An Oracle White Paper September Oracle: Big Data for the Enterprise
|
|
|
- Gilbert Harper
- 10 years ago
- Views:
Transcription
1 An Oracle White Paper September 2014 Oracle: Big Data for the Enterprise
2 Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5 Infrastructure Requirements... 5 Rapid Technology Shifts... 6 Oracle s Big Data Management System... 7 Oracle Big Data Appliance... 7 Oracle Big Data SQL... 8 Oracle NoSQL Database... 9 Oracle Big Data Connectors... 9 In-Database Analytics Conclusion... 12
3 Executive Summary Today the term big data draws a lot of attention, but behind the hype there's a simple story. For decades, companies have been making business decisions based on transactional data stored in relational databases. Beyond that critical data, however, is a potential treasure trove of non-traditional, less structured data: weblogs, social media, , sensors, and photographs that can be mined for useful information. Decreases in the cost of both storage and compute power have made it feasible to collect this data - which would have been thrown away only a few years ago. As a result, more and more companies are looking to include non-traditional yet potentially very valuable data with their traditional enterprise data in their business intelligence analysis. To derive real business value from big data, you need the right tools to not only capture a wide variety of data types from new sources, and to be able to easily analyze it within the context of all your enterprise data. Oracle offers unique products like Oracle Big Data SQL that enable the full power of Oracle SQL on all of that data across Oracle Database, Hadoop and NoSQL data stores. 2
4 Introduction With Oracle Big Data Appliance, Oracle Big Data SQL and Oracle Big Data Connectors, Oracle is the first vendor to offer a complete and integrated solution to address the full spectrum of enterprise big data requirements. Oracle s big data strategy is centered on the idea that you can evolve your current enterprise data architecture to incorporate big data and deliver business value across all data leveraging the full power of Oracle SQL. By evolving your current enterprise architecture, you can leverage the proven reliability, security and performance of your Oracle systems extended with new Big Data systems from Oracle. Defining Big Data Big data typically refers to the following types of data: Traditional enterprise data includes customer information from CRM systems, transactional ERP data, web store transactions, and general ledger data. Machine-generated /sensor data includes Call Detail Records ( CDR ), weblogs, smart meters, manufacturing sensors, equipment logs (often referred to as digital exhaust), trading systems data. Social data includes customer feedback streams, micro-blogging sites like Twitter, social media platforms like Facebook The McKinsey Global Institute estimates that data volume is growing 40% per year, and will grow 44x between 2009 and But while it s often the most visible parameter, volume of data is not the only characteristic that matters. In fact, there are four key characteristics that define big data: Volume. Machine-generated data is produced in much larger quantities than nontraditional data. For instance, a single jet engine can generate 10TB of data in 30 minutes. With more than 25,000 airline flights per day, the daily volume of just this single data source runs into the Petabytes. Smart meters and heavy industrial equipment like oil refineries and drilling rigs generate similar data volumes, compounding the problem. Velocity. Social media data streams while not as massive as machine-generated data produce a large influx of opinions and relationships valuable to customer relationship management. Even at 140 characters per tweet, the high velocity (or frequency) of Twitter data ensures large volumes (over 8 TB per day). Variety. Traditional data formats tend to be relatively well defined by a data schema and change slowly. In contrast, non-traditional data formats exhibit a dizzying rate of 3
5 change. As new services are added, new sensors deployed, or new marketing campaigns executed, new data types are needed to capture the resultant information. Value. The economic value of different data varies significantly. Typically there is good information hidden amongst a larger body of non-traditional data; the challenge is identifying what is valuable and then transforming and extracting that data for analysis. To make the most of big data, enterprises must evolve their IT infrastructures to handle these new high-volume, high-velocity, high-variety sources of data and integrate them with the preexisting enterprise data to be analyzed. The Importance of Big Data When big data is distilled and analyzed in combination with traditional enterprise data, enterprises can develop a more thorough and insightful understanding of their business, which can lead to enhanced productivity, a stronger competitive position and greater innovation all of which can have a significant impact on the bottom line. For example, in the delivery of healthcare services, management of chronic or long-term conditions is expensive. Use of in-home monitoring devices to measure vital signs, and monitor progress is just one way that sensor data can be used to improve patient health and reduce both office visits and hospital admittance. Manufacturing companies deploy sensors in their products to return a stream of telemetry. In the automotive industry, systems such as General Motors OnStar or Renault s R-Link, deliver communications, security and navigation services. Perhaps more importantly, this telemetry also reveals usage patterns, failure rates and other opportunities for product improvement that can reduce development and assembly costs. The proliferation of smart phones and other GPS devices offers advertisers an opportunity to target consumers when they are in close proximity to a store, a coffee shop or a restaurant. This opens up new revenue for service providers and offers many businesses a chance to target new customers. Retailers usually know who buys their products. Use of social media and web log files from their ecommerce sites can help them understand who didn t buy and why they chose not to, information not available to them today. This can enable much more effective micro customer segmentation and targeted marketing campaigns, as well as improve supply chain efficiencies through more accurate demand planning. Finally, social media sites like Facebook and LinkedIn simply wouldn t exist without big data. Their business model requires a personalized experience on the web, which can only be delivered by capturing and using all the available data about a user or member. 4
