Real Stock Trading Using Soft Computing Models
|
|
|
- Myles Day
- 10 years ago
- Views:
Transcription
1 Real Stock Trading Using Soft Computing Models Brent Doeksen 1, Ajith Abraham 2, Johnson Thomas 1 and Marcin Paprzycki 1 1 Computer Science Department, Oklahoma State University, OK 74106, USA, 2 School of Computer Science and Engineering, Chung-Ang University, Korea, [email protected], [email protected], [email protected] Abstract The main focus of this study is to compare different performances of soft computing paradigms for predicting the direction of individuals stocks. Three different artificial intelligence techniques were used to predict the direction of both Microsoft and Intel stock prices over a period of thirteen years. We explored the performance of artificial neural networks trained using backpropagation and conjugate gradient algorithm and a Mamdani and Takagi Sugeno Fuzzy inference system learned using neural learning and genetic algorithm. Once all the different models were built the last part of the experiment was to determine how much profit can be made using these methods versus a simple buy and hold technique. I. Introduction The ability to predict the direction of the stock prices is the most important factor to making money using financial prediction. All the investor really needs to know is to buy if the stock is going up in value and to sell if it is decreasing in value. This paper will delve into some of the most popular soft computing techniques for stock market modeling [1]. These methods are: neural networks, fuzzy inference system, genetic algorithm, and some heuristic techniques. The most recent studies compare indexes such as the S&P 500, NASDAQ, and the Dow Jones [2][4][5][8][10]. The experiments done in this project examine the chaotic behavior of actual company stocks that tend to be less stable and thus harder to predict. Studies have also shown that using direction as compared to prediction can generate higher profits [4], and this study will try and capitalize on that idea. Also the prediction will examine a more realistic situation where an investor has the choice between multiple stocks, in this case 2, and chooses the stock that is mostly likely to increase in value. The experiments also compare many hybrid AI techniques and their abilities to predict a categorical output. The data for this research comprised of prices for Microsoft and Intel Corporations from January 2nd, 1990 until August 5 th, Information contained for each daily report is the opening price, closing price, low price, high prices, and the volume of shares traded. Economic indicators such as the current Prime rate, Michigan s Consumer Sentiment Index, and the United States Consumer Confidences were also used to aid the models during the training phase. We explored the performance of artificial neural networks trained using backpropagation and conjugate gradient algorithm and Mamdani and Takagi Sugeno Fuzzy inference system learned using neural learning and genetic algorithm for directional prediction. 2. Related Research Many papers have dealt with input selection when it comes to mapping financial indexes and stocks [2][5][16][18][19]. Inputs have been broken into two different types of inputs, financial and political (which tend to be qualitative). Kuo et al. [7] uses a genetic algorithm base fuzzy neural network to measure the qualitative effects on the stock price. Variable selection is critical to the success of any network for the financial viability of a company. Quah et al. [9] identified 5 key parts namely yield, liquidity, risk, growth, and momentum factors. Macroeconomic factors such as inflation and short-term interest rate [5] have to shown to have direct impacts on the stock returns. A better measure of fitness, which considers profit [10] has been suggested to replace a root means squared error. Yao and Poh [12] showed an example where a model with a low Normalized Mean Square Error (NMSE) had a lower return than a model with a higher NMSE. Brownstone [3] recommends using percentages to measure performance so that the result can be better understood by traders and other people that might need their research and are not experts in the field. Chen et al. [4] used a sliding window to predict the next
2 day s price of the index. Everyday the network was retrained with the most recent 68 days of input with the attempt to predict the coming day. Commission (remuneration for services rendered) is commonly overlooked when doing research relating to stock market prediction; however, if any model is actually implemented it is going to incur fees which could greatly affect the profit predicted by the model. Chen et al. [4] considers 3 different levels of commissions and how it would affect the best buying strategy used by investors. 3. Hurst Exponent Some papers have used the Hurst Exponent [10] to prove that the data is not completely random but in fact has the correspondence between the input and the output data. The Hurst Exponent can show the degree of correlation. If the exponent is 0.5 the data is completely random and no thus no network will be able to predict the output and thus it is a waste of time to attempt to learn any pattern in the data. The closer the Hurst Exponent is to one, the greater the correlation between the input and output, and a Hurst Exponent of less than 0.5 means that the input and output are indirectly proportional. It is important to note the Hurst Exponent is confined to the range of 0 to 1. log( R / S) HurstExpon ent = (1) log( N) S is the standard deviation of the time series before normalization and R is the maximum and minimum cumulative deviations of the observation has compared with the mean of the series. N is the number of observations RN = max [ xt, N ] min [ xt, N ] (2) 1 t N 1 t N x t, n, the cumulative deviation, is describe by t x t, N = ( xu µ N ) (3) u= 1 µ x is the mean of x u for all N elements. The Hurst exponent can be very useful in any set and allows a method of comparing sets of data. 4. Soft Computing (SC) Soft computing comprises of new generation computationally intelligent hybrid systems consisting of neural networks, fuzzy inference system, approximate reasoning and derivative free optimization techniques. Neural Networks is an attempt at creating a computer that could learn in a manner similar to humans. Neural Networks can determine complex function approximations, classifications, auto associations etc. Fuzzy logic gives a set of natural language rules that are easily