Feature Tracking and Optical Flow
|
|
|
- Eileen Thornton
- 9 years ago
- Views:
Transcription
1 02/09/12 Feature Tracking and Optical Flow Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Many slides adapted from Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve Seitz, Rick Szeliski, Martial Hebert, Mark Pollefeys, and others
2 Last class Interest point detectors: Harris: detects corners (patches that have strong gradients in two orthogonal directions) DoG: detects peaks/troughs in location-scale space of a fine-scale Laplacian pyramid Interest point descriptors SIFT (do read the paper)
3 This class: recovering motion Feature-tracking Extract visual features (corners, textured areas) and track them over multiple frames Optical flow Recover image motion at each pixel from spatio-temporal image brightness variations (optical flow) Two problems, one registration method B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp , 1981.
4 Feature tracking Many problems, such as structure from motion require matching points If motion is small, tracking is an easy way to get them
5 Feature tracking Challenges Figure out which features can be tracked Efficiently track across frames Some points may change appearance over time (e.g., due to rotation, moving into shadows, etc.) Drift: small errors can accumulate as appearance model is updated Points may appear or disappear: need to be able to add/delete tracked points
6 Feature tracking I(x,y,t) I(x,y,t+1) Given two subsequent frames, estimate the point translation Key assumptions of Lucas-Kanade Tracker Brightness constancy: projection of the same point looks the same in every frame Small motion: points do not move very far Spatial coherence: points move like their neighbors
7 t y x I v I u I t y x I t v y u x I ),, ( 1),, ( Brightness Constancy Equation: ), ( ),, ( 1, t v y u x I t y x I Take Taylor expansion of I(x+u, y+v, t+1) at (x,y,t) to linearize the right side: The brightness constancy constraint I(x,y,t) I(x,y,t+1) 0 t y x I v I u I So: Image derivative along x 0 I v u I t T t y x I v I u I t y x I t v y u x I ),, ( 1),, ( Difference over frames
8 The brightness constancy constraint Can we use this equation to recover image motion (u,v) at each pixel? I T u v I 0 How many equations and unknowns per pixel? One equation (this is a scalar equation!), two unknowns (u,v) The component of the motion perpendicular to the gradient (i.e., parallel to the edge) cannot be measured t If (u, v) satisfies the equation, so does (u+u, v+v ) if I u' v' T 0 gradient (u,v) (u+u,v+v ) (u,v ) edge
9 The aperture problem Actual motion
10 The aperture problem Perceived motion
11 The barber pole illusion
12 The barber pole illusion
13 Solving the ambiguity B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp , How to get more equations for a pixel? Spatial coherence constraint Assume the pixel s neighbors have the same (u,v) If we use a 5x5 window, that gives us 25 equations per pixel
14 Solving the ambiguity Least squares problem:
15 Matching patches across images Overconstrained linear system Least squares solution for d given by The summations are over all pixels in the K x K window
16 Conditions for solvability Optimal (u, v) satisfies Lucas-Kanade equation When is this solvable? I.e., what are good points to track? A T A should be invertible A T A should not be too small due to noise eigenvalues 1 and 2 of A T A should not be too small A T A should be well-conditioned 1 / 2 should not be too large ( 1 = larger eigenvalue) Does this remind you of anything? Criteria for Harris corner detector
17 Low-texture region gradients have small magnitude small 1, small 2
18 Edge gradients very large or very small large 1, small 2
19 High-texture region gradients are different, large magnitudes large 1, large 2
20 The aperture problem resolved Actual motion
21 The aperture problem resolved Perceived motion
22 Dealing with larger movements: Iterative refinement 1. Initialize (x,y ) = (x,y) 2. Compute (u,v) by Original (x,y) position I t = I(x, y, t+1) - I(x, y, t) 2 nd moment matrix for feature patch in first image displacement 3. Shift window by (u, v): x =x +u; y =y +v; 4. Recalculate I t 5. Repeat steps 2-4 until small change Use interpolation for subpixel values
23 Dealing with larger movements: coarse-tofine registration run iterative L-K upsample run iterative L-K... image J 1 image I 2 Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)
24 Shi-Tomasi feature tracker Find good features using eigenvalues of second-moment matrix (e.g., Harris detector or threshold on the smallest eigenvalue) Key idea: good features to track are the ones whose motion can be estimated reliably Track from frame to frame with Lucas-Kanade This amounts to assuming a translation model for frame-toframe feature movement Check consistency of tracks by affine registration to the first observed instance of the feature Affine model is more accurate for larger displacements Comparing to the first frame helps to minimize drift J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.
