and why it matters A quick overview of emerging technologies, including distributed frameworks such as the Apache Hadoop* framework and Apache* MapReduce Four analytics use cases for government, retail, automotive, and manufacturing two utilizing the Hadoop* framework and two focused on intelligent systems
2 AUGUST 2012 Vision Paper Distributed Data Mining and Big Data Intel s Perspective on Data at the Edge
3 Contents 3 Data at the Edge: New Opportunities for Big Data 4 Big Data and Emerging Technologies: The Abridged Version 5 Big Data at the Edge: A Closer Look 7 Harnessing Data from Intelligent Systems and Sensors 9 Use Cases for Data at the Edge 12 What s Next? 2 Intel IT Center Vision Paper Distributed Data Mining and Big Data
4 Data at the Edge: New Opportunities for Big Data The explosion of big data is testing the capabilities of even the most advanced analytics tools. IT is challenged by the sheer volume, variety, and velocity of this flood of complex, structured, semistructured, and unstructured data which also offers organizations exciting opportunities to gain richer, deeper, and more accurate insights into their business. The tremendous opportunities to gain new and exciting value from big data are compelling for most organizations, but the challenge of managing and transforming it into insights requires a new approach to analytics that has a far reaching impact on IT infrastructure. Traditional systems are unable to cope cost-effectively if at all with new dynamic data sources and multiple contexts for big data. Emerging technologies such as the Hadoop* framework represent completely new approaches to capturing, managing, and analyzing big data. Big data challenges plus new technologies are causing a paradigm shift that is driving organizations to reexamine their IT infrastructure and analytics capabilities. Intel Perspective: The Importance of Data at the Edge Intel believes that realizing the promise of big data analytics requires capturing and processing data where it resides. This paper explores the value of data at the edge of networks, where some of biggest big data is generated. As the use of sensors and devices as well as intelligent systems continues to expand, the potential to gain insight from the flood of data from these sources becomes a new and compelling opportunity. Businesses that can harness the power of big data at the edge and unlock its value to the organization will outperform their competitors with greater capabilities to innovate creatively and solve complex problems whose solutions have been out of reach in the past. What Is Big Data? Big data is typically described by the first three characteristics below sometimes referred to as the three Vs. However, organizations need a fourth value to make big data work. Volume. Huge data sets that are orders of magnitude larger than data managed in traditional storage and analytical solutions. Think petabytes instead of terabytes. Variety. Heterogeneous, complex, and variable data, which are generated in formats as different as , social media, video, images, blogs, and sensor data as well as shadow data such as access journals and Web search histories. Velocity. Data is generated as a constant stream with realtime queries for meaningful information to be served up on demand rather than batched. Value. Meaningful insights that deliver predictive analytics for future trends and patterns from deep, complex analysis based on machine learning, statistical modeling, and graph algorithms. These analytics go beyond the results of traditional business intelligence querying and reporting. 3 Intel IT Center Vision Paper Distributed Data Mining and Big Data
5 Big Data and Emerging Technologies: The Abridged Version Big data management is inherently different from traditional relational models of data management or business intelligence platforms. While that difference is often described in terms of the data, structured versus unstructured, this isn t quite accurate. Log data, for example (a growing source of big data), has structure. The difference is better described this way: Unlike relation-based data, big data manages data in any format and does not require the time and effort to create a model first to capture, process, and analyze your data. Application Relation-Based Data Big Data Data processing Data management Single-computer platform that scales with better CPUs; centralized processing Relational databases (SQL); centralized storage Cluster platforms that scale to thousands of nodes; distributed processing Nonrelational databases that manage varied data types and formats (NoSQL and HBase* databases); distributed storage Analytics Batched; descriptive; centralized Real-time; predictive and prescriptive; distributed analytics Distributed Frameworks: The Apache Hadoop* Framework and MapReduce New technologies are emerging to make big data analytics possible and cost-effective. The Apache Hadoop* framework is evolving as the best new approach. The Hadoop framework redefines the way data is managed and analyzed by leveraging the power of a distributed grid of computing resources. The Hadoop open-source framework uses a simple programming model to enable distributed processing of large data sets on clusters of computers. The complete technology stack includes common utilities, a distributed file system, analytics and data storage platforms, and an application layer that manages distributed processing, parallel computation, workflow, and configuration management. In addition to offering high availability, the Hadoop framework is more costeffective for handling large, complex, or unstructured data sets than conventional approaches, and it offers massive scalability and speed. MapReduce, the software programming framework in the Hadoop stack, simplifies processing on large data sets and gives programmers a common method for defining and orchestrating complex processing tasks across clusters of computers. MapReduce applications coordinate the processing of tasks for a cluster node by scheduling jobs, monitoring activity, and reexecuting failed tasks. Input and output are stored in the Hadoop Distributed File System (HDFS*). Typically the data is processed and stored on the same node, making it more efficient to schedule tasks where data already resides and resulting in high aggregate bandwidth across the node. For a more detailed look at the Hadoop framework and MapReduce, visit intel.com/bigdata. 4 Intel IT Center Vision Paper Distributed Data Mining and Big Data