6 Building a Big Data Platform As with data warehousing, web stores or any IT platform, an infrastructure for big data has unique requirements. In considering all the components of a big data platform, it is important to remember that the end goal is to easily integrate your big data with your enterprise data to allow you to conduct deep analytics on the combined data set. Infrastructure Requirements The requirements in a big data infrastructure span data acquisition, data organization and data analysis. Acquire Big Data The acquisition phase is one of the major changes in infrastructure from the days before big data. Because big data refers to data streams of higher velocity and higher variety, the infrastructure required to support the acquisition of big data must deliver low, predictable latency in both capturing data and in executing short, simple queries; be able to handle very high transaction volumes, often in a distributed environment; and support flexible, dynamic data structures. NoSQL databases are frequently used to acquire and store big data. They are well suited for dynamic data structures and are highly scalable. The data stored in a NoSQL database is typically of a high variety because the systems are intended to simply capture all data without categorizing and parsing the data into a fixed schema. For example, NoSQL databases are often used to collect and store social media data. While customer facing applications frequently change, underlying storage structures are kept simple. Instead of designing a schema with relationships between entities, these simple structures often just contain a major key to identify the data point, and then a content container holding the relevant data (such as a customer id and a customer profile). This simple and dynamic structure allows changes to take place without costly reorganizations at the storage layer (such as adding new fields to the customer profile). Organize Big Data In classical data warehousing terms, organizing data is called data integration. Because there is such a high volume of big data, there is a tendency to organize data at its initial destination location, thus saving both time and money by not moving around large volumes of data. The infrastructure required for organizing big data must be able to process and manipulate data in the original storage location; support very high throughput (often in batch) to deal with large data processing steps; and handle a large variety of data formats, from unstructured to structured. Hadoop is a new technology that allows large data volumes to be organized and processed while keeping the data on the original data storage cluster. Hadoop Distributed File System (HDFS) is the long-term storage system for web logs for example. These web logs are turned into browsing behavior (sessions) by running MapReduce programs on the cluster and generating aggregated 5
7 results on the same cluster. These aggregated results are then loaded into a Relational DBMS system. Analyze Big Data Since data is not always moved during the organization phase, the analysis may also be done in a distributed environment, where some data will stay where it was originally stored and be transparently accessed from a data warehouse. The infrastructure required for analyzing big data must be able to support deeper analytics such as statistical analysis and data mining, on a wider variety of data types stored in diverse systems; scale to extreme data volumes; deliver faster response times driven by changes in behavior; and automate decisions based on analytical models. Most importantly, the infrastructure must be able to integrate analysis on the combination of big data and traditional enterprise data. New insight comes not just from analyzing new data, but from analyzing it within the context of the old to provide new perspectives on old problems. For example, analyzing inventory data from a smart vending machine in combination with the events calendar for the venue in which the vending machine is located, will dictate the optimal product mix and replenishment schedule for the vending machine. Rapid Technology Shifts Many new technologies have emerged to address the IT infrastructure requirements outlined above. At last count, there were over 120 open source key-value databases for acquiring and storing big data, while Hadoop has emerged as the primary system for organizing big data and relational databases maintain their footprint as a data warehouse and expand their reach into less structured data sets to analyze big data. These new systems initially led to a divided technology landscape trending towards proprietary APIs for data access. SQL as a language as shown by the moniker NoSQL was seemingly abandoned. Recently that trend is completely reversed, and the #1 hot ticket item in Big Data, and yes also in the NoSQL space, is the enabling of SQL over these key-value or NoSQL stores (including Hadoop). 6
8 Oracle s Big Data Management System Oracle is the first vendor to offer a complete and integrated data management solution to address the full spectrum of enterprise big data requirements. Oracle s Big Data Management System is centered on the idea that you can extend your current enterprise information architecture on engineered systems to incorporate big data and address all data across these systems with Oracle SQL. Technologies, such as Hadoop and Oracle NoSQL database, run alongside your Oracle data warehouse to deliver integrated and expanded business value and address your big data requirements while adhering to the security policies in your Oracle systems. Oracle Big Data Appliance Figure 1 Oracle s Big Data Management System Oracle Big Data Appliance is an engineered system that combines optimized hardware with a comprehensive big data software stack to deliver a complete, easy-to-deploy solution for acquiring and organizing big data. Oracle Big Data Appliance comes in scalable rack configurations enabling the system to solve development as well as production workloads and to grow as data needs grow across the enterprise. Oracle Big Data Appliance includes a combination of open source software and specialized software developed by Oracle to address enterprise big data requirements. 7