25 Tracking example J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.
26 Summary of KLT tracking Find a good point to track (harris corner) Use intensity second moment matrix and difference across frames to find displacement Iterate and use coarse-to-fine search to deal with larger movements When creating long tracks, check appearance of registered patch against appearance of initial patch to find points that have drifted
27 Implementation issues Window size Small window more sensitive to noise and may miss larger motions (without pyramid) Large window more likely to cross an occlusion boundary (and it s slower) 15x15 to 31x31 seems typical Weighting the window Common to apply weights so that center matters more (e.g., with Gaussian)
28 Optical flow Vector field function of the spatio-temporal image brightness variations Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT
29 Motion and perceptual organization Even impoverished motion data can evoke a strong percept G. Johansson, Visual Perception of Biological Motion and a Model For Its Analysis", Perception and Psychophysics 14, , 1973.
30 Motion and perceptual organization Even impoverished motion data can evoke a strong percept G. Johansson, Visual Perception of Biological Motion and a Model For Its Analysis", Perception and Psychophysics 14, , 1973.
31 Uses of motion Estimating 3D structure Segmenting objects based on motion cues Learning and tracking dynamical models Recognizing events and activities Improving video quality (motion stabilization)
32 Motion field The motion field is the projection of the 3D scene motion into the image What would the motion field of a non-rotating ball moving towards the camera look like?
33 Optical flow Definition: optical flow is the apparent motion of brightness patterns in the image Ideally, optical flow would be the same as the motion field Have to be careful: apparent motion can be caused by lighting changes without any actual motion Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination
34 Lucas-Kanade Optical Flow Same as Lucas-Kanade feature tracking, but for each pixel As we saw, works better for textured pixels Operations can be done one frame at a time, rather than pixel by pixel Efficient
35 Iterative Refinement Iterative Lukas-Kanade Algorithm 1. Estimate displacement at each pixel by solving Lucas-Kanade equations 2. Warp I(t) towards I(t+1) using the estimated flow field - Basically, just interpolation 3. Repeat until convergence 38 * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
36 Coarse-to-fine optical flow estimation run iterative L-K run iterative L-K warp & upsample... image J 1 image I 2 Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)
37 Example * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
38 Multi-resolution registration * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
39 Optical Flow Results * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
40 Optical Flow Results * From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
41 Errors in Lucas-Kanade The motion is large Possible Fix: Keypoint matching A point does not move like its neighbors Possible Fix: Region-based matching Brightness constancy does not hold Possible Fix: Gradient constancy
42 State-of-the-art optical flow Start with something similar to Lucas-Kanade + gradient constancy + energy minimization with smoothing term + region matching + keypoint matching (long-range) Region-based +Pixel-based +Keypoint-based Large displacement optical flow, Brox et al., CVPR 2009
43 Summary Major contributions from Lucas, Tomasi, Kanade Tracking feature points Optical flow Stereo (later) Structure from motion (later) Key ideas By assuming brightness constancy, truncated Taylor expansion leads to simple and fast patch matching across frames Coarse-to-fine registration
44 Next week HW 1 due Tuesday I m out of town Friday to Sunday Amin Sadeghi has special office hours on Friday at 5pm (see web site) Object/image alignment
Object tracking & Motion detection in video sequences
Introduction Object tracking & Motion detection in video sequences Recomended link: http://cmp.felk.cvut.cz/~hlavac/teachpresen/17compvision3d/41imagemotion.pdf 1 2 DYNAMIC SCENE ANALYSIS The input to
Optical Flow. Shenlong Wang CSC2541 Course Presentation Feb 2, 2016
