Online Smoothing for Markerless Motion Capture
|
|
|
- Earl Strickland
- 10 years ago
- Views:
Transcription
1 Online Smoothing for Markerless Motion Capture Bodo Rosenhahn 1, Thomas Brox 2, Daniel Cremers 2, and Hans-Peter Seidel 1 1 Max Planck Center Saarbrücken, Germany [email protected] 2 CVPR Group, University of Bonn, Germany Abstract. Tracking 3D objects from 2D image data often leads to jittery tracking results. In general, unsmooth motion is a sign of tracking errors, which, in the worst case, can cause the tracker to loose the tracked object. A straightforward remedy is to demand temporal consistency and to smooth the result. This is often done in form of a post-processing. In this paper, we present an approach for online smoothing in the scope of 3D human motion tracking. To this end, we extend an energy functional by a term that penalizes deviations from smoothness. It is shown experimentally that such online smoothing on pose parameters and joint angles leads to improved results and can even succeed in cases, where tracking without temporal consistency assumptions fails completely. 1 Introduction Tracking 3D objects from 2D images is a well known task in computer vision with various approaches such as edge based techniques [8], particle filters [7], or regionbased methods [14,1], just to name a few. Due to ambiguities in the image data, many tracking algorithms produce jittery results. On the other hand, smoothing assumptions of the observed motion can be made due to the inertness of the masses of involved objects. This means, that it is physically unlikely that an object continuously moved by a robot arm or human hand is rapidly changing the direction or even jittering, unless there are physiological diseases. Many tracking procedures do not take this property into account. Hence, the outcome tends to wobble around the true center of the tracked object. To receive a more appealing outcome, the results are often smoothed in a second post-processing step. However, jittery results often indicate errors or ambiguities during tracking. Thus, introducing temporal consistency already during the estimation, can help to eliminate errors at the root of the problem. In case of human motion capturing and animation, several approaches exist in the literature to smooth motions of joints during synthesis. Bruderlin et al. [3] use a multi target motion interpolation with dynamic time warping in a signal based approach or Sul et al. [16] and Ude et al. [17] propose an extended Kalman filter. While these works have only addressed the smoothing of joint angles, the smoothing of 3D rigid body motions has been addressed in other works: Chaudhry et al. [6] smooth Euler angles and translation vectors. Shoemake [15] proposes quaternions for rotation animation (and interpolation) combined with translation vectors. Park et al. [12] use a rational This work has been supported by the Max-Planck Center for Visual Computing and Communication. F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp , c Springer-Verlag Berlin Heidelberg 2007
2 164 B. Rosenhahn et al. interpolating scheme for rotations by representing the group with Cayley parameters and using Euclidean methods in this parameter space. Belta et al. [4] propose a Liegroup and Lie-algebra representation in terms of an exponential mapping and twists to interpolate rigid body motions. All these works concentrate on the synthesis, smoothing, and interpolation of given motion patterns, whereas in this work we smooth estimated motions online during a tracking procedure: we use a previously developed markerless motion capture system, which performs image segmentation and pose tracking of articulated 3D free-form surface models. In complex scenes (e.g. outdoor environments), we frequently observed the effect of motion jitter as a precursor to tracking failure. Therefore, in this work, we supplement a penalizer to the existing error functional in order to reduce large jitter effects. Whereas the penalizer term for joint angles (as scalar functions) is pretty straightforward, the challenging aspect is to formalize penalizers for rigid body motions. To achieve this, we use exponentials of twists to represent rigid body motions (RBMs) and a logarithm to determine from a given RBM the generating twist, similar to the motion representation in [11,12]. The gradient of the penalizer leads to linear equations, which can easily be integrated in the numerical optimization scheme as additional constraints. In several experiments in the field of markerless motion capture, we demonstrate the improvements obtained with the integrated smoothness assumptions. As we cannot give a complete overview on the vast variety of existing motion capture systems, we refer to the surveys [9,10]. 2 Foundations In this section, we introduce mathematical foundations needed for the motion penalizer, in particular the twist representation of a rigid body motion and the conversion from the twist to the group action as well as vice-versa. Both conversions are needed later in Section 4 for the smoothing of rigid body motions. 2.1 Rigid Body Motion and Its Exponential Form Instead of using concatenated Euler angles and translation vectors, we use the twist representation of rigid body motions, which reads in exponential form [11]: ( ) M = exp(θ ˆξ)=exp ˆω v (1) where θ ˆξ is the matrix representation of a twist ξ se(3)={(v, ˆω) v R 3, ˆω so(3)}, with so(3)={a R 3 3 A = A T }.TheLiealgebraso(3) is the tangential space of all 3D rotations. Its elements are (scaled) rotation axes, which can either be represented as a 3D vector or a skew symmetric matrix: ω 1 0 ω 3 ω 2 θω = θ ω 2, with ω 2 = 1 θ ˆω = θ ω 3 0 ω 1. (2) ω 3 ω 2 ω 1 0 Atwistξ contains six parameters and can be scaled to θξ for a unit vector ω. The parameter θ R corresponds to the motion velocity (i.e., the rotation velocity and pitch).