9 The Oracle Big Data Appliance software includes: Cloudera Enterpise (Data Hub Edition) with Cloudera Manager Oracle Big Data SQL 1 Oracle Big Data Appliance Plug-In for Enterprise Manager Oracle distribution of the statistical package R Oracle NoSQL Database Community Edition 2 And Oracle Enterprise Linux operating system and Oracle Java VM Oracle Big Data SQL Big Data SQL is Oracle s breakthrough approach to simplifying access and integration to big data sources. Oracle Big Data SQL provides the ability to query all data in Hadoop, NoSQL datastores, or Oracle Database in a single SQL statement. Oracle Big Data SQL presents Hadoop and other sources as enhanced external tables, available as of Oracle Database These tables are engineered to transparently map the external semantics of data access horizontal parallelism, location, and schema to Oracle internals. This mapping ensures the best possible optimizations for access and native processing throughout. Oracle Big Data SQL enables users to: Express their queries on all data using the world s richest SQL dialect Integrate big data quickly into reports or applications using existing interfaces Extend existing Oracle security and access control policies to data stored in Hadoop While big data may be massive, very often the amount of data that is relevant to a given query is smaller than the total data volume by an order of magnitude or more. This provides an opportunity for tremendous optimization in query performance. Smart Scan for Hadoop based on Exadata Storage Servers Software maximizes the performance of Oracle Big Data SQL by providing: Data-local scanning: data is read and processed at the point of storage Predicate evaluation and projection: only relevant data is transmitted from Hadoop Complex parsing: data such as JSON and XML are processed locally at the source Bloom Filters: Optimized joins through conversion to Bloom Filter on Hadoop 1 Oracle Big Data SQL is only available on Oracle Big Data Appliance and is a separately licensed component 2 Oracle NoSQL Database Enterprise Edition is available for Oracle Big Data Appliance as a separately licensed component 8
10 Oracle NoSQL Database Oracle NoSQL Database is a distributed, highly scalable, key-value database based on Oracle Berkeley DB. It delivers a general purpose, enterprise class key value store adding an intelligent driver on top of distributed Berkeley DB. This intelligent driver keeps track of the underlying storage topology, shards the data and knows where data can be placed with the lowest latency. Unlike competitive solutions, Oracle NoSQL Database is easy to install, configure and manage, supports a broad set of workloads, and delivers enterprise-class reliability backed by enterpriseclass Oracle support. Figure 2 NoSQL Database Architecture The primary use cases for Oracle NoSQL Database are low latency data capture and fast querying of that data, typically by key lookup. Oracle NoSQL Database comes with an easy to use Java API and a management framework. The product is available in both an open source community edition and in a priced enterprise edition for large distributed data centers. The former version is installed as part of the Big Data Appliance integrated software. Oracle Big Data Connectors Where Oracle Big Data Appliance makes it easy for organizations to acquire and organize new types of data, Oracle Big Data Connectors tightly integrates the big data environment with Oracle Exadata and Oracle Database, so that you can analyze all of your data together with extreme performance. The Oracle Big Data Connectors consist of four components: Oracle Loader for Hadoop Oracle Loader for Hadoop (OLH) enables users to use Hadoop MapReduce processing to create optimized data sets for efficient loading and analysis in Oracle Database 11g. Unlike other Hadoop loaders, it generates Oracle internal formats to load data faster and use less database system resources. OLH is added as the last step in the MapReduce transformations as a separate 9
11 map partition reduce step. This last step uses the CPUs in the Hadoop cluster to format the data into Oracle s internal database formats, allowing for a lower CPU utilization and higher data ingest rates on the Oracle Database platform. Once loaded, the data is permanently available in the database providing very fast access to this data for general database users leveraging SQL or business intelligence tools. Oracle SQL Connector for Hadoop Distributed File System Oracle SQL Connector for Hadoop Distributed File System (HDFS) is a high speed connector for accessing data on HDFS directly from Oracle Database. Oracle SQL Connector for HDFS gives users the flexibility of querying data from HDFS at any time, as needed by their application. It allows the creation of an external table in Oracle Database, enabling direct SQL access on data stored in HDFS. The data stored in HDFS can then be queried via SQL, joined with data stored in Oracle Database, or loaded into the Oracle Database. Access to the data on HDFS is optimized for fast data movement and parallelized, with automatic load balancing. Data on HDFS can be in delimited files or in Oracle data pump files created by Oracle Loader for Hadoop. Oracle Data Integrator Application Adapter for Hadoop Oracle Data Integrator Application Adapter for Hadoop simplifies data integration from Hadoop and an Oracle Database through Oracle Data Integrator s easy to use interface. Once the data is accessible in the database, end users can use SQL and Oracle BI Enterprise Edition to access data. Enterprises that are already using a Hadoop solution, and don t need an integrated offering like Oracle Big Data Appliance, can integrate data from HDFS using Big Data Connectors as a standalone software solution. Oracle R Connector for Hadoop Oracle R Connector for Hadoop is an R package that provides transparent access to Hadoop and to data stored in HDFS. R Connector for Hadoop provides users of the open-source statistical environment R with the ability to analyze data stored in HDFS, and to scalably run R models against large volumes of data leveraging MapReduce processing without requiring R users to learn yet another API or language. End users can leverage over 3500 open source R packages to analyze data stored in HDFS, while administrators do not need to learn R to schedule R MapReduce models in production environments. R Connector for Hadoop can optionally be used together with the Oracle Advanced Analytics Option for Oracle Database. The Oracle Advanced Analytics Option enables R users to transparently work with database resident data without having to learn SQL or database concepts but with R computations executing directly in-database. 10