Optical Flow Shenlong Wang CSC2541 Course Presentation Feb 2, 2016 Outline Introduction Variation Models Feature Matching Methods End-to-end Learning based Methods Discussion Optical Flow Goal: Pixel motion
Vision based Vehicle Tracking using a high angle camera
Vision based Vehicle Tracking using a high angle camera Raúl Ignacio Ramos García Dule Shu [email protected] [email protected] Abstract A vehicle tracking and grouping algorithm is presented in this work
ROBUST VEHICLE TRACKING IN VIDEO IMAGES BEING TAKEN FROM A HELICOPTER
ROBUST VEHICLE TRACKING IN VIDEO IMAGES BEING TAKEN FROM A HELICOPTER Fatemeh Karimi Nejadasl, Ben G.H. Gorte, and Serge P. Hoogendoorn Institute of Earth Observation and Space System, Delft University
A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow
, pp.233-237 http://dx.doi.org/10.14257/astl.2014.51.53 A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow Giwoo Kim 1, Hye-Youn Lim 1 and Dae-Seong Kang 1, 1 Department of electronices
A Learning Based Method for Super-Resolution of Low Resolution Images
A Learning Based Method for Super-Resolution of Low Resolution Images Emre Ugur June 1, 2004 [email protected] Abstract The main objective of this project is the study of a learning based method
Image Segmentation and Registration
Image Segmentation and Registration Dr. Christine Tanner ([email protected]) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation
Tracking of Small Unmanned Aerial Vehicles
Tracking of Small Unmanned Aerial Vehicles Steven Krukowski Adrien Perkins Aeronautics and Astronautics Stanford University Stanford, CA 94305 Email: [email protected] Aeronautics and Astronautics Stanford
Convolution. 1D Formula: 2D Formula: Example on the web: http://www.jhu.edu/~signals/convolve/
Basic Filters (7) Convolution/correlation/Linear filtering Gaussian filters Smoothing and noise reduction First derivatives of Gaussian Second derivative of Gaussian: Laplacian Oriented Gaussian filters
Two-Frame Motion Estimation Based on Polynomial Expansion
Two-Frame Motion Estimation Based on Polynomial Expansion Gunnar Farnebäck Computer Vision Laboratory, Linköping University, SE-581 83 Linköping, Sweden [email protected] http://www.isy.liu.se/cvl/ Abstract.
Segmentation & Clustering
EECS 442 Computer vision Segmentation & Clustering Segmentation in human vision K-mean clustering Mean-shift Graph-cut Reading: Chapters 14 [FP] Some slides of this lectures are courtesy of prof F. Li,
Real-time Traffic Congestion Detection Based on Video Analysis
Journal of Information & Computational Science 9: 10 (2012) 2907 2914 Available at http://www.joics.com Real-time Traffic Congestion Detection Based on Video Analysis Shan Hu a,, Jiansheng Wu a, Ling Xu
Practical Tour of Visual tracking. David Fleet and Allan Jepson January, 2006
Practical Tour of Visual tracking David Fleet and Allan Jepson January, 2006 Designing a Visual Tracker: What is the state? pose and motion (position, velocity, acceleration, ) shape (size, deformation,
Face Model Fitting on Low Resolution Images
Face Model Fitting on Low Resolution Images Xiaoming Liu Peter H. Tu Frederick W. Wheeler Visualization and Computer Vision Lab General Electric Global Research Center Niskayuna, NY, 1239, USA {liux,tu,wheeler}@research.ge.com
Detecting and positioning overtaking vehicles using 1D optical flow
Detecting and positioning overtaking vehicles using 1D optical flow Daniel Hultqvist 1, Jacob Roll 1, Fredrik Svensson 1, Johan Dahlin 2, and Thomas B. Schön 3 Abstract We are concerned with the problem
Edge tracking for motion segmentation and depth ordering
Edge tracking for motion segmentation and depth ordering P. Smith, T. Drummond and R. Cipolla Department of Engineering University of Cambridge Cambridge CB2 1PZ,UK {pas1001 twd20 cipolla}@eng.cam.ac.uk
An Iterative Image Registration Technique with an Application to Stereo Vision
An Iterative Image Registration Technique with an Application to Stereo Vision Bruce D. Lucas Takeo Kanade Computer Science Department Carnegie-Mellon University Pittsburgh, Pennsylvania 15213 Abstract
CS 534: Computer Vision 3D Model-based recognition
CS 534: Computer Vision 3D Model-based recognition Ahmed Elgammal Dept of Computer Science CS 534 3D Model-based Vision - 1 High Level Vision Object Recognition: What it means? Two main recognition tasks:!