6 Big Data at the Edge: A Closer Look Much of the current discussion about big data analytics today focuses on managing and analyzing unstructured data from business and social sources such as , videos, tweets, Facebook* posts, reviews, and Web behavior. While this type of big data analytics promises to provide significant value to organizations, data generated at the edge of the network from sensors and other devices represents another huge, untapped resource with the potential to deliver insights that can transform the operations and strategic initiatives of public and private sector organizations. Data from intelligent systems and sensors is some of the largest volume, fastest streaming, and/or most complex big data. The data sources are distributed across the network and data is collected by an enormous variety of equipment, such as utility meters, traffic and security cameras, RFID readers, factory-line sensors, fitness machines, and medical devices. Ubiquitous connectivity and the growth of sensors and intelligent systems have opened up a whole new storehouse of valuable information. Edge data can provide significant value to both the private and public sector as a source of enormous potential for gaining deeper, richer insight faster and more cost-effectively than in the past. In many cases, analysis of edge data can help organizations respond to events and solve problems that were previously out of reach. Network, Internet, 2G, 3G, 4G, LAN, WLAN Sensors from multiple systems at the edge stream data via the Internet, LANs, WANs, and mobile networks. 5 Intel IT Center Vision Paper Distributed Data Mining and Big Data
7 For an example of the size and scope of edge data, consider the machine-generated data from the engines of a Boeing* jet. Each engine generates 20 terabytes (TB) of sensor data every hour, so that a four-engine jumbo jet quickly reaches 640 TB of data during an Atlantic crossing. With more than 25,000 commercial flights in the U.S. sky on any given day, a single day of sensor data can measure in exabytes. 1 Humans are also generating sensed data. Deb Roy, director of the Cognitive Machines Group at the MIT Media lab, tracked the activities and sounds in his home for three years, starting with the day he brought home his newborn son. Analysis of more than 90,000 hours of video and 140,000 hours of audio mapped his son s acquisition of speech and has provided enormous insight into how humans develop and learn. 2 1 Rogers, Shawn. Big Data Is Scaling BI and Analytics. Information Management (September 1, 2011). information-management.com/issues/21_5/big-data-is-scaling-bi-and-analytics html?zkprintable=true 2 Roy, Deb. The Birth of a Word. TED talk (March 2011). ted.com/talks/deb_roy_the_birth_of_a_word.html 6 Intel IT Center Vision Paper Distributed Data Mining and Big Data
8 Harnessing Data from Intelligent Systems and Sensors Clearly, the scope of big data on the edge is enormous. With the number of connected devices projected to reach almost 15 billion by 2015, 3 the volume, variety, and speed of data generated from intelligent systems and sensors will be ever increasing. How can organizations harness and make sense of this fast moving data stream? Leveraging Sensed Data and Grid Infrastructure Big data at the edge is generated by embedded sensors and actuators in physical objects, which are linked through wired and wireless networks often using the same communications protocol that connects to the Internet. This process of generating and analyzing data from intelligent systems and sensors is often referred to as the Internet of Things (IoT). IoT is a major source of sensed data. Huge volumes of sensed data flow over the network to local computers or the cloud for analysis, and generate the intelligence for actuators to exert control over the physical world. Using MapReduce, the data is captured and processed where it resides at the edge by the local node and then sent wherever it is needed. In the case of an actuator, the results provide instant feedback that enables the device to modify activity. Data can also be aggregated and forwarded for additional analysis. Internet of Things (IoT) At a Glance Instrumentation for sensing Intelligence for processing and control Interconnection for communication 3 Global Internet Traffic Projected to Quadruple by The Network (press release) (June 1, 2011). 7 Intel IT Center Vision Paper Distributed Data Mining and Big Data
9 Implications for Technology For data to be analyzed where it resides, compute and storage capabilities must be local at the edge and in the cloud. This local infrastructure must address a set of unique challenges based on characteristics of the data and related issues. Sensed data is massive and streams Data is noisy and dirty and requires preprocessing. Data has strong locality characteristics, meaning that the devices are operated and consumed locally. Data ownership, interoperability, security, and privacy are big issues. How does this translate into a real-life example? Here s a transportation and public safety example. Road sensors may belong to different departments. Some cameras are owned by public security, while others belong to public transportation. Data is generated on private vehicles. The issues: Can the data from these multiple systems be integrated and analyzed for meaningful insight? Who owns the data generated on private vehicles? Is the data secure? These issues are well worth resolving. Multiple data streams can unlock intrinsic correlations that can have great significance overall. A recent study in a city in the People s Republic of China (PRC) shows that if you can detect morning wash time from the water supply subsystem, you can infer the morning rush hour; similarly, if you can detect when offices are powered down in the evening, you can infer the evening rush hour. Understanding these relationships can help cities better handle traffic at peak times as well as improve availability of water and electrical resources when they are most needed. Immediacy: How Fast Do You Need Insight? Does every insight need to be in real time for organizations to drive value from their data? Actually, not all usage scenarios require real-time analytics. While applications at the edge may require immediate feedback to adjust equipment, insights based on the aggregation of that data may not be needed as quickly. Near real-time, near-line (periodic batching), or even batch processing may be timely enough. Today, organizations in emerging markets are more likely to implement the Hadoop* framework to process both relationbased and unstructured data. More mature markets, such as Europe and the United States, already have traditional data management systems in place and are more likely to begin their forays into big data analytics with batch and near-line analytics. Ultimately, companies even big Internet companies will evolve to use a combination of real-time, near real-time, near-line, and batch processing for big data. Intelligent Connected Systems IDC described intelligent systems as those enabled with high-performance microprocessors, connectivity, and highlevel operating systems. Embedded processors no longer perform as fixed functions that stand alone, but pack compute performance and integration into devices that fuel intelligent systems. Combined with cloud-based applications and analytics capabilities, these intelligent systems can derive value from edge data and bring the Internet of Things (IoT) to reality. Source: Intelligent Systems Transforming the Embedded Industry, According to IDC. IDC (press release) (September 9, 2011). idc.com/getdoc.jsp?containerid=prus For the hundreds of petabytes of data generated by intelligent systems and sensors, it s too expensive and inefficient to move them to a central cloud. Plus, a central cloud is challenged to deliver real-time intelligence for the edge. Back to our road sensor example: The front end can t wait for the central cloud to decide whether a car is running red lights. 8 Intel IT Center Vision Paper Distributed Data Mining and Big Data