12 In-Database Analytics on All Data Data in Oracle Big Data Appliance in combination with Oracle Exadata is fully SQL enabled by Oracle Big Data SQL. This unique capability enables end users to use the full SQL analytics capabilities across data in both data stores deriving unique business value. Additionally one of the following easy-to-use tools for in-database, advanced analytics are available when analyzing data: Oracle R Enterprise Oracle s version of the widely used Project R statistical environment enables statisticians to use R on very large data sets without any modifications to the end user experience. Examples of R usage include predicting airline delays at a particular airports and the submission of clinical trial analysis and results. In-Database Data Mining the ability to create complex models and deploy these on very large data volumes to drive predictive analytics. End-users can leverage the results of these predictive models in their BI tools without the need to know how to build the models. For example, regression models can be used to predict customer age based on purchasing behavior and demographic data. In-Database Text Mining the ability to mine text from micro blogs, CRM system comment fields and review sites combining Oracle Text and Oracle Data Mining. An example of text mining is sentiment analysis based on comments. Sentiment analysis tries to show how customers feel about certain companies, products or activities. In-Database Graph Analysis the ability to create graphs and connections between various data points and data sets. Graph analysis creates, for example, networks of relationships determining the value of a customer s circle of friends. When looking at customer churn customer value is based on the value of his network, rather than on just the value of the customer. In-Database Spatial the ability to add a spatial dimension to data and show data plotted on a map. This ability enables end users to understand geospatial relationships and trends much more efficiently. For example, spatial data can visualize a network of people and their geographical proximity. Customers who are in close proximity can readily influence each other s purchasing behavior, an opportunity which can be easily missed if spatial visualization is left out. Every one of the analytical components in Oracle Database is valuable. Combining these components creates even more value to the business. Leveraging SQL or a BI Tool to expose the results of these analytics to end users gives an organization an edge over others who do not leverage the full potential of analytics in Oracle Database. Connections between Oracle Big Data Appliance and Oracle Exadata are via InfiniBand, enabling high-speed data transfer for batch or query workloads. Big Data SQL greatly enhances the performance of these queries by delivering Smart Scan on Hadoop data. 11
13 Conclusion Analyzing new and diverse digital data streams can reveal new sources of economic value, provide fresh insights into customer behavior and identify market trends early on. But this influx of new data creates challenges for IT departments. To derive real business value from big data, you need the right tools to capture and organize a wide variety of data types from different sources, and to be able to easily analyze it within the context of all your enterprise data. By using the Oracle Big Data Appliance and Oracle Big Data Connectors in conjunction with Oracle Exadata, enterprises can acquire, organize and analyze all their enterprise data including structured and unstructured to make the most informed decisions. 12
14 Oracle: Big Data for the Enterprise September 2014 Author: Jean-Pierre Dijcks Oracle Corporation World Headquarters 500 Oracle Parkway Redwood Shores, CA U.S.A. Worldwide Inquiries: Phone: Fax: oracle.com Copyright 2014, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Cloudera, Cloudera CDH, and Cloudera Manager are registered and unregistered trademarks of Cloudera, Inc. Other names may be trademarks of their respective owners. 0109
An Oracle White Paper June 2013. Oracle: Big Data for the Enterprise
An Oracle White Paper June 2013 Oracle: Big Data for the Enterprise Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5 Infrastructure
Executive Summary... 2 Introduction... 3. Defining Big Data... 3. The Importance of Big Data... 4 Building a Big Data Platform...
Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5 Infrastructure Requirements... 5 Solution Spectrum... 6 Oracle s Big Data
An Oracle White Paper October 2011. Oracle: Big Data for the Enterprise
An Oracle White Paper October 2011 Oracle: Big Data for the Enterprise Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5
An Oracle White Paper June 2012. High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database
An Oracle White Paper June 2012 High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database Executive Overview... 1 Introduction... 1 Oracle Loader for Hadoop... 2 Oracle Direct
An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics
An Oracle White Paper November 2010 Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics 1 Introduction New applications such as web searches, recommendation engines,
Big Data and Natural Language: Extracting Insight From Text
An Oracle White Paper October 2012 Big Data and Natural Language: Extracting Insight From Text Table of Contents Executive Overview... 3 Introduction... 3 Oracle Big Data Appliance... 4 Synthesys... 5
1 Performance Moves to the Forefront for Data Warehouse Initiatives. 2 Real-Time Data Gets Real
Top 10 Data Warehouse Trends for 2013 What are the most compelling trends in storage and data warehousing that motivate IT leaders to undertake new initiatives? Which ideas, solutions, and technologies
Big Data: Are You Ready? Kevin Lancaster
Big Data: Are You Ready? Kevin Lancaster Director, Engineered Systems Oracle Europe, Middle East & Africa 1 A Data Explosion... Traditional Data Sources Billing engines Custom developed New, Non-Traditional
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
Oracle Data Integrator 12c (ODI12c) - Powering Big Data and Real-Time Business Analytics. An Oracle White Paper October 2013
An Oracle White Paper October 2013 Oracle Data Integrator 12c (ODI12c) - Powering Big Data and Real-Time Business Analytics Introduction: The value of analytics is so widely recognized today that all mid
ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION
ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION EXECUTIVE SUMMARY Oracle business intelligence solutions are complete, open, and integrated. Key components of Oracle business intelligence
Oracle s Big Data solutions. Roger Wullschleger. <Insert Picture Here>
s Big Data solutions Roger Wullschleger DBTA Workshop on Big Data, Cloud Data Management and NoSQL 10. October 2012, Stade de Suisse, Berne 1 The following is intended to outline
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager Big Data: The Datafication Of Everything Thoughts Devices Processes Thoughts Things Processes Run the Business Organize data to do something
An Oracle White Paper February 2014. Oracle Data Integrator 12c Architecture Overview
An Oracle White Paper February 2014 Oracle Data Integrator 12c Introduction Oracle Data Integrator (ODI) 12c is built on several components all working together around a centralized metadata repository.