Automatic 3D Mapping for Infrared Image Analysis
Automatic 3D Mapping for Infrared Image Analysis i r f m c a d a r a c h e V. Martin, V. Gervaise, V. Moncada, M.H. Aumeunier, M. irdaouss, J.M. Travere (CEA) S. Devaux (IPP), G. Arnoux (CCE) and JET-EDA
OBJECT TRACKING USING LOG-POLAR TRANSFORMATION
OBJECT TRACKING USING LOG-POLAR TRANSFORMATION A Thesis Submitted to the Gradual Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements
Cloud tracking with optical flow for short-term solar forecasting
Cloud tracking with optical flow for short-term solar forecasting Philip Wood-Bradley, José Zapata, John Pye Solar Thermal Group, Australian National University, Canberra, Australia Corresponding author:
Introduction. Selim Aksoy. Bilkent University [email protected]
Introduction Selim Aksoy Department of Computer Engineering Bilkent University [email protected] What is computer vision? What does it mean, to see? The plain man's answer (and Aristotle's, too)
EFFICIENT VEHICLE TRACKING AND CLASSIFICATION FOR AN AUTOMATED TRAFFIC SURVEILLANCE SYSTEM
EFFICIENT VEHICLE TRACKING AND CLASSIFICATION FOR AN AUTOMATED TRAFFIC SURVEILLANCE SYSTEM Amol Ambardekar, Mircea Nicolescu, and George Bebis Department of Computer Science and Engineering University
Tracking Moving Objects In Video Sequences Yiwei Wang, Robert E. Van Dyck, and John F. Doherty Department of Electrical Engineering The Pennsylvania State University University Park, PA16802 Abstract{Object
Subspace Analysis and Optimization for AAM Based Face Alignment
Subspace Analysis and Optimization for AAM Based Face Alignment Ming Zhao Chun Chen College of Computer Science Zhejiang University Hangzhou, 310027, P.R.China [email protected] Stan Z. Li Microsoft
Video stabilization for high resolution images reconstruction
Advanced Project S9 Video stabilization for high resolution images reconstruction HIMMICH Youssef, KEROUANTON Thomas, PATIES Rémi, VILCHES José. Abstract Super-resolution reconstruction produces one or
Accurate and robust image superresolution by neural processing of local image representations
Accurate and robust image superresolution by neural processing of local image representations Carlos Miravet 1,2 and Francisco B. Rodríguez 1 1 Grupo de Neurocomputación Biológica (GNB), Escuela Politécnica
Human behavior analysis from videos using optical flow
L a b o r a t o i r e I n f o r m a t i q u e F o n d a m e n t a l e d e L i l l e Human behavior analysis from videos using optical flow Yassine Benabbas Directeur de thèse : Chabane Djeraba Multitel
Interactive Segmentation, Tracking, and Kinematic Modeling of Unknown 3D Articulated Objects
Interactive Segmentation, Tracking, and Kinematic Modeling of Unknown 3D Articulated Objects Dov Katz, Moslem Kazemi, J. Andrew Bagnell and Anthony Stentz 1 Abstract We present an interactive perceptual
Android Ros Application
Android Ros Application Advanced Practical course : Sensor-enabled Intelligent Environments 2011/2012 Presentation by: Rim Zahir Supervisor: Dejan Pangercic SIFT Matching Objects Android Camera Topic :
EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines
EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation
Mean-Shift Tracking with Random Sampling
1 Mean-Shift Tracking with Random Sampling Alex Po Leung, Shaogang Gong Department of Computer Science Queen Mary, University of London, London, E1 4NS Abstract In this work, boosting the efficiency of
6 Space Perception and Binocular Vision
Space Perception and Binocular Vision Space Perception and Binocular Vision space perception monocular cues to 3D space binocular vision and stereopsis combining depth cues monocular/pictorial cues cues
3D Model based Object Class Detection in An Arbitrary View
3D Model based Object Class Detection in An Arbitrary View Pingkun Yan, Saad M. Khan, Mubarak Shah School of Electrical Engineering and Computer Science University of Central Florida http://www.eecs.ucf.edu/
Bayesian Image Super-Resolution
Bayesian Image Super-Resolution Michael E. Tipping and Christopher M. Bishop Microsoft Research, Cambridge, U.K..................................................................... Published as: Bayesian
MOTION DETECTION FOR PC BASED SECURITY SYSTEM BY USING OPTICAL FLOW NUR NABILAH BT MOHAMAD HAMID