10 Use Cases for Data at the Edge Technology already exists to enable organizations to build out architectures that can support distributed frameworks for big data and the local requirements of edge data. High-performance processors, 10 gigabit Ethernet solutions, and inexpensive storage options can support the clusters that run the Hadoop stack. The evolution of disparate embedded systems to intelligent connected systems continues to gain momentum, as does the development of cloud and big data analytics platforms. Understanding use cases for data from intelligent systems and sensors will further the development of customer requirements, standard architectures, and end-to-end, interoperable solutions that enable analytics for those scenarios. The value to organizations extends across most industries. The following are examples of use cases from four of them: government, retail, automotive, and manufacturing. Smart Cities: Improved Urban Performance Smart city is a concept that describes the use of a smart-grid infrastructure (physical capital and information and communications technologies) to improve environmental sustainability, manage energy consumption, better coordinate public resources, protect the quality of life for urban and metropolitan citizens, and plan for sustainable growth. Intel is currently involved in smart city innovation projects in the United States, Europe, and the PRC. These initiatives are exploring how intelligent systems at the edge can improve the management of the urban environment. For example, utility companies and governments are using data from the smart grid to understand the complex relationships between generation, distribution, and consumption with the goal of delivering reliable energy and reducing operating costs. At the same time, consumers are able to use data from the smart grid to better manage their personal energy requirements; for example, a not-home state might turn off lights, shut down unused equipment, and adjust temperature. By implementing intelligence throughout the electrical network, grid devices and compute nodes are enabled with capabilities to measure, analyze, and predict. Optimized decisions are made closer to the edge rather than only at a centralized control center. Communication between devices helps determine when, where, and how much energy should be produced, and consumers can use home management tools to monitor and adjust energy consumption. Intel Science and Technology Center (ISTC) for Big Data Intel is supporting big data research at the newest Intel Science and Technology Center (ISTC) at MIT s Computer Science and Artificial Intelligence Laboratory. The research will seek ways to accelerate the pace of big data innovation in diverse fields such as government, financial services, healthcare and life sciences, manufacturing, and retail. With MIT as the hub, collaborators will include faculty from the University of California at Santa Barbara, Portland State University, Brown University, University of Washington, and Stanford University. 9 Intel IT Center Vision Paper Distributed Data Mining and Big Data
11 Retail: Connected Stores What if retailers could know their customers like Amazon.com knows its customers? Traditional merchandizing systems collect point-ofsale data and aggregate it by store, district, region, time, and product categories but lose the insight that detailed transactions can give when tied to a specific customer. Plus, the size of the data, the level of detail, or the cost may prevent retailers from storing SKU details for more than a few months. The Hadoop framework changes the economics of this by radically lowering the cost of storing data and increasing the flexibility to gain new insights, plan inventories, and more accurately market to individuals rather than a demographic. Retailers are using a variety of intelligent connected systems that gather data and provide immediate feedback to help them to engage shoppers, including: Digital signage to measure advertising effectiveness, adapt messages to specific audiences, and provide highly individualized information Transaction and point-of-sale systems that provide product availability, suggest complementary purchases, and drive up-sell Intelligent vending machines that engage passersby with interactive displays, video analytics, digital signage, and cashless display systems to dispense everything from samples for feedback on new product ideas to fresh food and upscale accessories such as jewelry Interactive kiosks that bridge to online or in-store environments and use shopper profiles or past purchase data to offer suggestions or directions to items of interest, either online or in the physical store Digital security surveillance that prevents theft, locates lost children, and gathers demographics such as the traffic in key store areas to assist merchandising efforts The ability to gain insights from the data generated by these systems makes it possible to provide customer-centric connected stores and provide an on-store environment that weaves together online and in-store operations for an emotionally satisfying experience for shoppers, while at the same time optimizing operations. Customers can find what they want faster from trusted retailers across multiple channels and engage at any stage of the buying process. Retailers can integrate their supply chain activities with actual shopper behavior and deliver a great shopping experience consistent across all touch points with a specific customer. Plus, they can provide customers with opportunities to engage with their brands in more meaningful ways to cement customer loyalty. 10 Intel IT Center Vision Paper Distributed Data Mining and Big Data