understood by humans. The primary advantage of fuzzy logic is its readability. For a first order Takagi- Sugeno model, a common rule is represented as [14]: If x is A 1 and y is B 1, then f 1 = p 1 x + q 1 y + r 1 (4) where x and y are linguistic variables and A 1 and B 1 are corresponding fuzzy sets and p 1, q 1, r 1 are linear parameters. Usually the least squares algorithm is used to determine the linear parameters and the membership function parameters are fine tuned using a neural network learning method. Initial rules are generated using the gridpartitioning method [6]. In the inference method proposed by Mamdani the rule consequence is defined by fuzzy sets and has the following structure [13]: if x is A1 and y is B1 then z1= C 1 (5) where x and y are linguistic variables, A 1 and B 1 are input fuzzy sets and C 1 the corresponding output fuzzy set. Usually a mixture of neural learning and global optimization method are used to fine tune the various rule parameters. Genetic algorithms loosely mimic the concept of natural selection. Each member is made up of a chromosome, which is normally a binary string. This chromosome defines the characteristic of the member of the population and that allows the algorithm to determine its fitness. A population is a group of members and changes from generation to generation through methods such as mutation and crossover. The fitness function is used at every generation to see which members are fit and most likely to survive to the next generation through a reproduction process. 5. Experiment Setup and Results The data sets used in this paper originally had data from January 1990 to August Since the stock prices had a big variation during the entire period, all the data prior to 1997 was removed from the data set. This provided 2 services: first it reduced the size of the data set and second it gave a better split of increasing days to decreasing days. Studies have shown in classification problems it is important to have equal representations of both cases in order to prevent the network from becoming biased towards the more common value, in this case increasing days. Intel data set contained less than 1% difference in the representation of increasing days as compared with decreasing days, thus further manipulation of the data set was not required. However Microsoft data during this period had an increase in 59.6% of the days in the sample set. In order to prevent the network from heavily favoring the increased prediction, the data set had increasing predictions randomly removed until a 55/45 split was achieved. This allowed experiments to be tested to show the difference with strong bias and without a bias. Thus
3 the last year of data from August 1 st, 2002 until July 31 st, 2003 was held out of set to be used as an unseen testing set in the simulation. All days in which the price increased or decreased by more than 10% in a single day were removed from the database as these outliers were most likely caused by external forces. Also days in which less than 0.1%, or no change occurred were removed because an action performed by the investor would not affect the bottom line. The outliers for these models were determined to be days when trade volume is 4 times the average trade volume or more. For Microsoft, this value came out to any day that more than 105 million shares were traded. The prime rate [11] was also used and any day that rate was changed was removed from the data set. Transforming the data into a network usable form is essential for the success of the network. The data in this paper was normalized using a min-max normalization. There are 16 inputs to begin with for the two data sets. The original 16 inputs that were considered are: consumer confidence index, the prime rate, Michigan consumer sentiment Index, price -1 (yesterday), price -2 (day before yesterday), price -3, price -4, price -5, volume -1 (volume yesterday), low 1, high 1, open 1, low 2, high 2, open 1, and volume -2. Several models were used to determine the least important inputs and then these inputs were removed before a more accurate and iterative approach could be used to determine the final inputs. A genetic algorithm with a population size of 50 was trained for 100 generations and the sensitivity about the mean test was conducted to see how important each input is relative to a particular neural network for prediction of the outputs. The result for Microsoft data set is shown below in Figure 1. Figure. 1. Sensitivity test for Microsoft data The sensitivity test helped to select the best 9 inputs. The number of inputs was further reduced to a much more manageable size using a greedy systematic test using a neural network classifier. Using the 9 inputs, a feed forward neural network was built and tested by removing one input randomly. The network which did the best on test was kept, thus after the first iteration there were 8 inputs left. All networks were trained 3 times with randomly initialized weights and the best network (selection of input variables) was chosen. The neural network used 20 and 7 neurons in the hidden layers. The conjugate gradient learning algorithm was used for 10,000 epochs for all the experiments. Table 1 shows the results that determined CCI (Consumer Confidence Index) should be removed from Microsoft data. The network with CCI input had a NMSE of , which was worse than the network that had the input removed ( ). Table 2 illustrates the next iteration, which elects volume to be removed with a NMSE of Table 1. Snapshot of input reduction with 8 variables Input MSE cross variable validation NMSE on testing CCI close volume high close open high close Table 2. Snapshot of input reduction with 7 variables Input MSE cross variable validation NMSE on testing volume close high close high open close This process was iterated until the dataset contained the 5 most significant inputs. The final selection of inputs is: close-1, open-1, high-1, high-2, and close-3. A soft computing paradigm could be used to model a regression or classification task. When performing regression, all the 5 inputs are given to the network, and the output is the stock price for the next day. Once a test is completed the predicted price is compared with yesterday s price to see if the price increased or decreased. Classification is much more straightforward. Before presenting the data to the network the output is translated to 1, for increase, or 0 for decrease. And the objective of the network is to correctly predicted 0 or 1.