MOTION DETECTION FOR PC BASED SECURITY SYSTEM BY USING OPTICAL FLOW NUR NABILAH BT MOHAMAD HAMID This thesis is submitted as partial fulfillment of the requirement for the award of the Bachelor of Electrical
Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition
Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition 1. Image Pre-Processing - Pixel Brightness Transformation - Geometric Transformation - Image Denoising 1 1. Image Pre-Processing
Illumination-Invariant Tracking via Graph Cuts
Illumination-Invariant Tracking via Graph Cuts Daniel Freedman and Matthew W. Turek Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180 Abstract Illumination changes are a ubiquitous
Probabilistic Latent Semantic Analysis (plsa)
Probabilistic Latent Semantic Analysis (plsa) SS 2008 Bayesian Networks Multimedia Computing, Universität Augsburg [email protected] www.multimedia-computing.{de,org} References
A Reliability Point and Kalman Filter-based Vehicle Tracking Technique
A Reliability Point and Kalman Filter-based Vehicle Tracing Technique Soo Siang Teoh and Thomas Bräunl Abstract This paper introduces a technique for tracing the movement of vehicles in consecutive video
A Prototype For Eye-Gaze Corrected
A Prototype For Eye-Gaze Corrected Video Chat on Graphics Hardware Maarten Dumont, Steven Maesen, Sammy Rogmans and Philippe Bekaert Introduction Traditional webcam video chat: No eye contact. No extensive
How To Analyze Ball Blur On A Ball Image
Single Image 3D Reconstruction of Ball Motion and Spin From Motion Blur An Experiment in Motion from Blur Giacomo Boracchi, Vincenzo Caglioti, Alessandro Giusti Objective From a single image, reconstruct:
Edge-based Template Matching and Tracking for Perspectively Distorted Planar Objects
Edge-based Template Matching and Tracking for Perspectively Distorted Planar Objects Andreas Hofhauser, Carsten Steger, and Nassir Navab TU München, Boltzmannstr. 3, 85748 Garching bei München, Germany
Latest Results on High-Resolution Reconstruction from Video Sequences
Latest Results on High-Resolution Reconstruction from Video Sequences S. Lertrattanapanich and N. K. Bose The Spatial and Temporal Signal Processing Center Department of Electrical Engineering The Pennsylvania
Edge detection. (Trucco, Chapt 4 AND Jain et al., Chapt 5) -Edges are significant local changes of intensity in an image.
Edge detection (Trucco, Chapt 4 AND Jain et al., Chapt 5) Definition of edges -Edges are significant local changes of intensity in an image. -Edges typically occur on the boundary between two different
Automatic Restoration Algorithms for 35mm film
P. Schallauer, A. Pinz, W. Haas. Automatic Restoration Algorithms for 35mm film. To be published in Videre, Journal of Computer Vision Research, web: http://mitpress.mit.edu/videre.html, 1999. Automatic
FLEXSYS Motion-based Traffic Analysis and Incident Detection
FLEXSYS Motion-based Traffic Analysis and Incident Detection Authors: Lixin Yang and Hichem Sahli, IBBT/VUB-ETRO Contents.1 Introduction......................................... 1.2 Traffic flow modelling
A Computer Vision System on a Chip: a case study from the automotive domain
A Computer Vision System on a Chip: a case study from the automotive domain Gideon P. Stein Elchanan Rushinek Gaby Hayun Amnon Shashua Mobileye Vision Technologies Ltd. Hebrew University Jerusalem, Israel
A Comparative Study between SIFT- Particle and SURF-Particle Video Tracking Algorithms
A Comparative Study between SIFT- Particle and SURF-Particle Video Tracking Algorithms H. Kandil and A. Atwan Information Technology Department, Faculty of Computer and Information Sciences, Mansoura University,El-Gomhoria
MVA ENS Cachan. Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos [email protected]
Machine Learning for Computer Vision 1 MVA ENS Cachan Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos [email protected] Department of Applied Mathematics Ecole Centrale Paris Galen
Colorado School of Mines Computer Vision Professor William Hoff
Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Introduction to 2 What is? A process that produces from images of the external world a description
Geometric Camera Parameters
Geometric Camera Parameters What assumptions have we made so far? -All equations we have derived for far are written in the camera reference frames. -These equations are valid only when: () all distances
Make and Model Recognition of Cars