12 Automotive: Connected Intelligence on the Road The convergence of IT and the consumer experience in automotive is growing rapidly in the form of intelligent in-vehicle systems. These systems are transforming the in-car experience by enabling the seamless connection between vehicles and connected devices, including consumer electronics, mobile devices, and sensors. In addition to streaming video for the kids, these data sources can be aggregated and analyzed to provide immediate insights for example, location data could be combined with road work and other traffic information to help commuters avoid congestion or take a faster route. Other applications of big data could be used to help: Monitor driver alertness and look for signs of medical distress with built-in cameras that use facial recognition software. The system can read expressions and automatically sound audible alarms, stop the car safely, and contact emergency services as necessary. Connect drivers and passengers with friends by providing notifications when they may be nearby. Provide alerts about upcoming signage, blind spot obstacles, and road conditions. Proactively monitor vehicle operating conditions and warn of potential malfunctions in advance. Offer valuable new automotive services and applications that improve both customer relationship management and vehicle relationship management. Use a smartphone for remote keyless entry or to provide alerts about tampering or impact. Detect real-time traffic flow from each direction and automatically change traffic signals to improve flow. Enable automated, intelligent, real-time decisions to optimize travel across the transportation infrastructure, as cars become capable of connecting to the roadway, safety systems, and one another. Manufacturing: Smart Factories Information technology and operations technology are converging in unprecedented ways in smart factories. While most factories today are highly automated, they are purpose-built for specific production processes. Device and control layers on the factory floor can t exchange information with the business and data networks that run the company. Smart factories, on the other hand, connect the boardroom, the factory floor, and the supply chain for higher levels of manufacturing control and efficiency. Sensors and actuators in devices such as cameras, robotic machines, and motion control equipment generate and use data to provide real-time diagnosis and predictive maintenance, increased process visibility, and improved factory uptime and flexibility. Specific usage scenarios include: Communication across the factory floor and with enterprise IT systems for more efficient coordination of plant resources, employees, and suppliers Detection of failure conditions to enable faster response Greater situational awareness, seamless multizone protection on the factory floor, native supervisory control and data acquisition (SCADA) support, and remote device management Robotics that dramatically improve productivity and industrial safety Monitoring production line activities for product quality issues 11 Intel IT Center Vision Paper Distributed Data Mining and Big Data
13 What s Next? Big data is a game changer and it s already here. While most of the momentum around big data today is around social media sources, Intel believes that realizing the promise of big data analytics must include a way to harness the potential of big data from intelligent systems and sensors. Intel sees the following next steps as critical for organizations who want to take advantage of edge data sources: Understand use cases and their implications. We must understand how existing disparate data sources can be evolved into a network of integrated, intelligent, connected systems. Define the usage model requirements for the analytics of edge data. The architecture must take advantage of big data distributed frameworks to move computation closer to where the data resides and support big data analytics at the edge via intelligent systems and local clouds. Enable the fast and secure delivery of aggregated data from edge analytics systems to other cloud and analytics platforms for further analysis. Address issues related to data ownership, interoperability, security, and privacy. As interest in data from intelligent systems and sensors continues to grow and organizations understand better how they can use it, Intel is at the forefront of this emerging topic. Intel is already taking a leadership role with cloud computing and big data analytics. As technical advisor to the Open Data Center Alliance (ODCA), an independent IT consortium comprising global IT leaders from more than 300 companies, Intel will play a major role in the newly formed Data Services Workgroup as it works to define usage model requirements that support the secure collection, management, and analysis of big data; drive benchmarking for the Hadoop framework; and develop interoperable standards that make big data frameworks cloud ready. Plus, Intel has years of experience providing the technology that powers intelligent systems, as well as platforms that deliver the exceptional performance, low latency, and high throughput needed to handle large data sets and transform them into deep insights. Count on Intel for the technology, guidance, and vision to make big data work for you. Take the Next Steps to Manage and Analyze Edge Data Here s how you can get ready to take advantage of this fast moving area for your organization. Keep up-to-date with what s happening. Intel offers practical guidance to help you deploy big data environments more quickly and with lower risk. Go to intel.com/bigdata. Explore business opportunities deriving from the analytics of edge data. Collaborate with the business to understand existing edge systems and the potential use for data. For more information, go to intel.com/intelligentsystems. To learn more about edge data and big data analytics, visit the IT Center at intel.com/bigdata. 12 Intel IT Center Vision Paper Distributed Data Mining and Big Data
14 Share with Colleagues This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE. Intel disclaims all liability, including liability for infringement of any property rights, relating to use of this information. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted herein. Copyright 2012 Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Sponsors of Tomorrow., and the Intel Sponsors of Tomorrow. logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others. 0812/RF/ME/PDF-USA Sponsors of Tomorrow. 13 Intel IT Center Vision Paper Distributed Data Mining and Big Data
Delivering new insights and value to consumer products companies through big data
IBM Software White Paper Consumer Products Delivering new insights and value to consumer products companies through big data 2 Delivering new insights and value to consumer products companies through big
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
Predicting From the Edge in an
Predicting From the Edge in an IoT World IoT will produce 4,400 exabytes of data or 4,400 billion terabytes between 2013 and 2020. (IDC) Today, in the Internet of Things (IoT) era, the Internet touches
Interactive data analytics drive insights
Big data Interactive data analytics drive insights Daniel Davis/Invodo/S&P. Screen images courtesy of Landmark Software and Services By Armando Acosta and Joey Jablonski The Apache Hadoop Big data has
Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities
Technology Insight Paper Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities By John Webster February 2015 Enabling you to make the best technology decisions Enabling
Intel Platform and Big Data: Making big data work for you.