4 Some studies have shown that classification can out perform their regression counterparts. Table 3 illustrates the regression/classification modeling results using neural networks. Table 3. Regression/classification performance # Neurons MSE NMSE Correct Decrease Increase Regression Classification NA NA NA When dealing with random sets, showing the same tests for different randomly selected data sets shows the results are realizable. The Microsoft data set used in the previous 2 sections was randomized 3 different times and networks were built for each data set using the same standards discussed in previous sections to ensure the best possible networks were created. Results for the three random data sets are illustrated in Figure 2 and Table 4. As evident, the performance is comparable and thus the results can be reliable for any random grouping of the dataset. The test standards listed below were used for all the models unless otherwise noted on the results. All neural network models were trained for 10,000 epochs and cross validation was used to terminate training after 200 epochs with no improvement. Also all networks were trained 3 times each with randomized starting weights to ensure the best possible network by minimizing the chance of obtaining a local minima. The number of hidden neurons in the first layer would vary from 10 to 50, with a step size of 2, to determine which network was best at learning the data. When a 2-layered neural network was designed the second layer would contain the ceiling of the log of the number of neurons in the first layer. The training set was broken up as 80% training and 20% cross validation. Table 5 reveals the performance of backpropagation and conjugate gradient algorithm for the directional prediction of Microsoft stocks for different number of hidden neurons. Performance of the Mamdani Fuzzy Inference System (FIS) is illustrated in Table 6. Three Membership Functions (MF s) were allocated to each input variable and the membership function parameters were fine tuned using 200 epochs of gradient descent algorithm and 50 generations of Genetic Algorithm (GA). Uniform crossover and a population size of 50 was used for the % GA. Similarly the performance of Takagi Sugeno fuzzy inference system is illustrated in Table 7 for the different number of Membership Functions (MF s)/input variable for 300 epochs of gradient descent and least squares method. Table 4. Performance for the different random data sets Classification Using Difference Sets (Microsoft) # MSE Correct Decrease Increase Neurons Set % 42.18% 82.77% % 37.50% 82.19% % 35.16% 83.35% Set % 16.21% 90.03% % 10.40% 95.92% % 26.27% 87.86% Set % 36.33% 80.49% % 36.99% 78.39% % 37.64% 79.44% Figure 2. Performance for 3 random data sets Table 5. Performance of neural networks Hidden Overall MSE Neurons Correct Decrease Increase Backpropagation % 41.60% 76.41% % 36.92% 85.08% Conjugate Gradient % 35.16% 83.35% % 42.18% 82.77% Table 6. Performance of Mamdani FIS Epochs RMSE % NMSE Testing Training Correct
5 Table 7. Performance of Takagi-Sugeno FIS # MF s NMSE on testing % Correct in the simulation period. The total number of trades for Intel and Microsoft is shown in Figure Stock Trading Simulation Each soft computing model was given $100 at the beginning of the testing period, August 1, 2003, and the model bought if it predicted an increase with over a 50% certainty. The model would hold onto the stock until it came to a day, which had an increase certainty of less than 50%, and then it would sell the stock. Table 8 shows an example of this strategy. Table 8. Financial Simulation Model Increase Output Action # of shares Cash Stay 0 $ Buy $ Hold $ Hold $ Hold $ Hold $ Sell 0 $ Buy $ Sell 0 $ Buy $ Sell 0 $ Buy $ Sell 0 $ Stay 0 $ A similar model was also built which earned the prime rate for any money that was not invested in the stock and this resulted in only marginal improvement for all models. As depicted in Figure 3, profit was improved as much as 889% over a straightforward buy and hold strategy using the neural network models. The performance was dependant on the number of hidden neurons. The model, using 44 hidden neurons was able to profit $ in a one-year period with an initial investment of $ For comparison, if the same money bought stocks at the beginning of the period and sold the stocks at the end of the period it would have made a profit of $10.43, this is referred to as a buy and hold strategy. This model predicted the direction of the stock correctly 63% of the time. Despite the lack luster performance the model was able to predict correctly when it counts most. The biggest draw back of such a scheme in the real world is commission. The model mentioned above bought and sold stock a total of 143 times during the 252 trading days Figure 3. Stock trading simulation for Microsoft Intel Microsoft Figure 4. Volume of trades using the SC models Buy and hold Figure 5. Stock trading simulation for Intel Compared to Microsoft, the prediction on Intel s stock was inferior in all cases. Two of the 3 models were able to beat the buy and hold strategy. The only plus side of Intel performance is it minimized the number of transactions, thus it would incur less commission if it was actually implemented. Table 9 illustrates the best models picked by the lowest MSE on the cross validation set for
6 both Intel and Microsoft. The profit seen by the best Model for Intel increased profit over the buy and hold strategy by 55%. Table 9. Performance of the optimal models for trading Mean Squared Error Correct Profit ($) Training Cross Valid. Microsoft (44 neurons) % Intel (17 neurons) % Conclusions The ability to predict stocks on a daily basis is a very difficult problem even for the most advance networks. The Hurst component confirmed the hypothesis, which is prediction is possible but especially difficult. Surprisingly, the Consumer Confidence Index and Prime Rate were not able to improve the predictability of these networks. It is clear from all the tests that the networks were able to learn the pattern in Microsoft s data much more easily than Intel s data, thus it might be possible that another stock is more learnable than Microsoft. Through the uses of many techniques it is possible to correctly predict the direction of the stock 63% of the time for a large company like Microsoft. Thus, this research provides the groundwork for financial trading using some of the well known soft computing paradigms. Even the worst model used for Microsoft produced a return on investment of 66%, and the best network scored an astounding 103% return. This study also demonstrated that picking the correct stock is as important as building the best network; as the best network for Intel was outperformed by the worst network on Microsoft data. The biggest downfall of these networks is that the transaction cost of buying and selling stocks would be very costly. However, it would be feasible to fine tune the buy and sell strategy to lower this cost. References [1] Abraham A., Intelligent Systems: Architectures and Perspectives, Recent Advances in Intelligent Paradigms and Applications, Abraham A., Jain L. and Kacprzyk J. (Eds.), Studies in Fuzziness and Soft Computing, Springer Verlag Germany, Chapter 1, pp. 1-35, [2] Abraham, A., Philip, N. S., and Saratchandran, P. Modeling Chaotic Behavior of Stock Indices Using Intelligent Paradigms. Neural, Parallel and Scientific Computations, 11 (2003): [3] Brownstone, D. Using Percentage Accuracy to Measure Neural Network Predictions in Stock Market Movements. Neurocomputing 10 (1996): [4] Chen, A.S., Leung, M.T., and Daouk, H. Application of Neural Networks to an Emerging Financial Market: Forecasting and Trading the Taiwan Stock Index. Computers and Operations Research 30 (2003): [5] Izumi, K. and Ueda, K. Analysis of Exchange Rate Scenarios Using an Artificial Market Approach. Proceeding of the International Conference on Artificial Intelligence 2 (1999): [6] Jang, J.S.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics 23 (1993): [7] Kuo, R.J., Chen, C.H., and Hwang, Y.C. An Intelligent Stock Trading Decision Support System through Integration of Genetic Algorithm Based Fuzzy Neural Network and Artificial Neural Network. Fuzzy Sets and Systems, 118 (2001): [8] O Brian, T. V. Neural Nets for Direct Marketers Marketing Research, Volume 6, Issue 1 [9] Quah, T.S. and Srinivasan, B. Improving Returns on Stock Investment through Neural Network Selection. Expert Systems with Applications 17 (1999): [10] Yao, J.T. and Tan, C.L. A Study on Training Criteria for Financial Time Series Forecasting. Proceedings of International Conference on Neural Information Processing. Nov. 2001: [11] Prime rate: [12] Yao, J. and Poh, H.L. Forecasting the KLSE Index Using Neural Networks. IEEE International Conference on Neural Networks 2 (1995) [13] Mamdani E H and Assilian S, An experiment in Linguistic Synthesis with a Fuzzy Logic Controller, International Journal of Man-Machine Studies, Vol. 7, No.1, pp. 1-13, [14] Sugeno M, Industrial Applications of Fuzzy Control, Elsevier Science Pub Co., 1985.