Oracle Big Data Management System
Oracle Big Data Management System A Statement of Direction for Big Data and Data Warehousing Platforms O R A C L E S T A T E M E N T O F D I R E C T I O N A P R I L 2 0 1 5 Disclaimer The following is
An Integrated Analytics & Big Data Infrastructure September 21, 2012 Robert Stackowiak, Vice President Data Systems Architecture Oracle Enterprise
An Integrated Analytics & Big Data Infrastructure September 21, 2012 Robert Stackowiak, Vice President Data Systems Architecture Oracle Enterprise Solutions Group The following is intended to outline our
Why Big Data in the Cloud?
Have 40 Why Big Data in the Cloud? Colin White, BI Research January 2014 Sponsored by Treasure Data TABLE OF CONTENTS Introduction The Importance of Big Data The Role of Cloud Computing Using Big Data
Hadoop for Enterprises:
Hadoop for Enterprises: Overcoming the Major Challenges Introduction to Big Data Big Data are information assets that are high volume, velocity, and variety. Big Data demands cost-effective, innovative
ORACLE TAX ANALYTICS. The Solution. Oracle Tax Data Model KEY FEATURES
ORACLE TAX ANALYTICS KEY FEATURES A set of comprehensive and compatible BI Applications. Advanced insight into tax performance Built on World Class Oracle s Database and BI Technology Design after the
Big Data Use Cases Update
Big Data Use Cases Update Sanat Joshi Industry Solutions Manufacturing Industries Business Unit 1 Data Explosion Web & social networks experienced it first Infographic by Go-gulf.com 2 Number Of Connected
Oracle Big Data Essentials
Oracle University Contact Us: Local: 1800 103 4775 Intl: +91 80 40291196 Oracle Big Data Essentials Duration: 3 Days What you will learn This Oracle Big Data Essentials training deep dives into using the
ORACLE DATA INTEGRATOR ENTERPRISE EDITION
ORACLE DATA INTEGRATOR ENTERPRISE EDITION Oracle Data Integrator Enterprise Edition 12c delivers high-performance data movement and transformation among enterprise platforms with its open and integrated
IT CHANGE MANAGEMENT & THE ORACLE EXADATA DATABASE MACHINE
IT CHANGE MANAGEMENT & THE ORACLE EXADATA DATABASE MACHINE EXECUTIVE SUMMARY There are many views published by the IT analyst community about an emerging trend toward turn-key systems when deploying IT
Introducing Oracle Exalytics In-Memory Machine
Introducing Oracle Exalytics In-Memory Machine Jon Ainsworth Director of Business Development Oracle EMEA Business Analytics 1 Copyright 2011, Oracle and/or its affiliates. All rights Agenda Topics Oracle
ORACLE DATA INTEGRATOR ENTERPRISE EDITION
ORACLE DATA INTEGRATOR ENTERPRISE EDITION ORACLE DATA INTEGRATOR ENTERPRISE EDITION KEY FEATURES Out-of-box integration with databases, ERPs, CRMs, B2B systems, flat files, XML data, LDAP, JDBC, ODBC Knowledge
ETPL Extract, Transform, Predict and Load
ETPL Extract, Transform, Predict and Load An Oracle White Paper March 2006 ETPL Extract, Transform, Predict and Load. Executive summary... 2 Why Extract, transform, predict and load?... 4 Basic requirements
Big Data Are You Ready? Thomas Kyte http://asktom.oracle.com
Big Data Are You Ready? Thomas Kyte http://asktom.oracle.com The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated
An Oracle White Paper May 2011. Exadata Smart Flash Cache and the Oracle Exadata Database Machine
An Oracle White Paper May 2011 Exadata Smart Flash Cache and the Oracle Exadata Database Machine Exadata Smart Flash Cache... 2 Oracle Database 11g: The First Flash Optimized Database... 2 Exadata Smart
Oracle Database 10g: Building GIS Applications Using the Oracle Spatial Network Data Model. An Oracle Technical White Paper May 2005
Oracle Database 10g: Building GIS Applications Using the Oracle Spatial Network Data Model An Oracle Technical White Paper May 2005 Building GIS Applications Using the Oracle Spatial Network Data Model
An Oracle White Paper May 2012. Oracle Database Cloud Service
An Oracle White Paper May 2012 Oracle Database Cloud Service Executive Overview The Oracle Database Cloud Service provides a unique combination of the simplicity and ease of use promised by Cloud computing
An Oracle White Paper November 2010. Oracle Business Intelligence Standard Edition One 11g
An Oracle White Paper November 2010 Oracle Business Intelligence Standard Edition One 11g Introduction Oracle Business Intelligence Standard Edition One is a complete, integrated BI system designed for
How To Use Big Data Effectively
Why is BIG Data Important? March 2012 1 Why is BIG Data Important? A Navint Partners White Paper May 2012 Why is BIG Data Important? March 2012 2 What is Big Data? Big data is a term that refers to data
Well packaged sets of preinstalled, integrated, and optimized software on select hardware in the form of engineered systems and appliances
INSIGHT Oracle's All- Out Assault on the Big Data Market: Offering Hadoop, R, Cubes, and Scalable IMDB in Familiar Packages Carl W. Olofson IDC OPINION Global Headquarters: 5 Speen Street Framingham, MA
An Oracle White Paper October 2013. Oracle Data Integrator 12c New Features Overview
An Oracle White Paper October 2013 Oracle Data Integrator 12c Disclaimer This document is for informational purposes. It is not a commitment to deliver any material, code, or functionality, and should