Intel Platform and Big Data: Making big data work for you. 1 From data comes insight New technologies are enabling enterprises to transform opportunity into reality by turning big data into actionable
Affordable Building Automation System Enabled by the Internet of Things (IoT)
Solution Blueprint Internet of Things (IoT) Affordable Building Automation System Enabled by the Internet of Things (IoT) HCL Technologies* uses an Intel-based intelligent gateway to deliver a powerful,
ATA DRIVEN GLOBAL VISION CLOUD PLATFORM STRATEG N POWERFUL RELEVANT PERFORMANCE SOLUTION CLO IRTUAL BIG DATA SOLUTION ROI FLEXIBLE DATA DRIVEN V
ATA DRIVEN GLOBAL VISION CLOUD PLATFORM STRATEG N POWERFUL RELEVANT PERFORMANCE SOLUTION CLO IRTUAL BIG DATA SOLUTION ROI FLEXIBLE DATA DRIVEN V WHITE PAPER Create the Data Center of the Future Accelerate
How To Help Your Business With Big Data Analytics
AUGUST 2012 Peer Research Big Data Analytics Intel s IT Manager Survey on How Organizations Are Using Big Data Why You Should Read This Document This report describes key findings from a survey of 200
IBM System x reference architecture solutions for big data
IBM System x reference architecture solutions for big data Easy-to-implement hardware, software and services for analyzing data at rest and data in motion Highlights Accelerates time-to-value with scalable,
Are You Ready for Big Data?
Are You Ready for Big Data? Jim Gallo National Director, Business Analytics February 11, 2013 Agenda What is Big Data? How do you leverage Big Data in your company? How do you prepare for a Big Data initiative?
Are You Ready for Big Data?
Are You Ready for Big Data? Jim Gallo National Director, Business Analytics April 10, 2013 Agenda What is Big Data? How do you leverage Big Data in your company? How do you prepare for a Big Data initiative?
The 4 Pillars of Technosoft s Big Data Practice
beyond possible Big Use End-user applications Big Analytics Visualisation tools Big Analytical tools Big management systems The 4 Pillars of Technosoft s Big Practice Overview Businesses have long managed
A Hurwitz white paper. Inventing the Future. Judith Hurwitz President and CEO. Sponsored by Hitachi
Judith Hurwitz President and CEO Sponsored by Hitachi Introduction Only a few years ago, the greatest concern for businesses was being able to link traditional IT with the requirements of business units.
How To Understand The Power Of The Internet Of Things
Next Internet Evolution: Getting Big Data insights from the Internet of Things Internet of things are fast becoming broadly accepted in the world of computing and they should be. Advances in Cloud computing,
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager Big Data: The Datafication Of Everything Thoughts Devices Processes Thoughts Things Processes Run the Business Organize data to do something
How To Use Big Data To Help A Retailer
IBM Software Big Data Retail Capitalizing on the power of big data for retail Adopt new approaches to keep customers engaged, maintain a competitive edge and maximize profitability 2 Capitalizing on the
High Performance Computing and Big Data: The coming wave.
High Performance Computing and Big Data: The coming wave. 1 In science and engineering, in order to compete, you must compute Today, the toughest challenges, and greatest opportunities, require computation
Essential Elements of an IoT Core Platform
Essential Elements of an IoT Core Platform Judith Hurwitz President and CEO Daniel Kirsch Principal Analyst and Vice President Sponsored by Hitachi Introduction The maturation of the enterprise cloud,
Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are
White Paper Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are What You Will Learn The Internet of Things (IoT) is generating an unprecedented volume and variety of data.