Proposal and Analysis of Stock Trading System Using Genetic Algorithm and Stock Back Test System
Proposal and Analysis of Stock Trading System Using Genetic Algorithm and Stock Back Test System Abstract: In recent years, many brokerage firms and hedge funds use a trading system based on financial
High Frequency Trading using Fuzzy Momentum Analysis
Proceedings of the World Congress on Engineering 2 Vol I WCE 2, June 3 - July 2, 2, London, U.K. High Frequency Trading using Fuzzy Momentum Analysis A. Kablan Member, IAENG, and W. L. Ng. Abstract High
APPLICATION OF ARTIFICIAL NEURAL NETWORKS USING HIJRI LUNAR TRANSACTION AS EXTRACTED VARIABLES TO PREDICT STOCK TREND DIRECTION
LJMS 2008, 2 Labuan e-journal of Muamalat and Society, Vol. 2, 2008, pp. 9-16 Labuan e-journal of Muamalat and Society APPLICATION OF ARTIFICIAL NEURAL NETWORKS USING HIJRI LUNAR TRANSACTION AS EXTRACTED
Price Prediction of Share Market using Artificial Neural Network (ANN)
Prediction of Share Market using Artificial Neural Network (ANN) Zabir Haider Khan Department of CSE, SUST, Sylhet, Bangladesh Tasnim Sharmin Alin Department of CSE, SUST, Sylhet, Bangladesh Md. Akter
Flexible Neural Trees Ensemble for Stock Index Modeling
Flexible Neural Trees Ensemble for Stock Index Modeling Yuehui Chen 1, Ju Yang 1, Bo Yang 1 and Ajith Abraham 2 1 School of Information Science and Engineering Jinan University, Jinan 250022, P.R.China
Neural Network Applications in Stock Market Predictions - A Methodology Analysis
Neural Network Applications in Stock Market Predictions - A Methodology Analysis Marijana Zekic, MS University of Josip Juraj Strossmayer in Osijek Faculty of Economics Osijek Gajev trg 7, 31000 Osijek
Neural Network and Genetic Algorithm Based Trading Systems. Donn S. Fishbein, MD, PhD Neuroquant.com
Neural Network and Genetic Algorithm Based Trading Systems Donn S. Fishbein, MD, PhD Neuroquant.com Consider the challenge of constructing a financial market trading system using commonly available technical
NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling
1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information
Knowledge Based Descriptive Neural Networks
Knowledge Based Descriptive Neural Networks J. T. Yao Department of Computer Science, University or Regina Regina, Saskachewan, CANADA S4S 0A2 Email: [email protected] Abstract This paper presents a
Programming Risk Assessment Models for Online Security Evaluation Systems
Programming Risk Assessment Models for Online Security Evaluation Systems Ajith Abraham 1, Crina Grosan 12, Vaclav Snasel 13 1 Machine Intelligence Research Labs, MIR Labs, http://www.mirlabs.org 2 Babes-Bolyai
Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network
Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network Dušan Marček 1 Abstract Most models for the time series of stock prices have centered on autoregressive (AR)
An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and articial neural network
Fuzzy Sets and Systems 118 (2001) 21 45 www.elsevier.com/locate/fss An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and articial
Predicting the Stock Market with News Articles
Predicting the Stock Market with News Articles Kari Lee and Ryan Timmons CS224N Final Project Introduction Stock market prediction is an area of extreme importance to an entire industry. Stock price is
Soft-Computing Models for Building Applications - A Feasibility Study (EPSRC Ref: GR/L84513)
Soft-Computing Models for Building Applications - A Feasibility Study (EPSRC Ref: GR/L84513) G S Virk, D Azzi, K I Alkadhimi and B P Haynes Department of Electrical and Electronic Engineering, University
A New Approach to Neural Network based Stock Trading Strategy
A New Approach to Neural Network based Stock Trading Strategy Miroslaw Kordos, Andrzej Cwiok University of Bielsko-Biala, Department of Mathematics and Computer Science, Bielsko-Biala, Willowa 2, Poland:
Computational Neural Network for Global Stock Indexes Prediction
Computational Neural Network for Global Stock Indexes Prediction Dr. Wilton.W.T. Fok, IAENG, Vincent.W.L. Tam, Hon Ng Abstract - In this paper, computational data mining methodology was used to predict
2. IMPLEMENTATION. International Journal of Computer Applications (0975 8887) Volume 70 No.18, May 2013
Prediction of Market Capital for Trading Firms through Data Mining Techniques Aditya Nawani Department of Computer Science, Bharati Vidyapeeth s College of Engineering, New Delhi, India Himanshu Gupta
Neural Networks for Sentiment Detection in Financial Text
Neural Networks for Sentiment Detection in Financial Text Caslav Bozic* and Detlef Seese* With a rise of algorithmic trading volume in recent years, the need for automatic analysis of financial news emerged.