3 Online Smoothing for Markerless Motion Capture 165 For varying θ, the motion can be identified as screw motion around an axis in space. The six twist components can either be represented as a 6D vector or as a 4 4matrix: 0 ω 3 ω 2 v 1 θξ = θ(ω 1,ω 2,ω 3,v 1,v 2,v 3 ) T, ω 2 = 1, θ ˆξ = θ ω 3 0 ω 1 v 2 ω 2 ω 1 0 v 3. (3) se(3) to SE(3). To reconstruct a group action M SE(3) from a given twist, the exponential function M = exp(θ ˆξ) = (θ ˆξ ) k k=0 k! must be computed. This can be done efficiently via ( exp(θ ˆξ)= exp(θ ˆω) (I exp(θ ˆω))(ω v)+ωω T ) vθ (4) 0 1 and by applying the Rodriguez formula exp(θ ˆω) =I + ˆω sin(θ)+ω 2 (1 cos(θ)). (5) This means, the computation can be achieved by simple matrix operations and sine and cosine evaluations of real numbers. This property was exploited in [2] to compute the pose and kinematic chain configuration in an orthographic camera setup. SE(3) to se(3). In [11], a constructive way is given to compute the twist which generates a given rigid body motion. Let R SO(3) be a rotation matrix and t R 3 a translation vector for the rigid body motion ( ) Rt M =. (6) 01 For the case R = I, the twist is given by t θξ = θ(0,0,0, ), θ = t. (7) t In all other cases, the motion velocity θ and the rotation axis ω are given by ( ) r θ = cos 1 trace(r) r 23, ω = r 13 r sin(θ) r 21 r 12 To obtain v, the matrix A =(I exp(θ ˆω)) ˆω + ωω T θ (8) obtained from the Rodriguez formula (see Equation (4)) needs to be inverted and multiplied with the translation vector t, v = A 1 t. (9) This follows from the fact that the two matrices which comprise A have mutually orthogonal null spaces when θ 0. Hence, Av = 0 v = 0. We call the transformation from SE(3) to se(3) the logarithm, log(m).
4 166 B. Rosenhahn et al. 2.2 Kinematic Chains Our models of articulated objects, e.g. humans, are represented in terms of free-form surfaces with embedded kinematic chains. A kinematic chain is modeled as the consecutive evaluation of exponential functions, and twists ξ i are used to model (known) joint locations [11]. The transformation of a mesh point of the surface model is given as the consecutive application of the local rigid body motions involved in the motion of a certain limb: X i = exp(θ ˆξ )(exp(θ 1ξ1 ˆ )...exp(θ nξn ˆ ))X i. (10) For abbreviation, we note a pose configuration by the (6 + n)-d vector χ =(ξ,θ 1,..., θ n )=(ξ,θ) consisting of the 6 degrees of freedom for the rigid body motion ξ and the nd vector Θ comprising the joint angles. In the MoCap-setup, the vector χ is unknown and has to be determined from the image data. 2.3 Pose Estimation from Point Correspondences Assuming an extracted image contour and the silhouette of the projected surface mesh, closest point correspondences between both contours can be used to define a set of corresponding 3D rays and 3D points. Then a 3D point-line based pose estimation algorithm for kinematic chains is applied to minimize the spatial distance between both contours: for point based pose estimation each line is modeled as a 3D Plücker line L i =(n i,m i ), with a unit direction n i and moment m i [11]. For pose estimation the reconstructed Plücker lines are combined with the screw representation for rigid motions. Incidence of the transformed 3D point X i with the 3D ray L i =(n i,m i ) can be expressed as (exp(θ ˆξ)X i ) 3 1 n i m i = 0. (11) Since exp(θ ˆξ)X i is a 4D vector, the homogeneous component (which is 1) is neglected to evaluate the cross product with n i. This nonlinear equation system can be linearized in the unknown twist parameters by using the first two elements of the sum representation of the exponential function: exp(θ ˆξ) = (θ ˆξ) i (I + θ i=0 i ˆξ). (12) This approximation is used in (11) and leads to the linear equation system ((I + θ ˆξ )X i ) 3 1 n i m i = 0. (13) Gathering a sufficient amount of point correspondences and appending the single equation systems, leads to an overdetermined linear system of equations in the unknown pose parameters θ ˆξ. The least squares solution is used for reconstruction of the rigid body motion using Equation (4) and (5). Then the model points are transformed and a new linear system is built and solved until convergence. The final pose is given as the consecutive evaluation of all rigid body motions during iteration.