Big Data: Business Insight for Power and Utilities
Big Data: Business Insight for Power and Utilities A Look at Big Data By now, most enterprises have encountered the term Big Data. What they encounter less is an understanding of what Big Data means for
T r a n s f o r m i ng Manufacturing w ith the I n t e r n e t o f Things
M A R K E T S P O T L I G H T T r a n s f o r m i ng Manufacturing w ith the I n t e r n e t o f Things May 2015 Adapted from Perspective: The Internet of Things Gains Momentum in Manufacturing in 2015,
Page 1. Transform the Retail Store with the Internet of Things
Page 1 Transform the Retail Store with the Internet of Things The Internet of Things is here today There s a new era dawning in the retail industry, and it s being driven by the Internet of Things. The
Big Data. Fast Forward. Putting data to productive use
Big Data Putting data to productive use Fast Forward What is big data, and why should you care? Get familiar with big data terminology, technologies, and techniques. Getting started with big data to realize
How To Make Data Streaming A Real Time Intelligence
REAL-TIME OPERATIONAL INTELLIGENCE Competitive advantage from unstructured, high-velocity log and machine Big Data 2 SQLstream: Our s-streaming products unlock the value of high-velocity unstructured log
For healthcare, change is in the air and in the cloud
IBM Software Healthcare Thought Leadership White Paper For healthcare, change is in the air and in the cloud Scalable and secure private cloud solutions can meet the challenges of healthcare transformation
W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract
W H I T E P A P E R Deriving Intelligence from Large Data Using Hadoop and Applying Analytics Abstract This white paper is focused on discussing the challenges facing large scale data processing and the
Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database
Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica
Harnessing the Power of Big Data for Real-Time IT: Sumo Logic Log Management and Analytics Service
Harnessing the Power of Big Data for Real-Time IT: Sumo Logic Log Management and Analytics Service A Sumo Logic White Paper Introduction Managing and analyzing today s huge volume of machine data has never
Understanding the impact of the connected revolution. Vodafone Power to you
Understanding the impact of the connected revolution Vodafone Power to you 02 Introduction With competitive pressures intensifying and the pace of innovation accelerating, recognising key trends, understanding
1 Performance Moves to the Forefront for Data Warehouse Initiatives. 2 Real-Time Data Gets Real
Top 10 Data Warehouse Trends for 2013 What are the most compelling trends in storage and data warehousing that motivate IT leaders to undertake new initiatives? Which ideas, solutions, and technologies
The Rise of Industrial Big Data
GE Intelligent Platforms The Rise of Industrial Big Data Leveraging large time-series data sets to drive innovation, competitiveness and growth capitalizing on the big data opportunity The Rise of Industrial
5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014
5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for
BIG DATA & ANALYTICS. Transforming the business and driving revenue through big data and analytics
BIG DATA & ANALYTICS Transforming the business and driving revenue through big data and analytics Collection, storage and extraction of business value from data generated from a variety of sources are
BIG DATA-AS-A-SERVICE
White Paper BIG DATA-AS-A-SERVICE What Big Data is about What service providers can do with Big Data What EMC can do to help EMC Solutions Group Abstract This white paper looks at what service providers
IBM and Cisco Alliance Demo Non-Flash Version OVERVIEW. Narrative: Is your business poised for growth?
1 of 65 IBM and Cisco Alliance Demo Non-Flash Version OVERVIEW 1. Is your business poised for growth? Is your business poised for growth? 2. Is it agile enough to respond to customer demands and market
BIG DATA TRENDS AND TECHNOLOGIES
BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.
Demystifying Big Data Government Agencies & The Big Data Phenomenon
Demystifying Big Data Government Agencies & The Big Data Phenomenon Today s Discussion If you only remember four things 1 Intensifying business challenges coupled with an explosion in data have pushed
Executive Summary... 2 Introduction... 3. Defining Big Data... 3. The Importance of Big Data... 4 Building a Big Data Platform...
Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5 Infrastructure Requirements... 5 Solution Spectrum... 6 Oracle s Big Data
An Oracle White Paper October 2011. Oracle: Big Data for the Enterprise
An Oracle White Paper October 2011 Oracle: Big Data for the Enterprise Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5
CONTENTS. Introduction 3. IoT- the next evolution of the internet..3. IoT today and its importance..4. Emerging opportunities of IoT 5
#924, 5 A The catchy phrase Internet of Things (IoT) or the Web of Things has become inevitable to the modern world. Today wireless technology has reached its zenith making it possible to interact with
Big Data Use Cases Update
Big Data Use Cases Update Sanat Joshi Industry Solutions Manufacturing Industries Business Unit 1 Data Explosion Web & social networks experienced it first Infographic by Go-gulf.com 2 Number Of Connected
Data Refinery with Big Data Aspects
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 7 (2013), pp. 655-662 International Research Publications House http://www. irphouse.com /ijict.htm Data
An Oracle White Paper September 2014. Oracle: Big Data for the Enterprise
An Oracle White Paper September 2014 Oracle: Big Data for the Enterprise Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform...
Why Big Data in the Cloud?
Have 40 Why Big Data in the Cloud? Colin White, BI Research January 2014 Sponsored by Treasure Data TABLE OF CONTENTS Introduction The Importance of Big Data The Role of Cloud Computing Using Big Data
Solution Brief Big Data in the Cloud: Converging Technologies
Solution Brief Big Data in the Cloud: Converging Technologies How to Create Competitive Advantage Using Cloud-Based Big Data Analytics Why You Should Read This Document This paper describes how cloud and
ANALYTICS BUILT FOR INTERNET OF THINGS
ANALYTICS BUILT FOR INTERNET OF THINGS Big Data Reporting is Out, Actionable Insights are In In recent years, it has become clear that data in itself has little relevance, it is the analysis of it that
Enabling Manufacturing Transformation in a Connected World. John Shewchuk Technical Fellow DX
Enabling Manufacturing Transformation in a Connected World John Shewchuk Technical Fellow DX Internet of Things What is the Internet of Things? The network of physical objects that contain embedded technology
www.pwc.com/oracle Next presentation starting soon Business Analytics using Big Data to gain competitive advantage
www.pwc.com/oracle Next presentation starting soon Business Analytics using Big Data to gain competitive advantage If every image made and every word written from the earliest stirring of civilization
Bringing Together ESB and Big Data