Fuzzy Candlestick Approach to Trade S&P CNX NIFTY 50 Index using Engulfing Patterns
Fuzzy Candlestick Approach to Trade S&P CNX NIFTY 50 Index using Engulfing Patterns Partha Roy 1, Sanjay Sharma 2 and M. K. Kowar 3 1 Department of Computer Sc. & Engineering 2 Department of Applied Mathematics
Analyzing Call Center Performance: A Data Mining Approach
Analyzing Call Center Performance: A Data Mining Approach Ruiyuan Guo, Ajith Abraham* and Marcin Paprzycki** Computer Science Department, Oklahoma State University, USA [email protected] * IITA Professorship
Forecasting Of Indian Stock Market Index Using Artificial Neural Network
Forecasting Of Indian Stock Market Index Using Artificial Neural Network Proposal Page 1 of 8 ABSTRACT The objective of the study is to present the use of artificial neural network as a forecasting tool
Prediction Model for Crude Oil Price Using Artificial Neural Networks
Applied Mathematical Sciences, Vol. 8, 2014, no. 80, 3953-3965 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.43193 Prediction Model for Crude Oil Price Using Artificial Neural Networks
FOREX TRADING PREDICTION USING LINEAR REGRESSION LINE, ARTIFICIAL NEURAL NETWORK AND DYNAMIC TIME WARPING ALGORITHMS
FOREX TRADING PREDICTION USING LINEAR REGRESSION LINE, ARTIFICIAL NEURAL NETWORK AND DYNAMIC TIME WARPING ALGORITHMS Leslie C.O. Tiong 1, David C.L. Ngo 2, and Yunli Lee 3 1 Sunway University, Malaysia,
A Comparison of Genotype Representations to Acquire Stock Trading Strategy Using Genetic Algorithms
2009 International Conference on Adaptive and Intelligent Systems A Comparison of Genotype Representations to Acquire Stock Trading Strategy Using Genetic Algorithms Kazuhiro Matsui Dept. of Computer Science
How can we discover stocks that will
Algorithmic Trading Strategy Based On Massive Data Mining Haoming Li, Zhijun Yang and Tianlun Li Stanford University Abstract We believe that there is useful information hiding behind the noisy and massive
Equity forecast: Predicting long term stock price movement using machine learning
Equity forecast: Predicting long term stock price movement using machine learning Nikola Milosevic School of Computer Science, University of Manchester, UK [email protected] Abstract Long
A Prediction Model for Taiwan Tourism Industry Stock Index
A Prediction Model for Taiwan Tourism Industry Stock Index ABSTRACT Han-Chen Huang and Fang-Wei Chang Yu Da University of Science and Technology, Taiwan Investors and scholars pay continuous attention
Review on Financial Forecasting using Neural Network and Data Mining Technique
ORIENTAL JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY An International Open Free Access, Peer Reviewed Research Journal Published By: Oriental Scientific Publishing Co., India. www.computerscijournal.org ISSN:
NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling
1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information
Application of Neural Network in User Authentication for Smart Home System
Application of Neural Network in User Authentication for Smart Home System A. Joseph, D.B.L. Bong, D.A.A. Mat Abstract Security has been an important issue and concern in the smart home systems. Smart
Neural Network Stock Trading Systems Donn S. Fishbein, MD, PhD Neuroquant.com
Neural Network Stock Trading Systems Donn S. Fishbein, MD, PhD Neuroquant.com There are at least as many ways to trade stocks and other financial instruments as there are traders. Remarkably, most people
Neural Networks, Financial Trading and the Efficient Markets Hypothesis
Neural Networks, Financial Trading and the Efficient Markets Hypothesis Andrew Skabar & Ian Cloete School of Information Technology International University in Germany Bruchsal, D-76646, Germany {andrew.skabar,
Stock price prediction using genetic algorithms and evolution strategies
Stock price prediction using genetic algorithms and evolution strategies Ganesh Bonde Institute of Artificial Intelligence University Of Georgia Athens,GA-30601 Email: [email protected] Rasheed Khaled Institute
SINGULAR SPECTRUM ANALYSIS HYBRID FORECASTING METHODS WITH APPLICATION TO AIR TRANSPORT DEMAND
SINGULAR SPECTRUM ANALYSIS HYBRID FORECASTING METHODS WITH APPLICATION TO AIR TRANSPORT DEMAND K. Adjenughwure, Delft University of Technology, Transport Institute, Ph.D. candidate V. Balopoulos, Democritus
Stock Portfolio Selection using Data Mining Approach
IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 11 (November. 2013), V1 PP 42-48 Stock Portfolio Selection using Data Mining Approach Carol Anne Hargreaves, Prateek
A Genetic Programming Model for S&P 500 Stock Market Prediction
Vol.6, No.5 (2013), pp.303-314 http://dx.doi.org/10.14257/ijca.2013.6.6.29 A Genetic Programming Model for S&P 500 Stock Market Prediction Alaa Sheta, Hossam Faris, Mouhammd Alkasassbeh Abstract The stock
6.2.8 Neural networks for data mining
6.2.8 Neural networks for data mining Walter Kosters 1 In many application areas neural networks are known to be valuable tools. This also holds for data mining. In this chapter we discuss the use of neural
Towards Rule-based System for the Assembly of 3D Bricks
Universal Journal of Communications and Network 3(4): 77-81, 2015 DOI: 10.13189/ujcn.2015.030401 http://www.hrpub.org Towards Rule-based System for the Assembly of 3D Bricks Sanguk Noh School of Computer
Forecasting Stock Prices using a Weightless Neural Network. Nontokozo Mpofu
Forecasting Stock Prices using a Weightless Neural Network Nontokozo Mpofu Abstract In this research work, we propose forecasting stock prices in the stock market industry in Zimbabwe using a Weightless
Performance Evaluation On Human Resource Management Of China S Commercial Banks Based On Improved Bp Neural Networks
Performance Evaluation On Human Resource Management Of China S *1 Honglei Zhang, 2 Wenshan Yuan, 1 Hua Jiang 1 School of Economics and Management, Hebei University of Engineering, Handan 056038, P. R.