Make and Model Recognition of Cars Sparta Cheung Department of Electrical and Computer Engineering University of California, San Diego 9500 Gilman Dr., La Jolla, CA 92093 [email protected] Alice Chu Department
Distinctive Image Features from Scale-Invariant Keypoints
Distinctive Image Features from Scale-Invariant Keypoints David G. Lowe Computer Science Department University of British Columbia Vancouver, B.C., Canada [email protected] January 5, 2004 Abstract This paper
Low-resolution Character Recognition by Video-based Super-resolution
2009 10th International Conference on Document Analysis and Recognition Low-resolution Character Recognition by Video-based Super-resolution Ataru Ohkura 1, Daisuke Deguchi 1, Tomokazu Takahashi 2, Ichiro
Local features and matching. Image classification & object localization
Overview Instance level search Local features and matching Efficient visual recognition Image classification & object localization Category recognition Image classification: assigning a class label to
Object Recognition. Selim Aksoy. Bilkent University [email protected]
Image Classification and Object Recognition Selim Aksoy Department of Computer Engineering Bilkent University [email protected] Image classification Image (scene) classification is a fundamental
Point Matching as a Classification Problem for Fast and Robust Object Pose Estimation
Point Matching as a Classification Problem for Fast and Robust Object Pose Estimation Vincent Lepetit Julien Pilet Pascal Fua Computer Vision Laboratory Swiss Federal Institute of Technology (EPFL) 1015
Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches
Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic
Randomized Trees for Real-Time Keypoint Recognition
Randomized Trees for Real-Time Keypoint Recognition Vincent Lepetit Pascal Lagger Pascal Fua Computer Vision Laboratory École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne, Switzerland Email:
High Quality Image Magnification using Cross-Scale Self-Similarity
High Quality Image Magnification using Cross-Scale Self-Similarity André Gooßen 1, Arne Ehlers 1, Thomas Pralow 2, Rolf-Rainer Grigat 1 1 Vision Systems, Hamburg University of Technology, D-21079 Hamburg
Space Perception and Binocular Vision
Space Perception and Binocular Vision Space Perception Monocular Cues to Three-Dimensional Space Binocular Vision and Stereopsis Combining Depth Cues 9/30/2008 1 Introduction to Space Perception Realism:
A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA
A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin - [email protected]
Tracking-Learning-Detection
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO., JANUARY 200 Tracking-Learning-Detection Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas, Abstract This paper investigates
jorge s. marques image processing
image processing images images: what are they? what is shown in this image? What is this? what is an image images describe the evolution of physical variables (intensity, color, reflectance, condutivity)
Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall
Automatic Photo Quality Assessment Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Estimating i the photorealism of images: Distinguishing i i paintings from photographs h Florin
Highlight Removal by Illumination-Constrained Inpainting
Highlight Removal by Illumination-Constrained Inpainting Ping Tan Stephen Lin Long Quan Heung-Yeung Shum Microsoft Research, Asia Hong Kong University of Science and Technology Abstract We present a single-image
Perception-based Design for Tele-presence
Perception-based Design for Tele-presence Santanu Chaudhury 1, Shantanu Ghosh 1,2, Amrita Basu 3, Brejesh Lall 1, Sumantra Dutta Roy 1, Lopamudra Choudhury 3, Prashanth R 1, Ashish Singh 1, and Amit Maniyar
Volume visualization I Elvins
Volume visualization I Elvins 1 surface fitting algorithms marching cubes dividing cubes direct volume rendering algorithms ray casting, integration methods voxel projection, projected tetrahedra, splatting
Dense Point Trajectories by GPU-accelerated Large Displacement Optical Flow
Dense Point Trajectories by GPU-accelerated Large Displacement Optical Flow Narayanan Sundaram, Thomas Brox, and Kurt Keutzer University of California at Berkeley {narayans,brox,keutzer}@eecs.berkeley.edu
Computational Optical Imaging - Optique Numerique. -- Deconvolution --