Bringing Together ESB and Big Data Bringing Together ESB and Big Data Table of Contents Why ESB and Big Data?...3 Exploring the Promise of Big Data and ESB... 4 Moving Forward With ESB and Big Data...5
Big Data and Natural Language: Extracting Insight From Text
An Oracle White Paper October 2012 Big Data and Natural Language: Extracting Insight From Text Table of Contents Executive Overview... 3 Introduction... 3 Oracle Big Data Appliance... 4 Synthesys... 5
Industry 4.0 and Big Data
Industry 4.0 and Big Data Marek Obitko, [email protected] Senior Research Engineer 03/25/2015 PUBLIC PUBLIC - 5058-CO900H 2 Background Joint work with Czech Institute of Informatics, Robotics and
DATA MANAGEMENT FOR THE INTERNET OF THINGS
DATA MANAGEMENT FOR THE INTERNET OF THINGS February, 2015 Peter Krensky, Research Analyst, Analytics & Business Intelligence Report Highlights p2 p4 p6 p7 Data challenges Managing data at the edge Time
Cisco UCS and Fusion- io take Big Data workloads to extreme performance in a small footprint: A case study with Oracle NoSQL database
Cisco UCS and Fusion- io take Big Data workloads to extreme performance in a small footprint: A case study with Oracle NoSQL database Built up on Cisco s big data common platform architecture (CPA), a
Cloud Computing on a Smarter Planet. Smarter Computing
Cloud Computing on a Smarter Planet Smarter Computing 2 Cloud Computing on a Smarter Planet As our planet gets smarter more instrumented, interconnected and intelligent the underlying infrastructure needs
Get More Scalability and Flexibility for Big Data
Solution Overview LexisNexis High-Performance Computing Cluster Systems Platform Get More Scalability and Flexibility for What You Will Learn Modern enterprises are challenged with the need to store and
How To Use Social Media To Improve Your Business
IBM Software Business Analytics Social Analytics Social Business Analytics Gaining business value from social media 2 Social Business Analytics Contents 2 Overview 3 Analytics as a competitive advantage
Microsoft Big Data Solutions. Anar Taghiyev P-TSP E-mail: [email protected];
Microsoft Big Data Solutions Anar Taghiyev P-TSP E-mail: [email protected]; Why/What is Big Data and Why Microsoft? Options of storage and big data processing in Microsoft Azure. Real Impact of Big
Addressing Open Source Big Data, Hadoop, and MapReduce limitations
Addressing Open Source Big Data, Hadoop, and MapReduce limitations 1 Agenda What is Big Data / Hadoop? Limitations of the existing hadoop distributions Going enterprise with Hadoop 2 How Big are Data?
Fujitsu Big Data Software Use Cases
Fujitsu Big Data Software Use s Using Big Data Opens the Door to New Business Areas The use of Big Data is needed in order to discover trends and predictions, hidden in data generated over the course of
Analyzing Big Data: The Path to Competitive Advantage
White Paper Analyzing Big Data: The Path to Competitive Advantage by Marcia Kaplan Contents Introduction....2 How Big is Big Data?................................................................................
Microsoft Big Data. Solution Brief
Microsoft Big Data Solution Brief Contents Introduction... 2 The Microsoft Big Data Solution... 3 Key Benefits... 3 Immersive Insight, Wherever You Are... 3 Connecting with the World s Data... 3 Any Data,
decisions that are better-informed leading to long-term competitive advantage Business Intelligence solutions
Business Intelligence solutions decisions that are better-informed leading to long-term competitive advantage Your business technologists. Powering progress Every organization generates vast amounts of
Big Data Er Big Data bare en døgnflue? Lasse Bache-Mathiesen CTO BIM Norway
Big Data Er Big Data bare en døgnflue? Lasse Bache-Mathiesen CTO BIM Norway Big Data What is all the fuss about? The effective use of Big Data has the potential to transform economies, delivering a new
Roadmap for Transforming Intel s Business with Advanced Analytics
IT Best Practices Business Intelligence and IT Business Transformation November 2011 Roadmap for Transforming Intel s Business with Advanced Analytics Executive Overview is working in close partnership
The Future of Data Management
The Future of Data Management with Hadoop and the Enterprise Data Hub Amr Awadallah (@awadallah) Cofounder and CTO Cloudera Snapshot Founded 2008, by former employees of Employees Today ~ 800 World Class
Accenture and Oracle: Leading the IoT Revolution
Accenture and Oracle: Leading the IoT Revolution ACCENTURE AND ORACLE The Internet of Things (IoT) is rapidly moving from concept to reality, as companies see the value of connecting a range of sensors,
The Industrial Internet of Things. Overcoming Adoption Challenges to Release the Value Within IIoT
The Industrial Internet of Things Overcoming Adoption Challenges to Release the Value Within IIoT What is the Internet of Things (IoT)? Smart Television Smart Light Control Smart Motion Sensor Smart Environment
Real-Time Big Data Analytics SAP HANA with the Intel Distribution for Apache Hadoop software
Real-Time Big Data Analytics with the Intel Distribution for Apache Hadoop software Executive Summary is already helping businesses extract value out of Big Data by enabling real-time analysis of diverse
Reimagining Business with SAP HANA Cloud Platform for the Internet of Things
SAP Brief SAP HANA SAP HANA Cloud Platform for the Internet of Things Objectives Reimagining Business with SAP HANA Cloud Platform for the Internet of Things Connect, transform, and reimagine Connect,
WHITEPAPER BEST PRACTICES
WHITEPAPER BEST PRACTICES Releasing the Value Within the Industrial Internet of Things Executive Summary Consumers are very familiar with the Internet of Things, ranging from activity trackers to smart
An Oracle White Paper June 2013. Oracle: Big Data for the Enterprise
An Oracle White Paper June 2013 Oracle: Big Data for the Enterprise Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5 Infrastructure
Protecting Big Data Data Protection Solutions for the Business Data Lake
White Paper Protecting Big Data Data Protection Solutions for the Business Data Lake Abstract Big Data use cases are maturing and customers are using Big Data to improve top and bottom line revenues. With
alcatel-lucent converged network solution The cost-effective, application fluent approach to network convergence
alcatel-lucent converged network solution The cost-effective, application fluent approach to network convergence the corporate network is under pressure Today, corporate networks are facing unprecedented
Platfora Big Data Analytics
Platfora Big Data Analytics ISV Partner Solution Case Study and Cisco Unified Computing System Platfora, the leading enterprise big data analytics platform built natively on Hadoop and Spark, delivers
FWD. What the Internet of Things will mean for business
Article 6: September 2014 Internet of Things This year the focus of business has shifted to the Internet of Things (IoT), the connection and sharing of information between objects, machines, people and
Tap into Big Data at the Speed of Business
SAP Brief SAP Technology SAP Sybase IQ Objectives Tap into Big Data at the Speed of Business A simpler, more affordable approach to Big Data analytics A simpler, more affordable approach to Big Data analytics
The Next Wave of Data Management. Is Big Data The New Normal?