ARTIFICIAL INTELLIGENCE METHODS IN STOCK INDEX PREDICTION WITH THE USE OF NEWSPAPER ARTICLES
FOUNDATION OF CONTROL AND MANAGEMENT SCIENCES No Year Manuscripts Mateusz, KOBOS * Jacek, MAŃDZIUK ** ARTIFICIAL INTELLIGENCE METHODS IN STOCK INDEX PREDICTION WITH THE USE OF NEWSPAPER ARTICLES Analysis
JetBlue Airways Stock Price Analysis and Prediction
JetBlue Airways Stock Price Analysis and Prediction Team Member: Lulu Liu, Jiaojiao Liu DSO530 Final Project JETBLUE AIRWAYS STOCK PRICE ANALYSIS AND PREDICTION 1 Motivation Started in February 2000, JetBlue
Time Series Data Mining in Rainfall Forecasting Using Artificial Neural Network
Time Series Data Mining in Rainfall Forecasting Using Artificial Neural Network Prince Gupta 1, Satanand Mishra 2, S.K.Pandey 3 1,3 VNS Group, RGPV, Bhopal, 2 CSIR-AMPRI, BHOPAL [email protected]
Designing a Decision Support System Model for Stock Investment Strategy
Designing a Decision Support System Model for Stock Investment Strategy Chai Chee Yong and Shakirah Mohd Taib Abstract Investors face the highest risks compared to other form of financial investments when
Correspondence should be addressed to Chandra Shekhar Yadav; [email protected]
So ware Engineering, Article ID 284531, 6 pages http://dx.doi.org/10.1155/2014/284531 Research Article Prediction Model for Object Oriented Software Development Effort Estimation Using One Hidden Layer
Neural Network Add-in
Neural Network Add-in Version 1.5 Software User s Guide Contents Overview... 2 Getting Started... 2 Working with Datasets... 2 Open a Dataset... 3 Save a Dataset... 3 Data Pre-processing... 3 Lagging...
Segmentation of stock trading customers according to potential value
Expert Systems with Applications 27 (2004) 27 33 www.elsevier.com/locate/eswa Segmentation of stock trading customers according to potential value H.W. Shin a, *, S.Y. Sohn b a Samsung Economy Research
Data Mining Techniques Chapter 7: Artificial Neural Networks
Data Mining Techniques Chapter 7: Artificial Neural Networks Artificial Neural Networks.................................................. 2 Neural network example...................................................
Designing a Stock Trading System Using Artificial Nero Fuzzy Inference Systems and Technical Analysis Approach
Vol. 4, No., January 24, pp. 76 84 E-ISSN: 2225-8329, P-ISSN: 238-337 24 HRMARS www.hrmars.com Designing a Stock System Using Artificial Nero Fuzzy Inference Systems and Technical Analysis Approach Fatemeh
EFFICIENT DATA PRE-PROCESSING FOR DATA MINING
EFFICIENT DATA PRE-PROCESSING FOR DATA MINING USING NEURAL NETWORKS JothiKumar.R 1, Sivabalan.R.V 2 1 Research scholar, Noorul Islam University, Nagercoil, India Assistant Professor, Adhiparasakthi College
Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski [email protected] Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems
Sales Forecast for Pickup Truck Parts:
Sales Forecast for Pickup Truck Parts: A Case Study on Brake Rubber Mojtaba Kamranfard University of Semnan Semnan, Iran [email protected] Kourosh Kiani Amirkabir University of Technology Tehran,
UTILIZING ARTIFICIAL NEURAL NETWORK FOR PREDICTION IN THE NIGERIAN STOCK MARKET PRICE INDEX
UTILIZING ARTIFICIAL NEURAL NETWORK FOR PREDICTION IN THE NIGERIAN STOCK MARKET PRICE INDEX 1 Bello, Muhammad Yahuza, 2 Chiroma, Haruna 1 Bayero university kano, faculty of science, Mathematical science
Improving Decision Making and Managing Knowledge
Improving Decision Making and Managing Knowledge Decision Making and Information Systems Information Requirements of Key Decision-Making Groups in a Firm Senior managers, middle managers, operational managers,
Anupam Tarsauliya Shoureya Kant Rahul Kala Researcher Researcher Researcher IIITM IIITM IIITM Gwalior Gwalior Gwalior
Analysis of Artificial Neural Network for Financial Time Series Forecasting Anupam Tarsauliya Shoureya Kant Rahul Kala Researcher Researcher Researcher IIITM IIITM IIITM Gwalior Gwalior Gwalior Ritu Tiwari
OBJECTIVE ASSESSMENT OF FORECASTING ASSIGNMENTS USING SOME FUNCTION OF PREDICTION ERRORS
OBJECTIVE ASSESSMENT OF FORECASTING ASSIGNMENTS USING SOME FUNCTION OF PREDICTION ERRORS CLARKE, Stephen R. Swinburne University of Technology Australia One way of examining forecasting methods via assignments
ANN Model to Predict Stock Prices at Stock Exchange Markets
ANN Model to Predict Stock Prices at Stock Exchange Markets Wanjawa, Barack Wamkaya School of Computing and Informatics, University of Nairobi, [email protected] Muchemi, Lawrence School of Computing
PERFORMANCE ANALYSIS OF HYBRID FORECASTING MODEL IN STOCK MARKET FORECASTING
PERFORMANCE ANALYSIS OF HYBRID FORECASTING MODEL IN STOCK MARKET FORECASTING Mahesh S. Khadka*, K. M. George, N. Park and J. B. Kim a Department of Computer Science, Oklahoma State University, Stillwater,
A Comparative Study of the Pickup Method and its Variations Using a Simulated Hotel Reservation Data