5 Online Smoothing for Markerless Motion Capture 167 Since joints are expressed as special screws with no pitch of the form θ jξ ˆ j with known ξ ˆ j (the location of the rotation axes is part of the model) and unknown joint angle θ j. The constraint equation of an ith point on a jth joint has the form (exp(θ ˆξ)exp(θ 1 ˆ ξ1 )...exp(θ j ˆ ξ j )X i ) 3 1 n i m i = 0 (14) which is linearized in the same way as the rigid body motion itself. It leads to three linear equations with the six unknown twist parameters and j unknown joint angles. 3 Markerless Motion Capture The motion capturing model we use in this work can be described by an energy functional, which is sought to be minimized [13]. It comprises a level set based segmentation, similar to the Chan-Vese model [5], and a shape term that states the pose estimation task: ( E(Φ, p 1, p 2, χ) = H(Φ)log p1 +(1 H(Φ))log p 2 + ν H(Φ) ) dx Ω } {{ } +λ (Φ Φ 0 (χ)) 2 dx Ω } {{ } shape error segmentation The function Φ Ω R serves as an implicit contour representation. It splits the image domain Ω into two regions Ω 1 and Ω 2 with Φ(x) > 0ifx Ω 1 and Φ(x) < 0if x Ω 2. Those two regions are accessible via the step function H(s), i.e.,h(φ(x)) = 1 if x Ω 1 and H(Φ(x)) = 0 otherwise. Probability densities p 1 and p 2 measure the fit of an intensity value I(x) to the corresponding region. They are modeled by local Gaussian distributions [14]. The length term weighted by ν > 0 ensures the smoothness of the extracted contour. By means of the contour Φ, the contour extraction and pose estimation problems are coupled. In particular, the projected surface model Φ 0 acts as a shape prior to support the segmentation [14]. The influence of the shape prior on the segmentation is steered by the parameter λ = Due to the nonlinearity of the optimization problem, an iterative minimization scheme is chosen: first the pose parameters χ are kept constant, while the functional is minimized with respect to the partitioning. Then the contour is kept constant, while the pose parameters are determined to fit the surface mesh to the silhouettes (Section 2.3). 4 Penalizing Motion Jitter To avoid motion jitter, the idea is to extend the energy functional in (15) by an additional error term that penalizes deviations of the estimated pose from a smooth prediction generated from the poses of previous frames. Such a prediction χ =(ξ,θ) (as global pose) can be computed by means of the joint angle derivatives, (15) Θ = Θ s t + Θ s t = Θ s t +(Θ s t Θ s t 1), (16)
6 168 B. Rosenhahn et al. and the twist that represents the predicted position, ( ˆξ = log exp( ˆξ t )exp( ˆξ t 1 ) 1 exp( ˆξ ) t ), (17) see Section 2.1. The deviation of the estimate χ =(ξ,θ) from the prediction can now be measured by ( E Smooth = log exp( ˆξ)exp( ˆξ ) 1) 2 + Θ Θ 2. (18) Notice that the deviation of the rigid body motion is modeled by the minimal geodesics between the current and predicted pose. This error value is motivated from the exponential form of rigid body motions: since we linearize the pose, see (13), we have to do exactly the same here. The derivative of the joint angles is simply given by Θ Θ. To compute the motion derivative we can apply the logarithm from Section 2.1 to get a linearized geodesic [11]. This follows from the fact that the spatial velocity corresponding to a rigid motion generated by a screw action is precisely the velocity generated by the screw itself. To see this, we first set exp( ˆξ ) := exp( ˆξ)exp( ˆξ ) 1, (19) with ξ = log(exp( ˆξ )exp( ˆξ ) 1 ).Letg(0) R 3 be a point transformed to The spatial velocity of the point is given by [11] g(θ)=exp( ˆξ θ)g(0). (20) ˆV = ġ(θ)g 1 (θ). (21) Since, we have d dt (exp( ˆ ξ θ)) = ˆ ξ θ exp( ˆ ξ θ), (22) ˆV = ġ(θ)g 1 (θ) (23) = ξ ˆ exp( ξ ˆ θ)g(0)g 1 (θ) (24) = ξ ˆ (θ)= ξ ˆ (25) After setting θ = 1(θ = t), the linearized penalizer term acts as additional linear equation to the pose constraints which further regularize the equations, E Smooth χ =(log(exp( ˆξ )exp( ˆξ) 1 ),Θ Θ) = 0. (26) Equation (26) yields an additional constraint for each parameter that draws the solution towards the prediction. Note that we do not perform an offline smoothing in a second processing step. Instead, the motion jitter is penalized online in the estimation procedure, which does not only improve the smoothness of the result, but also stabilizes the tracking.