The Next Wave of Data Management Is Big Data The New Normal? Table of Contents Introduction 3 Separating Reality and Hype 3 Why Are Firms Making IT Investments In Big Data? 4 Trends In Data Management
SQLstream Blaze and Apache Storm A BENCHMARK COMPARISON
SQLstream Blaze and Apache Storm A BENCHMARK COMPARISON 2 The V of Big Data Velocity means both how fast data is being produced and how fast the data must be processed to meet demand. Gartner The emergence
Hur hanterar vi utmaningar inom området - Big Data. Jan Östling Enterprise Technologies Intel Corporation, NER
Hur hanterar vi utmaningar inom området - Big Data Jan Östling Enterprise Technologies Intel Corporation, NER Legal Disclaimers All products, computer systems, dates, and figures specified are preliminary
Beyond Watson: The Business Implications of Big Data
Beyond Watson: The Business Implications of Big Data Shankar Venkataraman IBM Program Director, STSM, Big Data August 10, 2011 The World is Changing and Becoming More INSTRUMENTED INTERCONNECTED INTELLIGENT
DATAMEER WHITE PAPER. Beyond BI. Big Data Analytic Use Cases
DATAMEER WHITE PAPER Beyond BI Big Data Analytic Use Cases This white paper discusses the types and characteristics of big data analytics use cases, how they differ from traditional business intelligence
White Paper. How Streaming Data Analytics Enables Real-Time Decisions
White Paper How Streaming Data Analytics Enables Real-Time Decisions Contents Introduction... 1 What Is Streaming Analytics?... 1 How Does SAS Event Stream Processing Work?... 2 Overview...2 Event Stream
How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time
SCALEOUT SOFTWARE How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time by Dr. William Bain and Dr. Mikhail Sobolev, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T wenty-first
Internet of Things. Point of View. Turn your data into accessible, actionable insights for maximum business value.
Internet of Things Turn your data into accessible, actionable insights for maximum business value Executive Summary Use a connected ecosystem to create new levels of business value The Internet of Things
Data Centric Computing Revisited
Piyush Chaudhary Technical Computing Solutions Data Centric Computing Revisited SPXXL/SCICOMP Summer 2013 Bottom line: It is a time of Powerful Information Data volume is on the rise Dimensions of data
The Internet on Wheels and Hitachi, Ltd. By Hitachi Data Systems
The Internet on Wheels and Hitachi, Ltd. By Hitachi Data Systems November 2014 1 Contents Executive Summary... 2 Introduction... 3 The Undeniable Value of Data... 3 The Smart Car as a Communications Hub...
A Forrester Consulting Thought Leadership Paper Commissioned By Zebra Technologies. November 2014
A Forrester Consulting Thought Leadership Paper Commissioned By Zebra Technologies November 2014 Internet-Of-Things Solution Deployment Gains Momentum Among Firms Globally Improved Customer Experience
Machina Research. Where is the value in IoT? IoT data and analytics may have an answer. Emil Berthelsen, Principal Analyst April 28, 2016
Machina Research Where is the value in IoT? IoT data and analytics may have an answer Emil Berthelsen, Principal Analyst April 28, 2016 About Machina Research Machina Research is the world s leading provider
Impact of Big Data in Oil & Gas Industry. Pranaya Sangvai Reliance Industries Limited 04 Feb 15, DEJ, Mumbai, India.
Impact of Big Data in Oil & Gas Industry Pranaya Sangvai Reliance Industries Limited 04 Feb 15, DEJ, Mumbai, India. New Age Information 2.92 billions Internet Users in 2014 Twitter processes 7 terabytes
Big Data overview. Livio Ventura. SICS Software week, Sept 23-25 Cloud and Big Data Day
Big Data overview SICS Software week, Sept 23-25 Cloud and Big Data Day Livio Ventura Big Data European Industry Leader for Telco, Energy and Utilities and Digital Media Agenda some data on Data Big Data