A Comparative Study of the Pickup Method and its Variations Using a Simulated Hotel Reservation Data Athanasius Zakhary, Neamat El Gayar Faculty of Computers and Information Cairo University, Giza, Egypt
FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS
FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS Breno C. Costa, Bruno. L. A. Alberto, André M. Portela, W. Maduro, Esdras O. Eler PDITec, Belo Horizonte,
The development of a weighted evolving fuzzy neural network for PCB sales forecasting
Expert Systems with Applications Expert Systems with Applications 32 (2007) 86 96 www.elsevier.com/locate/eswa The development of a weighted evolving fuzzy neural network for PCB sales forecasting Pei-Chann
Study Plan for the Master Degree In Industrial Engineering / Management. (Thesis Track)
Study Plan for the Master Degree In Industrial Engineering / Management (Thesis Track) Plan no. 2005 T A. GENERAL RULES AND CONDITIONS: 1. This plan conforms to the valid regulations of programs of graduate
Prediction of Stock Performance Using Analytical Techniques
136 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 2, MAY 2013 Prediction of Stock Performance Using Analytical Techniques Carol Hargreaves Institute of Systems Science National University
Intelligence Trading System for Thai Stock Index Based on Fuzzy Logic and Neurofuzzy System
, October 19-21, 2011, San Francisco, USA Intelligence Trading System for Thai Stock Index Based on Fuzzy Logic and eurofuzzy System M.L. K. Kasemsan and M. Radeerom Abstract Stock investment has become
Genetic Algorithm. Based on Darwinian Paradigm. Intrinsically a robust search and optimization mechanism. Conceptual Algorithm
24 Genetic Algorithm Based on Darwinian Paradigm Reproduction Competition Survive Selection Intrinsically a robust search and optimization mechanism Slide -47 - Conceptual Algorithm Slide -48 - 25 Genetic
Data quality in Accounting Information Systems
Data quality in Accounting Information Systems Comparing Several Data Mining Techniques Erjon Zoto Department of Statistics and Applied Informatics Faculty of Economy, University of Tirana Tirana, Albania
Momentum Analysis based Stock Market Prediction using Adaptive Neuro-Fuzzy Inference System (ANFIS)
Momentum Analysis based Stock Market Prediction using Adaptive Neuro-Fuzzy Inference System (ANFIS) Samarth Agrawal, Manoj Jindal, G. N. Pillai Abstract This paper presents an innovative approach for indicating
Lecture 6. Artificial Neural Networks
Lecture 6 Artificial Neural Networks 1 1 Artificial Neural Networks In this note we provide an overview of the key concepts that have led to the emergence of Artificial Neural Networks as a major paradigm
Effect of Using Neural Networks in GA-Based School Timetabling
Effect of Using Neural Networks in GA-Based School Timetabling JANIS ZUTERS Department of Computer Science University of Latvia Raina bulv. 19, Riga, LV-1050 LATVIA [email protected] Abstract: - The school
COMPUTATIONIMPROVEMENTOFSTOCKMARKETDECISIONMAKING MODELTHROUGHTHEAPPLICATIONOFGRID. Jovita Nenortaitė
ISSN 1392 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.3 COMPUTATIONIMPROVEMENTOFSTOCKMARKETDECISIONMAKING MODELTHROUGHTHEAPPLICATIONOFGRID Jovita Nenortaitė InformaticsDepartment,VilniusUniversityKaunasFacultyofHumanities
A Basic Guide to Modeling Techniques for All Direct Marketing Challenges
A Basic Guide to Modeling Techniques for All Direct Marketing Challenges Allison Cornia Database Marketing Manager Microsoft Corporation C. Olivia Rud Executive Vice President Data Square, LLC Overview
GA as a Data Optimization Tool for Predictive Analytics
GA as a Data Optimization Tool for Predictive Analytics Chandra.J 1, Dr.Nachamai.M 2,Dr.Anitha.S.Pillai 3 1Assistant Professor, Department of computer Science, Christ University, Bangalore,India, [email protected]
Combining Artificial Intelligence with Non-linear Data Processing Techniques for Forecasting Exchange Rate Time Series
Combining Artificial Intelligence with Non-linear Data Processing Techniques for Forecasting Exchange Rate Time Series Heng-Li Yang, 2 Han-Chou Lin, First Author Department of Management Information systems,
Using News Articles to Predict Stock Price Movements
Using News Articles to Predict Stock Price Movements Győző Gidófalvi Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 9237 [email protected] 21, June 15,
Genetic algorithm evolved agent-based equity trading using Technical Analysis and the Capital Asset Pricing Model
Genetic algorithm evolved agent-based equity trading using Technical Analysis and the Capital Asset Pricing Model Cyril Schoreels and Jonathan M. Garibaldi Automated Scheduling, Optimisation and Planning
Generating Intraday Trading Rules on Index Future Markets Using Genetic Programming
Generating Intraday Trading Rules on Index Future Markets Using Genetic Programming Liu Hongguang and Ji Ping Abstract Technical analysis has been utilized in the design of many kinds of trading models.