7 Online Smoothing for Markerless Motion Capture Experiments The experiments are subdivided into indoor and outdoor experiments. The indoor experiments allow for a controlled environment. The outdoor experiments demonstrate the applicability of our method to quite a tough task: markerless motion capture of highly dynamic sporting activities with non-controlled background, changing lighting conditions and full body models. Fig. 1. Left: Example frames of a knee bending sequence. Right: Quantization of outcome: Red: without penalizer, blue: with penalizer. The Penalizer function is suited to penalize rapid movement changes during tracking, not the smaller ones. 5.1 Indoor Experiments For indoor experiments we use a parameterized mesh model of legs, represented as free-form surface patches. Figure 1 shows in the left several consecutive example frames of a knee-bending scene in the lab environment. The smaller images in the first row show 4 example feet positions without a smoothness assumption and the last row shows feet positions with such an assumption. The motion jitter in these four consecutive frames is suppressed. The effect is quantified in the right of Figure 1. Here we have overlaid knee angles. The red values indicate the result of the system without the jitter penalizer and the blue one is the outcome with the incorporated penalizer. As can be seen, the penalizer decreases rapid motion changes, but maintains the smaller ones. The red peak around frame 50 is due to a corrupted frame, similar to the one in Figure Outdoor Experiments In our outdoor experiments we use two full body models of a male and female person with 26 degrees of freedom. Different sequences were captured in a four-camera setup (60 fps) with Basler gray-scale cameras. Here we report on a running trial and a coupled cartwheel flick-flack sequence, due to their high dynamics and complexity. Figure 2 summarizes results of the running trial: all images have been disturbed by 15% uncorrelated noise and random rectangles of random color and size. Tracking is successful in both cases, with the smoothness assumption and without it. However,
8 170 B. Rosenhahn et al. Fig. 2. Running trial of a male person. Top: The images have been disturbed with uncorrelated noise of 15% and random rectangles of random color and size. Bottom: Comparison of (some) joint angles: Red: Without jitter penalizer, black: with jitter penalizer. The curves reveal, that with the jitter penalizer the motion is much smoother. Fig. 3. Tracking in an outdoor environment: corrupted frames can cause larger errors, which are avoided by adding the penalizer function the diagram reveals that the curves with a smoothness constraint are much smoother. A comparison with a hand-labeled marker-based tracking system revealed an average error of 5.8 degrees between our result and the marker-based result. More importantly,
9 Online Smoothing for Markerless Motion Capture 171 Fig. 4. Red: Tracking fails, Blue: Tracking is successful Fig. 5. Example frames of the (successful tracked) Cartwheel-Flick-Flack sequence in a virtual environment. The small images show one of the four used cameras. the variance between our method and the marker-based method has been reduced from 12 degrees to 5 degrees by using the jitter penalizer. Another impact of our approach is shown in Figure 3: when grabbing images of a combined cartwheel and flick-flack, some frames were stored completely wrong, resulting in leg crossings and self intersections. Due to the smoothness term, the rapid leg movement is reduced and self-intersection avoided. Because of such noise effects, the tracking fails in the latter part of the sequence, see Figure 4, whereas it is successful with the integrated smoothness constraint. This shows that the smoothness assumption can make the difference between a successful tracking and an unsuccessful one. Figure 5 shows key frames of the successfully tracked sequence. 6 Summary In this work, we have presented an extension of a previously developed markerless motion capture system by integration of a smoothness constraint, which suppresses 3D motion jitter during tracking. In various experiments we have shown that the outcome is smoother and more realistic. There is no need for a second processing step to postsmooth the data. We have further shown that the additional penalizer can be decisive for successful tracking. It also acts as a regularizer that prevents singular systems of equations. In natural scenes, such as human motion tracking or 3D rigid object tracking, the results are generally improved, since an assumption of smooth motion is reasonably due to the involved inertness of masses.
10 172 B. Rosenhahn et al. References 1. Bray, M., Kohli, P., Torr, P.: Posecut: Simultaneous segmentation and 3d pose estimation of humand using dynamic graph-cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV LNCS, vol. 3952, pp Springer, Heidelberg (2006) 2. Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human kinematics. International Journal of Computer Vision 56(3), (2004) 3. Bruderlin, A., Williams, L.: Motion signal processing. In: SIGGRAPH 95: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, New York, NY, USA, pp ACM Press, New York (1995) 4. Belta, C., Kumar, V.: On the computation of rigid body motion. Electronic Journal of Computational Kinematics 1(1) (2002) 5. Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2), (2001) 6. Chaudhry, F.S., Handscomb, D.C.: Smooth motion of a rigid body in 2d and 3d. In: IV 97: Proceedings of the IEEE Conference on Information Visualisation, Washington, DC, USA, p IEEE Computer Society Press, Los Alamitos (1997) 7. Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. Int. J. of Computer Vision 61(2), (2005) 8. Drummond, T.W., Cipolla, R.: Real-time tracking of complex structures for visual servoing. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms: Theory and Practice. LNCS, vol. 1883, pp Springer, Heidelberg (2000) 9. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2), (2006) 10. Moeslund, T.B., Granum, E.: A survey of computer vision based human motion capture. Computer Vision and Image Understanding 81(3), (2001) 11. Murray, R.M., Li, Z., Sastry, S.S.: Mathematical Introduction to Robotic Manipulation. CRC Press, Baton Rouge (1994) 12. Park, F., Ravani, B.: Bezier curves on riemannian manifolds and lie groups with kinematics applications. Journal of Mechanical Design 117(1), (1995) 13. Rosenhahn, B., Brox, T., Kersting, U., Smith, A., Gurney, J., Klette, R.: A system for markerless motion capture. Künstliche Intelligenz (1), (2006) 14. Rosenhahn, B., Brox, T., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose tracking. International Journal of Computer Vision 73(3), (2007) 15. Shoemake, K.: Animating rotation with quaternion curves. In: SIGGRAPH 85: Proceedings of the 12th annual conference on Computer graphics and interactive techniques, New York, NY, USA, pp ACM Press, New York (1985) 16. Sul, C., Jung, S., Wohn, K.: Synthesis of human motion using kalman filter. In: Magnenat- Thalmann, N., Thalmann, D. (eds.) CAPTECH LNCS (LNAI), vol. 1537, pp Springer, Heidelberg (1998) 17. Ude, A., Atkeson, C.G.: Online tracking and mimicking of human movements by a humanoid robot. Journal of Advanced Robotics 17(2), (2003)
A system for marker-less human motion estimation
In Pattern Recognition, Springer LNCS 3663, W. Kropatsch, R. Sablatnig, and A. Hanbury (Eds.), pp. 230-237, Vienna, Austria, Aug. 2005 c Springer-Verlag Berlin Heidelberg 2005 A system for marker-less
Metrics on SO(3) and Inverse Kinematics
Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction
Essential Mathematics for Computer Graphics fast
John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made
Kinematical Animation. [email protected] 2013-14
Kinematical Animation 2013-14 3D animation in CG Goal : capture visual attention Motion of characters Believable Expressive Realism? Controllability Limits of purely physical simulation : - little interactivity
Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication
Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Thomas Reilly Data Physics Corporation 1741 Technology Drive, Suite 260 San Jose, CA 95110 (408) 216-8440 This paper
Interactive Computer Graphics
Interactive Computer Graphics Lecture 18 Kinematics and Animation Interactive Graphics Lecture 18: Slide 1 Animation of 3D models In the early days physical models were altered frame by frame to create
animation animation shape specification as a function of time
animation animation shape specification as a function of time animation representation many ways to represent changes with time intent artistic motion physically-plausible motion efficiency control typically
Tracking Moving Objects In Video Sequences Yiwei Wang, Robert E. Van Dyck, and John F. Doherty Department of Electrical Engineering The Pennsylvania State University University Park, PA16802 Abstract{Object
Feature Tracking and Optical Flow
02/09/12 Feature Tracking and Optical Flow Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Many slides adapted from Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve
Solving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
Accurate Human Motion Capture Using an Ergonomics-Based Anthropometric Human Model
Accurate Human Motion Capture Using an Ergonomics-Based Anthropometric Human Model Jan Bandouch 1, Florian Engstler 2, and Michael Beetz 1 1 Intelligent Autonomous Systems Group, Department of Informatics,
Limits and Possibilities of Markerless Human Motion Estimation
Limits and Possibilities of Markerless Human Motion Estimation Bodo Rosenhahn Universität Hannover Motion Capture Wikipedia (MoCap): Approaches for recording and analyzing Human motions Markerless Motion
Mean-Shift Tracking with Random Sampling
1 Mean-Shift Tracking with Random Sampling Alex Po Leung, Shaogang Gong Department of Computer Science Queen Mary, University of London, London, E1 4NS Abstract In this work, boosting the efficiency of
Model-Based 3D Human Motion Capture Using Global-Local Particle Swarm Optimizations
Model-Based 3D Human Motion Capture Using Global-Local Particle Swarm Optimizations Tomasz Krzeszowski, Bogdan Kwolek, and Konrad Wojciechowski Abstract. We present an approach for tracking the articulated
3D Model based Object Class Detection in An Arbitrary View
3D Model based Object Class Detection in An Arbitrary View Pingkun Yan, Saad M. Khan, Mubarak Shah School of Electrical Engineering and Computer Science University of Central Florida http://www.eecs.ucf.edu/
animation shape specification as a function of time
animation 1 animation shape specification as a function of time 2 animation representation many ways to represent changes with time intent artistic motion physically-plausible motion efficiency typically
Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau
Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau 04/02 Introduction & projective rendering 11/02 Prodedural modeling, Interactive modeling with parametric surfaces 25/02 Introduction
Vision based Vehicle Tracking using a high angle camera
Vision based Vehicle Tracking using a high angle camera Raúl Ignacio Ramos García Dule Shu [email protected] [email protected] Abstract A vehicle tracking and grouping algorithm is presented in this work
B4 Computational Geometry
3CG 2006 / B4 Computational Geometry David Murray [email protected] www.robots.o.ac.uk/ dwm/courses/3cg Michaelmas 2006 3CG 2006 2 / Overview Computational geometry is concerned with the derivation
A Reliability Point and Kalman Filter-based Vehicle Tracking Technique
A Reliability Point and Kalman Filter-based Vehicle Tracing Technique Soo Siang Teoh and Thomas Bräunl Abstract This paper introduces a technique for tracing the movement of vehicles in consecutive video
Computer Animation. Lecture 2. Basics of Character Animation
Computer Animation Lecture 2. Basics of Character Animation Taku Komura Overview Character Animation Posture representation Hierarchical structure of the body Joint types Translational, hinge, universal,
A Learning Based Method for Super-Resolution of Low Resolution Images
A Learning Based Method for Super-Resolution of Low Resolution Images Emre Ugur June 1, 2004 [email protected] Abstract The main objective of this project is the study of a learning based method
A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow
, pp.233-237 http://dx.doi.org/10.14257/astl.2014.51.53 A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow Giwoo Kim 1, Hye-Youn Lim 1 and Dae-Seong Kang 1, 1 Department of electronices
ME 115(b): Solution to Homework #1
ME 115(b): Solution to Homework #1 Solution to Problem #1: To construct the hybrid Jacobian for a manipulator, you could either construct the body Jacobian, JST b, and then use the body-to-hybrid velocity
Force/position control of a robotic system for transcranial magnetic stimulation
Force/position control of a robotic system for transcranial magnetic stimulation W.N. Wan Zakaria School of Mechanical and System Engineering Newcastle University Abstract To develop a force control scheme
C O M P U C O M P T U T E R G R A E R G R P A H I C P S Computer Animation Guoying Zhao 1 / 66 /
Computer Animation Guoying Zhao 1 / 66 Basic Elements of Computer Graphics Modeling construct the 3D model of the scene Rendering Render the 3D model, compute the color of each pixel. The color is related
Classifying Manipulation Primitives from Visual Data
Classifying Manipulation Primitives from Visual Data Sandy Huang and Dylan Hadfield-Menell Abstract One approach to learning from demonstrations in robotics is to make use of a classifier to predict if
Object tracking & Motion detection in video sequences
Introduction Object tracking & Motion detection in video sequences Recomended link: http://cmp.felk.cvut.cz/~hlavac/teachpresen/17compvision3d/41imagemotion.pdf 1 2 DYNAMIC SCENE ANALYSIS The input to
Math for Game Programmers: Dual Numbers. Gino van den Bergen [email protected]
Math for Game Programmers: Dual Numbers Gino van den Bergen [email protected] Introduction Dual numbers extend real numbers, similar to complex numbers. Complex numbers adjoin an element i, for which i 2
THE problem of visual servoing guiding a robot using
582 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 4, AUGUST 1997 A Modular System for Robust Positioning Using Feedback from Stereo Vision Gregory D. Hager, Member, IEEE Abstract This paper
Geometric Constraints
Simulation in Computer Graphics Geometric Constraints Matthias Teschner Computer Science Department University of Freiburg Outline introduction penalty method Lagrange multipliers local constraints University
ROBUST VEHICLE TRACKING IN VIDEO IMAGES BEING TAKEN FROM A HELICOPTER
ROBUST VEHICLE TRACKING IN VIDEO IMAGES BEING TAKEN FROM A HELICOPTER Fatemeh Karimi Nejadasl, Ben G.H. Gorte, and Serge P. Hoogendoorn Institute of Earth Observation and Space System, Delft University
Removing Moving Objects from Point Cloud Scenes
1 Removing Moving Objects from Point Cloud Scenes Krystof Litomisky [email protected] Abstract. Three-dimensional simultaneous localization and mapping is a topic of significant interest in the research
Path Tracking for a Miniature Robot
Path Tracking for a Miniature Robot By Martin Lundgren Excerpt from Master s thesis 003 Supervisor: Thomas Hellström Department of Computing Science Umeå University Sweden 1 Path Tracking Path tracking
Subspace Analysis and Optimization for AAM Based Face Alignment
Subspace Analysis and Optimization for AAM Based Face Alignment Ming Zhao Chun Chen College of Computer Science Zhejiang University Hangzhou, 310027, P.R.China [email protected] Stan Z. Li Microsoft
Computational Optical Imaging - Optique Numerique. -- Deconvolution --
Computational Optical Imaging - Optique Numerique -- Deconvolution -- Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method
Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11
Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter
How To Fix Out Of Focus And Blur Images With A Dynamic Template Matching Algorithm
IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 10 April 2015 ISSN (online): 2349-784X Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode
Spatio-Temporally Coherent 3D Animation Reconstruction from Multi-view RGB-D Images using Landmark Sampling
, March 13-15, 2013, Hong Kong Spatio-Temporally Coherent 3D Animation Reconstruction from Multi-view RGB-D Images using Landmark Sampling Naveed Ahmed Abstract We present a system for spatio-temporally
How To Segmentate An Image
Edge Strength Functions as Shape Priors in Image Segmentation Erkut Erdem, Aykut Erdem, and Sibel Tari Middle East Technical University, Department of Computer Engineering, Ankara, TR-06531, TURKEY, {erkut,aykut}@ceng.metu.edu.tr,
Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research
20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and
An Energy-Based Vehicle Tracking System using Principal Component Analysis and Unsupervised ART Network
Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '9) ISSN: 179-519 435 ISBN: 978-96-474-51-2 An Energy-Based Vehicle Tracking System using Principal
Nonlinear Iterative Partial Least Squares Method
Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for
Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data
Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable
CHAPTER 6 TEXTURE ANIMATION
CHAPTER 6 TEXTURE ANIMATION 6.1. INTRODUCTION Animation is the creating of a timed sequence or series of graphic images or frames together to give the appearance of continuous movement. A collection of
Introduction to Computer Graphics
Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 [email protected] www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics
Static Environment Recognition Using Omni-camera from a Moving Vehicle
Static Environment Recognition Using Omni-camera from a Moving Vehicle Teruko Yata, Chuck Thorpe Frank Dellaert The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 USA College of Computing
High Quality Image Magnification using Cross-Scale Self-Similarity
High Quality Image Magnification using Cross-Scale Self-Similarity André Gooßen 1, Arne Ehlers 1, Thomas Pralow 2, Rolf-Rainer Grigat 1 1 Vision Systems, Hamburg University of Technology, D-21079 Hamburg
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
Part-Based Recognition
Part-Based Recognition Benedict Brown CS597D, Fall 2003 Princeton University CS 597D, Part-Based Recognition p. 1/32 Introduction Many objects are made up of parts It s presumably easier to identify simple
Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.