ORACLE OLAP. Oracle OLAP is embedded in the Oracle Database kernel and runs in the same database process
ORACLE OLAP KEY FEATURES AND BENEFITS FAST ANSWERS TO TOUGH QUESTIONS EASILY KEY FEATURES & BENEFITS World class analytic engine Superior query performance Simple SQL access to advanced analytics Enhanced
Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies
Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies Big Data: Global Digital Data Growth Growing leaps and bounds by 40+% Year over Year! 2009 =.8 Zetabytes =.08
Oracle Real-Time Scheduler Benchmark
An Oracle White Paper November 2012 Oracle Real-Time Scheduler Benchmark Demonstrates Superior Scalability for Large Service Organizations Introduction Large service organizations with greater than 5,000
An Oracle White Paper August 2011. Oracle VM 3: Application-Driven Virtualization
An Oracle White Paper August 2011 Oracle VM 3: Application-Driven Virtualization Introduction Virtualization has experienced tremendous growth in the datacenter over the past few years. Recent Gartner
Performance with the Oracle Database Cloud
An Oracle White Paper September 2012 Performance with the Oracle Database Cloud Multi-tenant architectures and resource sharing 1 Table of Contents Overview... 3 Performance and the Cloud... 4 Performance
Interactive data analytics drive insights
Big data Interactive data analytics drive insights Daniel Davis/Invodo/S&P. Screen images courtesy of Landmark Software and Services By Armando Acosta and Joey Jablonski The Apache Hadoop Big data has
ORACLE BIG DATA APPLIANCE X3-2
ORACLE BIG DATA APPLIANCE X3-2 BIG DATA FOR THE ENTERPRISE KEY FEATURES Massively scalable infrastructure to store and manage big data Big Data Connectors delivers load rates of up to 12TB per hour between
The 4 Pillars of Technosoft s Big Data Practice
beyond possible Big Use End-user applications Big Analytics Visualisation tools Big Analytical tools Big management systems The 4 Pillars of Technosoft s Big Practice Overview Businesses have long managed
Running Oracle s PeopleSoft Human Capital Management on Oracle SuperCluster T5-8 O R A C L E W H I T E P A P E R L A S T U P D A T E D J U N E 2 0 15
Running Oracle s PeopleSoft Human Capital Management on Oracle SuperCluster T5-8 O R A C L E W H I T E P A P E R L A S T U P D A T E D J U N E 2 0 15 Table of Contents Fully Integrated Hardware and Software
Oracle Big Data Spatial and Graph
Oracle Big Data Spatial and Graph Oracle Big Data Spatial and Graph offers a set of analytic services and data models that support Big Data workloads on Apache Hadoop and NoSQL database technologies. For
An Oracle White Paper September 2012. Oracle Database and the Oracle Database Cloud
An Oracle White Paper September 2012 Oracle Database and the Oracle Database Cloud 1 Table of Contents Overview... 3 Cloud taxonomy... 4 The Cloud stack... 4 Differences between Cloud computing categories...
Business Intelligence and Service Oriented Architectures. An Oracle White Paper May 2007
Business Intelligence and Service Oriented Architectures An Oracle White Paper May 2007 Note: The following is intended to outline our general product direction. It is intended for information purposes
An Oracle White Paper November 2010. Backup and Recovery with Oracle s Sun ZFS Storage Appliances and Oracle Recovery Manager
An Oracle White Paper November 2010 Backup and Recovery with Oracle s Sun ZFS Storage Appliances and Oracle Recovery Manager Introduction...2 Oracle Backup and Recovery Solution Overview...3 Oracle Recovery
IT Workload Automation: Control Big Data Management Costs with Cisco Tidal Enterprise Scheduler
White Paper IT Workload Automation: Control Big Data Management Costs with Cisco Tidal Enterprise Scheduler What You Will Learn Big data environments are pushing the performance limits of business processing
An Oracle White Paper July 2011. Oracle Primavera Contract Management, Business Intelligence Publisher Edition-Sizing Guide
Oracle Primavera Contract Management, Business Intelligence Publisher Edition-Sizing Guide An Oracle White Paper July 2011 1 Disclaimer The following is intended to outline our general product direction.
March 2014. Oracle Business Intelligence Discoverer Statement of Direction
March 2014 Oracle Business Intelligence Discoverer Statement of Direction Oracle Statement of Direction Oracle Business Intelligence Discoverer Disclaimer This document in any form, software or printed
An Oracle White Paper March 2012. Managing Metadata with Oracle Data Integrator
An Oracle White Paper March 2012 Managing Metadata with Oracle Data Integrator Introduction Metadata information that describes data is the foundation of all information management initiatives aimed at
ORACLE LOYALTY ANALYTICS
ORACLE LOYALTY ANALYTICS KEY FEATURES & BENEFITS FOR BUSINESS USERS Increase customer retention and purchase frequency Determine key factors that drive loyalty and use that insight to increase overall
A Comprehensive Solution for API Management
An Oracle White Paper March 2015 A Comprehensive Solution for API Management Executive Summary... 3 What is API Management?... 4 Defining an API Management Strategy... 5 API Management Solutions from Oracle...