Bank Customers (Credit) Rating System Based On Expert System and ANN
Bank Customers (Credit) Rating System Based On Expert System and ANN Project Review Yingzhen Li Abstract The precise rating of customers has a decisive impact on loan business. We constructed the BP network,
NEURAL networks [5] are universal approximators [6]. It
Proceedings of the 2013 Federated Conference on Computer Science and Information Systems pp. 183 190 An Investment Strategy for the Stock Exchange Using Neural Networks Antoni Wysocki and Maciej Ławryńczuk
Fuzzy logic decision support for long-term investing in the financial market
Fuzzy logic decision support for long-term investing in the financial market Abstract This paper discusses the use of fuzzy logic and modeling as a decision making support for long-term investment decisions
Understanding Margins
Understanding Margins Frequently asked questions on margins as applicable for transactions on Cash and Derivatives segments of NSE and BSE Jointly published by National Stock Exchange of India Limited
CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER
93 CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 5.1 INTRODUCTION The development of an active trap based feeder for handling brakeliners was discussed
APPLICATION OF INTELLIGENT METHODS IN COMMERCIAL WEBSITE MARKETING STRATEGIES DEVELOPMENT
ISSN 1392 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.2 APPLICATION OF INTELLIGENT METHODS IN COMMERCIAL WEBSITE MARKETING STRATEGIES DEVELOPMENT Algirdas Noreika Department of Practical
Neural Networks and Back Propagation Algorithm
Neural Networks and Back Propagation Algorithm Mirza Cilimkovic Institute of Technology Blanchardstown Blanchardstown Road North Dublin 15 Ireland [email protected] Abstract Neural Networks (NN) are important
A Sarsa based Autonomous Stock Trading Agent
A Sarsa based Autonomous Stock Trading Agent Achal Augustine The University of Texas at Austin Department of Computer Science Austin, TX 78712 USA [email protected] Abstract This paper describes an autonomous
Journal of Optimization in Industrial Engineering 13 (2013) 49-54
Journal of Optimization in Industrial Engineering 13 (2013) 49-54 Optimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm Abstract Mohammad Saleh
Chapter 4: Artificial Neural Networks
Chapter 4: Artificial Neural Networks CS 536: Machine Learning Littman (Wu, TA) Administration icml-03: instructional Conference on Machine Learning http://www.cs.rutgers.edu/~mlittman/courses/ml03/icml03/
Web Traffic Mining Using a Concurrent Neuro-Fuzzy Approach
Web Traffic Mining Using a Concurrent Neuro-Fuzzy Approach Xiaozhe Wang, Ajith Abraham and Kate A. Smith School of Business Systems, Faculty of Information Technology, Monash University, Clayton, Victoria
Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects
Journal of Computer Science 2 (2): 118-123, 2006 ISSN 1549-3636 2006 Science Publications Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects Alaa F. Sheta Computers
Comparing Neural Networks and ARMA Models in Artificial Stock Market
Comparing Neural Networks and ARMA Models in Artificial Stock Market Jiří Krtek Academy of Sciences of the Czech Republic, Institute of Information Theory and Automation. e-mail: [email protected]
Understanding Margins. Frequently asked questions on margins as applicable for transactions on Cash and Derivatives segments of NSE and BSE
Understanding Margins Frequently asked questions on margins as applicable for transactions on Cash and Derivatives segments of NSE and BSE Jointly published by National Stock Exchange of India Limited
International Journal of Computer Trends and Technology (IJCTT) volume 4 Issue 8 August 2013
A Short-Term Traffic Prediction On A Distributed Network Using Multiple Regression Equation Ms.Sharmi.S 1 Research Scholar, MS University,Thirunelvelli Dr.M.Punithavalli Director, SREC,Coimbatore. Abstract:
Advanced analytics at your hands
2.3 Advanced analytics at your hands Neural Designer is the most powerful predictive analytics software. It uses innovative neural networks techniques to provide data scientists with results in a way previously
Soft Computing In The Forecasting Of The Stock Exchange Of Thailand
Edith Cowan University Research Online ECU Publications Pre. 2011 2008 Soft Computing In The Forecasting Of The Stock Exchange Of Thailand Suchira Chaigusin Edith Cowan University Chaiyaporn Chirathamjaree
Empirical Analysis of an Online Algorithm for Multiple Trading Problems
Empirical Analysis of an Online Algorithm for Multiple Trading Problems Esther Mohr 1) Günter Schmidt 1+2) 1) Saarland University 2) University of Liechtenstein [email protected] [email protected] Abstract:
The relation between news events and stock price jump: an analysis based on neural network
20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 The relation between news events and stock price jump: an analysis based on
A SURVEY ON GENETIC ALGORITHM FOR INTRUSION DETECTION SYSTEM
A SURVEY ON GENETIC ALGORITHM FOR INTRUSION DETECTION SYSTEM MS. DIMPI K PATEL Department of Computer Science and Engineering, Hasmukh Goswami college of Engineering, Ahmedabad, Gujarat ABSTRACT The Internet