An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points
APPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
This week. CENG 732 Computer Animation. Challenges in Human Modeling. Basic Arm Model
CENG 732 Computer Animation Spring 2006-2007 Week 8 Modeling and Animating Articulated Figures: Modeling the Arm, Walking, Facial Animation This week Modeling the arm Different joint structures Walking
Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science. Friday 18 th January 2008.
COMP60321 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE M.Sc. in Advanced Computer Science Computer Animation Friday 18 th January 2008 Time: 09:45 11:45 Please answer any THREE Questions
EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set
EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set Amhmed A. Bhih School of Electrical and Electronic Engineering Princy Johnson School of Electrical and Electronic Engineering Martin
Computer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)
Computer Graphics CS 54 Lecture 1 (Part 1) Curves Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) So Far Dealt with straight lines and flat surfaces Real world objects include
AP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
Modelling 3D Avatar for Virtual Try on
Modelling 3D Avatar for Virtual Try on NADIA MAGNENAT THALMANN DIRECTOR MIRALAB UNIVERSITY OF GENEVA DIRECTOR INSTITUTE FOR MEDIA INNOVATION, NTU, SINGAPORE WWW.MIRALAB.CH/ Creating Digital Humans Vertex
We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model
CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant
the points are called control points approximating curve
Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.
3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials
3. Interpolation Closing the Gaps of Discretization... Beyond Polynomials Closing the Gaps of Discretization... Beyond Polynomials, December 19, 2012 1 3.3. Polynomial Splines Idea of Polynomial Splines
Journal of Industrial Engineering Research. Adaptive sequence of Key Pose Detection for Human Action Recognition
IWNEST PUBLISHER Journal of Industrial Engineering Research (ISSN: 2077-4559) Journal home page: http://www.iwnest.com/aace/ Adaptive sequence of Key Pose Detection for Human Action Recognition 1 T. Sindhu
A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
Spatio-temporal Motion Tracking with Unsynchronized Cameras
Spatio-temporal Motion Tracking with Unsynchronized Cameras A. Elhayek, C. Stoll, N. Hasler, K. I. Kim, H.-P. Seidel, C. Theobalt MPI Informatik {elhayek, stoll, hasler, kkim, hpseidel, theobalt}@mpi-inf.mpg.de
High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound
High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound Ralf Bruder 1, Florian Griese 2, Floris Ernst 1, Achim Schweikard
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
Adaptive Demand-Forecasting Approach based on Principal Components Time-series an application of data-mining technique to detection of market movement
Adaptive Demand-Forecasting Approach based on Principal Components Time-series an application of data-mining technique to detection of market movement Toshio Sugihara Abstract In this study, an adaptive
Vibrations can have an adverse effect on the accuracy of the end effector of a
EGR 315 Design Project - 1 - Executive Summary Vibrations can have an adverse effect on the accuracy of the end effector of a multiple-link robot. The ability of the machine to move to precise points scattered
Wii Remote Calibration Using the Sensor Bar
Wii Remote Calibration Using the Sensor Bar Alparslan Yildiz Abdullah Akay Yusuf Sinan Akgul GIT Vision Lab - http://vision.gyte.edu.tr Gebze Institute of Technology Kocaeli, Turkey {yildiz, akay, akgul}@bilmuh.gyte.edu.tr
Fundamentals of Computer Animation
Fundamentals of Computer Animation Principles of Traditional Animation How to create maximum impact page 1 How to create maximum impact Early animators worked from scratch to analyze and improve upon silence
Course 8. An Introduction to the Kalman Filter
Course 8 An Introduction to the Kalman Filter Speakers Greg Welch Gary Bishop Kalman Filters in 2 hours? Hah! No magic. Pretty simple to apply. Tolerant of abuse. Notes are a standalone reference. These
COMPUTING CLOUD MOTION USING A CORRELATION RELAXATION ALGORITHM Improving Estimation by Exploiting Problem Knowledge Q. X. WU
COMPUTING CLOUD MOTION USING A CORRELATION RELAXATION ALGORITHM Improving Estimation by Exploiting Problem Knowledge Q. X. WU Image Processing Group, Landcare Research New Zealand P.O. Box 38491, Wellington
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical
INSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users
INSTRUCTOR WORKBOOK for MATLAB /Simulink Users Developed by: Amir Haddadi, Ph.D., Quanser Peter Martin, M.A.SC., Quanser Quanser educational solutions are powered by: CAPTIVATE. MOTIVATE. GRADUATE. PREFACE
Tracking in flussi video 3D. Ing. Samuele Salti
Seminari XXIII ciclo Tracking in flussi video 3D Ing. Tutors: Prof. Tullio Salmon Cinotti Prof. Luigi Di Stefano The Tracking problem Detection Object model, Track initiation, Track termination, Tracking
Kinematics of Robots. Alba Perez Gracia
Kinematics of Robots Alba Perez Gracia c Draft date August 31, 2007 Contents Contents i 1 Motion: An Introduction 3 1.1 Overview.......................................... 3 1.2 Introduction.........................................
Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database
Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database Seungsu Kim, ChangHwan Kim and Jong Hyeon Park School of Mechanical Engineering Hanyang University, Seoul, 133-791, Korea.
Geometric Camera Parameters
Geometric Camera Parameters What assumptions have we made so far? -All equations we have derived for far are written in the camera reference frames. -These equations are valid only when: () all distances
Monocular 3 D Tracking of the Golf Swing
Monocular 3 D Tracking of the Golf Swing Raquel Urtasun Computer Vision Laboratory EPFL 1015 Lausanne, Switzerland [email protected] David J. Fleet Dept. of Computer Science University of Toronto
Mechanics lecture 7 Moment of a force, torque, equilibrium of a body
G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and
Graphics. Computer Animation 고려대학교 컴퓨터 그래픽스 연구실. kucg.korea.ac.kr 1
Graphics Computer Animation 고려대학교 컴퓨터 그래픽스 연구실 kucg.korea.ac.kr 1 Computer Animation What is Animation? Make objects change over time according to scripted actions What is Simulation? Predict how objects
Linear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix
Malaysian Journal of Mathematical Sciences 8(2): 89-204 (204) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal On Motion of Robot End-Effector using the Curvature
Edge tracking for motion segmentation and depth ordering
Edge tracking for motion segmentation and depth ordering P. Smith, T. Drummond and R. Cipolla Department of Engineering University of Cambridge Cambridge CB2 1PZ,UK {pas1001 twd20 cipolla}@eng.cam.ac.uk
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
VEHICLE LOCALISATION AND CLASSIFICATION IN URBAN CCTV STREAMS
VEHICLE LOCALISATION AND CLASSIFICATION IN URBAN CCTV STREAMS Norbert Buch 1, Mark Cracknell 2, James Orwell 1 and Sergio A. Velastin 1 1. Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE,
The 3D rendering pipeline (our version for this class)
The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in camera coordinates Pixels in image coordinates Scene graph Camera Rasterization
CS 4620 Practicum Programming Assignment 6 Animation
CS 4620 Practicum Programming Assignment 6 Animation out: Friday 14th November 2014 due: : Monday 24th November 2014 1 Introduction In this assignment, we will explore a common topic in animation: key
Numerical Methods For Image Restoration
Numerical Methods For Image Restoration CIRAM Alessandro Lanza University of Bologna, Italy Faculty of Engineering CIRAM Outline 1. Image Restoration as an inverse problem 2. Image degradation models:
CS408 Animation Software Design Sample Exam Questions (Second Half)
CS408 Animation Software Design Sample Exam Questions (Second Half) 42. NEW QUESTION Consider the starting position of the following objects, and their desired end position and orientation as part of the
521493S Computer Graphics. Exercise 2 & course schedule change
521493S Computer Graphics Exercise 2 & course schedule change Course Schedule Change Lecture from Wednesday 31th of March is moved to Tuesday 30th of March at 16-18 in TS128 Question 2.1 Given two nonparallel,
A PAIR OF MEASURES OF ROTATIONAL ERROR FOR AXISYMMETRIC ROBOT END-EFFECTORS
A PAIR OF MEASURES OF ROTATIONAL ERROR FOR AXISYMMETRIC ROBOT END-EFFECTORS Sébastien Briot, Ilian A. Bonev Department of Automated Manufacturing Engineering École de technologie supérieure (ÉTS), Montreal,
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
PHYSIOLOGICALLY-BASED DETECTION OF COMPUTER GENERATED FACES IN VIDEO
PHYSIOLOGICALLY-BASED DETECTION OF COMPUTER GENERATED FACES IN VIDEO V. Conotter, E. Bodnari, G. Boato H. Farid Department of Information Engineering and Computer Science University of Trento, Trento (ITALY)
Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections
Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Maximilian Hung, Bohyun B. Kim, Xiling Zhang August 17, 2013 Abstract While current systems already provide