How To Use Hp Vertica Ondemand
Data sheet HP Vertica OnDemand Enterprise-class Big Data analytics in the cloud Enterprise-class Big Data analytics for any size organization Vertica OnDemand Organizations today are experiencing a greater
News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren
News and trends in Data Warehouse Automation, Big Data and BI Johan Hendrickx & Dirk Vermeiren Extreme Agility from Source to Analysis DWH Appliances & DWH Automation Typical Architecture 3 What Business
High Performance Data Management Use of Standards in Commercial Product Development
v2 High Performance Data Management Use of Standards in Commercial Product Development Jay Hollingsworth: Director Oil & Gas Business Unit Standards Leadership Council Forum 28 June 2012 1 The following
Oracle Big Data Handbook
ORACLG Oracle Press Oracle Big Data Handbook Tom Plunkett Brian Macdonald Bruce Nelson Helen Sun Khader Mohiuddin Debra L. Harding David Segleau Gokula Mishra Mark F. Hornick Robert Stackowiak Keith Laker
ENTERPRISE EDITION ORACLE DATA SHEET KEY FEATURES AND BENEFITS ORACLE DATA INTEGRATOR
ORACLE DATA INTEGRATOR ENTERPRISE EDITION KEY FEATURES AND BENEFITS ORACLE DATA INTEGRATOR ENTERPRISE EDITION OFFERS LEADING PERFORMANCE, IMPROVED PRODUCTIVITY, FLEXIBILITY AND LOWEST TOTAL COST OF OWNERSHIP
Harnessing the power of advanced analytics with IBM Netezza
IBM Software Information Management White Paper Harnessing the power of advanced analytics with IBM Netezza How an appliance approach simplifies the use of advanced analytics Harnessing the power of advanced
How To Make Data Streaming A Real Time Intelligence
REAL-TIME OPERATIONAL INTELLIGENCE Competitive advantage from unstructured, high-velocity log and machine Big Data 2 SQLstream: Our s-streaming products unlock the value of high-velocity unstructured log
An Integrated Big Data & Analytics Infrastructure June 14, 2012 Robert Stackowiak, VP Oracle ESG Data Systems Architecture
An Integrated Big Data & Analytics Infrastructure June 14, 2012 Robert Stackowiak, VP ESG Data Systems Architecture Big Data & Analytics as a Service Components Unstructured Data / Sparse Data of Value
Oracle On Demand Infrastructure: Virtualization with Oracle VM. An Oracle White Paper November 2007
Oracle On Demand Infrastructure: Virtualization with Oracle VM An Oracle White Paper November 2007 Oracle On Demand Infrastructure: Virtualization with Oracle VM INTRODUCTION Oracle On Demand Infrastructure
Big Data and Advanced Analytics Applications and Capabilities Steven Hagan, Vice President, Server Technologies
Big Data and Advanced Analytics Applications and Capabilities Steven Hagan, Vice President, Server Technologies 1 Copyright 2011, Oracle and/or its affiliates. All rights Big Data, Advanced Analytics:
Oracle Database - Engineered for Innovation. Sedat Zencirci Teknoloji Satış Danışmanlığı Direktörü Türkiye ve Orta Asya
Oracle Database - Engineered for Innovation Sedat Zencirci Teknoloji Satış Danışmanlığı Direktörü Türkiye ve Orta Asya Oracle Database 11g Release 2 Shipping since September 2009 11.2.0.3 Patch Set now
Big Data and Your Data Warehouse Philip Russom
Big Data and Your Data Warehouse Philip Russom TDWI Research Director for Data Management April 5, 2012 Sponsor Speakers Philip Russom Research Director, Data Management, TDWI Peter Jeffcock Director,
An Oracle White Paper June 2009. Integration Technologies for Primavera Solutions
An Oracle White Paper June 2009 Integration Technologies for Primavera Solutions Introduction... 1 The Integration Challenge... 2 Integration Methods for Primavera Solutions... 2 Integration Application
ORACLE BUSINESS INTELLIGENCE APPLICATIONS 11.1.1.7.1 WHAT S NEW
ORACLE BUSINESS INTELLIGENCE APPLICATIONS 11.1.1.7.1 WHAT S NEW COMPLETE AND INTEGRATED KEY NEW FEATURES Significant expansion of BI Applications new content and new products Completely re-architected
TUT NoSQL Seminar (Oracle) Big Data
Timo Raitalaakso +358 40 848 0148 [email protected] TUT NoSQL Seminar (Oracle) Big Data 11.12.2012 Timo Raitalaakso MSc 2000 Work: Solita since 2001 Senior Database Specialist Oracle ACE 2012 Blog: http://rafudb.blogspot.com
Virtual Compute Appliance Frequently Asked Questions
General Overview What is Oracle s Virtual Compute Appliance? Oracle s Virtual Compute Appliance is an integrated, wire once, software-defined infrastructure system designed for rapid deployment of both
Oracle Utilities Mobile Workforce Management Benchmark
An Oracle White Paper November 2012 Oracle Utilities Mobile Workforce Management Benchmark Demonstrates Superior Scalability for Large Field Service Organizations Introduction Large utility field service
Big Data. Fast Forward. Putting data to productive use
Big Data Putting data to productive use Fast Forward What is big data, and why should you care? Get familiar with big data terminology, technologies, and techniques. Getting started with big data to realize
Getting Started Practical Input For Your Roadmap
Getting Started Practical Input For Your Roadmap Mike Ferguson Managing Director, Intelligent Business Strategies BA4ALL Big Data & Analytics Insight Conference Stockholm, May 2015 About Mike Ferguson
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
AGENDA. What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story. Our BIG DATA Roadmap. Hadoop PDW
AGENDA What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story Hadoop PDW Our BIG DATA Roadmap BIG DATA? Volume 59% growth in annual WW information 1.2M Zetabytes (10 21 bytes) this
An Oracle White Paper August 2010. Higher Security, Greater Access with Oracle Desktop Virtualization