Computational Optical Imaging - Optique Numerique -- Deconvolution -- Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method
3-D Scene Data Recovery using Omnidirectional Multibaseline Stereo
3-D Scene Data Recovery using Omnidirectional Multibaseline Stereo Sing Bing Kang and Richard Szeliski Digital Equipment Corporation Cambridge Research Lab CRL 95/6 October, 1995 Digital Equipment Corporation
Color Segmentation Based Depth Image Filtering
Color Segmentation Based Depth Image Filtering Michael Schmeing and Xiaoyi Jiang Department of Computer Science, University of Münster Einsteinstraße 62, 48149 Münster, Germany, {m.schmeing xjiang}@uni-muenster.de
A Cognitive Approach to Vision for a Mobile Robot
A Cognitive Approach to Vision for a Mobile Robot D. Paul Benjamin Christopher Funk Pace University, 1 Pace Plaza, New York, New York 10038, 212-346-1012 [email protected] Damian Lyons Fordham University,
Traffic Flow Monitoring in Crowded Cities
Traffic Flow Monitoring in Crowded Cities John A. Quinn and Rose Nakibuule Faculty of Computing & I.T. Makerere University P.O. Box 7062, Kampala, Uganda {jquinn,rnakibuule}@cit.mak.ac.ug Abstract Traffic
MusicGuide: Album Reviews on the Go Serdar Sali
MusicGuide: Album Reviews on the Go Serdar Sali Abstract The cameras on mobile phones have untapped potential as input devices. In this paper, we present MusicGuide, an application that can be used to
Detecting and Tracking Moving Objects for Video Surveillance
IEEE Proc. Computer Vision and Pattern Recognition Jun. 3-5, 1999. Fort Collins CO Detecting and Tracking Moving Objects for Video Surveillance Isaac Cohen Gérard Medioni University of Southern California
Feature Point Selection using Structural Graph Matching for MLS based Image Registration
Feature Point Selection using Structural Graph Matching for MLS based Image Registration Hema P Menon Department of CSE Amrita Vishwa Vidyapeetham Coimbatore Tamil Nadu - 641 112, India K A Narayanankutty
Tracking in flussi video 3D. Ing. Samuele Salti
Seminari XXIII ciclo Tracking in flussi video 3D Ing. Tutors: Prof. Tullio Salmon Cinotti Prof. Luigi Di Stefano The Tracking problem Detection Object model, Track initiation, Track termination, Tracking
Digital Video Systems ECE 634
Digital Video Systems ECE 634 engineering.purdue.edu/~reibman/ece634/index.html Professor Amy Reibman MSEE 356 [email protected] Outline 1/27/15 MoKon eskmakon A computer assignment Summary (last class)
2.2 Creaseness operator
2.2. Creaseness operator 31 2.2 Creaseness operator Antonio López, a member of our group, has studied for his PhD dissertation the differential operators described in this section [72]. He has compared
An Experimental Comparison of Online Object Tracking Algorithms
An Experimental Comparison of Online Object Tracking Algorithms Qing Wang a, Feng Chen a, Wenli Xu a, and Ming-Hsuan Yang b a Tsinghua University, Beijing, China b University of California at Merced, Calfironia,
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
ACCURACY ASSESSMENT OF BUILDING POINT CLOUDS AUTOMATICALLY GENERATED FROM IPHONE IMAGES
ACCURACY ASSESSMENT OF BUILDING POINT CLOUDS AUTOMATICALLY GENERATED FROM IPHONE IMAGES B. Sirmacek, R. Lindenbergh Delft University of Technology, Department of Geoscience and Remote Sensing, Stevinweg
Part-Based Recognition
Part-Based Recognition Benedict Brown CS597D, Fall 2003 Princeton University CS 597D, Part-Based Recognition p. 1/32 Introduction Many objects are made up of parts It s presumably easier to identify simple
Interactive Offline Tracking for Color Objects
Interactive Offline Tracking for Color Objects Yichen Wei Jian Sun Xiaoou Tang Heung-Yeung Shum Microsoft Research Asia, Beijing, China {yichenw,jiansun,xitang,hshum}@microsoft.com Abstract In this paper,
Admin stuff. 4 Image Pyramids. Spatial Domain. Projects. Fourier domain 2/26/2008. Fourier as a change of basis
Admin stuff 4 Image Pyramids Change of office hours on Wed 4 th April Mon 3 st March 9.3.3pm (right after class) Change of time/date t of last class Currently Mon 5 th May What about Thursday 8 th May?
Building an Advanced Invariant Real-Time Human Tracking System
UDC 004.41 Building an Advanced Invariant Real-Time Human Tracking System Fayez Idris 1, Mazen Abu_Zaher 2, Rashad J. Rasras 3, and Ibrahiem M. M. El Emary 4 1 School of Informatics and Computing, German-Jordanian