An Oracle White Paper August 2010 Higher Security, Greater Access with Oracle Desktop Virtualization Introduction... 1 Desktop Infrastructure Challenges... 2 Oracle s Desktop Virtualization Solutions Beyond
Big Data and Analytics in Government
Big Data and Analytics in Government Nov 29, 2012 Mark Johnson Director, Engineered Systems Program 2 Agenda What Big Data Is Government Big Data Use Cases Building a Complete Information Solution Conclusion
IBM InfoSphere Guardium Data Activity Monitor for Hadoop-based systems
IBM InfoSphere Guardium Data Activity Monitor for Hadoop-based systems Proactively address regulatory compliance requirements and protect sensitive data in real time Highlights Monitor and audit data activity
An Oracle White Paper July 2011. Oracle Desktop Virtualization Simplified Client Access for Oracle Applications
An Oracle White Paper July 2011 Oracle Desktop Virtualization Simplified Client Access for Oracle Applications Overview Oracle has the world s most comprehensive portfolio of industry-specific applications
An Oracle White Paper August 2013. Automatic Data Optimization with Oracle Database 12c
An Oracle White Paper August 2013 Automatic Data Optimization with Oracle Database 12c Introduction... 1 Storage Tiering and Compression Tiering... 2 Heat Map: Fine-grained Data Usage Tracking... 3 Automatic
An Oracle White Paper October 2011. BI Publisher 11g Scheduling & Apache ActiveMQ as JMS Provider
An Oracle White Paper October 2011 BI Publisher 11g Scheduling & Apache ActiveMQ as JMS Provider Disclaimer The following is intended to outline our general product direction. It is intended for information
For Midsize Organizations. Oracle Product Brief Oracle Business Intelligence Standard Edition One
For Midsize Organizations Oracle Product Brief Edition One Why your organization needs a Business Intelligence (BI) solution A large and growing supply of highly valuable data when does this become a burden
ORACLE UTILITIES ANALYTICS
ORACLE UTILITIES ANALYTICS TRANSFORMING COMPLEX DATA INTO BUSINESS VALUE UTILITIES FOCUS ON ANALYTICS Aging infrastructure. Escalating customer expectations. Demand growth. The challenges are many. And
Oracle Net Services for Oracle10g. An Oracle White Paper May 2005
Oracle Net Services for Oracle10g An Oracle White Paper May 2005 Oracle Net Services INTRODUCTION Oracle Database 10g is the first database designed for enterprise grid computing, the most flexible and
Improve your Customer Experience with High Quality Information
An Oracle White Paper April 2014 Improve your Customer Experience with High Quality Information Executive Overview Businesses are better leveraging their key CX asset customer data - by building MDM foundations
A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY
A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY Analytics for Enterprise Data Warehouse Management and Optimization Executive Summary Successful enterprise data management is an important initiative for growing
Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database
Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica
Where is... How do I get to...
Big Data, Fast Data, Spatial Data Making Sense of Location Data in a Smart City Hans Viehmann Product Manager EMEA ORACLE Corporation August 19, 2015 Copyright 2014, Oracle and/or its affiliates. All rights
Reduce Trial Costs While Increasing Study Speed and Data Quality with Oracle Siebel CTMS Cloud Service
Reduce Trial Costs While Increasing Study Speed and Data Quality with Oracle Siebel CTMS Cloud Service Comprehensive Enterprise Trial Management in the Cloud Oracle Siebel CTMS Cloud Service lets you effectively
ORACLE FINANCIAL SERVICES ANALYTICAL APPLICATIONS INFRASTRUCTURE
ORACLE FINANCIAL SERVICES ANALYTICAL APPLICATIONS INFRASTRUCTURE KEY FEATURES Rich and comprehensive business metadata allows business users to interact with financial services data model to configure
Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities
Technology Insight Paper Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities By John Webster February 2015 Enabling you to make the best technology decisions Enabling
Oracle Big Data Discovery The Visual Face of Hadoop
Disclaimer: This document is for informational purposes. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development,
An Oracle White Paper August 2011. Oracle VM 3: Server Pool Deployment Planning Considerations for Scalability and Availability
An Oracle White Paper August 2011 Oracle VM 3: Server Pool Deployment Planning Considerations for Scalability and Availability Note This whitepaper discusses a number of considerations to be made when
Oracle Primavera Gateway
Oracle Primavera Gateway Disclaimer The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is
An Oracle White Paper February 2010. Rapid Bottleneck Identification - A Better Way to do Load Testing
An Oracle White Paper February 2010 Rapid Bottleneck Identification - A Better Way to do Load Testing Introduction You re ready to launch a critical Web application. Ensuring good application performance
VIEWPOINT. High Performance Analytics. Industry Context and Trends
VIEWPOINT High Performance Analytics Industry Context and Trends In the digital age of social media and connected devices, enterprises have a plethora of data that they can mine, to discover hidden correlations
Rapid Bottleneck Identification A Better Way to do Load Testing. An Oracle White Paper June 2009
Rapid Bottleneck Identification A Better Way to do Load Testing An Oracle White Paper June 2009 Rapid Bottleneck Identification A Better Way to do Load Testing. RBI combines a comprehensive understanding
