Brief History of Rockets
|
|
|
- Horatio Palmer
- 10 years ago
- Views:
Transcription
1 Brief History of Rockets Hero Engine oday s rockets are remarkable collections of T human ingenuity that have their roots in the science and technology of the past. They are natural outgrowths of literally thousands of years of experimentation and research on rockets and rocket propulsion. One of the first devices to successfully employ the principles essential to rocket flight was a wooden bird. The writings of Aulus Gellius, a Roman, tell a story of a Greek named Archytas who lived in the city of Tarentum, now a part of southern Italy. Somewhere around the year 400 B.C., Archytas mystified and amused the citizens of Tarentum by flying a pigeon made of wood. Escaping steam propelled the bird suspended on wires. The pigeon used the action-reaction principle, which was not to be stated as a scientific law until the 17th century. About three hundred years after the pigeon, another Greek, Hero of Alexandria, invented a similar rocket-like device called an aeolipile. It, too, used steam as a propulsive gas. Hero mounted a sphere on top of a water kettle. A fire below the kettle turned the water into steam, and the gas traveled through pipes to the sphere. Two L-shaped tubes on opposite sides of the sphere allowed the gas to escape, and in doing so gave a thrust to the sphere that caused it to rotate. Just when the first true rockets appeared is unclear. Stories of early rocket-like devices appear sporadically through the historical records of various cultures. Perhaps the first true rockets were accidents. In the first century A.D., the Chinese reportedly had a simple form of gunpowder made from saltpeter, sulfur, and charcoal dust. They used the gunpowder mostly for fireworks in religious and other festive celebrations. To create explosions during religious festivals, they filled bamboo tubes with the mixture and tossed them into fires. Perhaps some of those tubes failed to explode and instead skittered out of the fires, propelled by the gases and sparks produced from the burning gunpowder. The Chinese began experimenting with the gunpowder-filled tubes. At some point, they attached bamboo tubes to arrows and launched them with bows. Soon they discovered that these gunpowder tubes could launch themselves just by the power produced from the escaping gas. The true rocket was born. 5
2 The date reporting the first use of true rockets was in At this time, the Chinese and the Mongols were at war with each other. During the battle of Kai-Keng, the Chinese repelled the Mongol invaders by a barrage of arrows of flying fire. These fire-arrows were a simple form of a solid-propellant rocket. A tube, capped at one end, contained gunpowder. The other end was left open and the tube was attached to a long stick. When the powder ignited, the rapid burning of the powder produced fire, smoke, and gas that escaped out the open end and produced a thrust. The stick acted as By the 16th century rockets fell into a time of disuse as weapons of war, though they were still used for fireworks displays, and a German fireworks maker, Johann Schmidlap, invented the step rocket, a multi-staged vehicle for lifting fireworks to higher altitudes. A large sky rocket (first stage) carried a smaller sky rocket (second stage). When the large rocket burned out, the smaller one continued to a higher altitude before showering the sky with glowing cinders. Schmidlap s idea is basic to all rockets today that go into outer space. Nearly all uses of rockets up to this time were for warfare or fireworks, but an interesting old Chinese legend reports the use of rockets as a means of transportation. With the help of many Chinese Fire-Arrows a simple guidance system that kept the rocket headed in one general direction as it flew through the air. How effective these arrows of flying fire were as weapons of destruction is not clear, but their psychological effects on the Mongols must have been formidable. Following the battle of Kai-Keng, the Mongols produced rockets of their own and may have been responsible for the spread of rockets to Europe. Many records describe rocket experiments through out the 13th to the 15th centuries. In England, a monk named Roger Bacon worked on improved forms of gunpowder that greatly increased the range of rockets. In France, Jean Froissart achieved more accurate flights by launching rockets through tubes. Froissart s idea was the forerunner of the modern bazooka. Joanes de Fontana of Italy designed a surface-running rocket-powered torpedo for setting enemy ships on fire. Surface-Running Torpedo assistants, a lesser-known Chinese official named Wan-Hu assembled a rocket-powered flying chair. He had two large kites attached to the chair, and fixed to the kites were forty-seven fire-arrow rockets. On the day of the flight, Wan-Hu sat himself on the chair and gave the command to light the rockets. Forty-seven rocket assistants, each armed with torches, rushed forward to light the fuses. A tremendous roar filled the air, accompanied by billowing clouds of smoke. When the smoke cleared, Wan-Hu and his flying chair were gone. No one knows for sure what happened to Wan-Hu, but if the event really did take place, Wan-Hu and his chair probably did not survive the explosion. Firearrows were as apt to explode as to fly. Rocketry Becomes a Science During the latter part of the 17th century, the great English scientist Sir Isaac Newton ( ) laid the scientific foundations for modern rocketry. Newton organized his understanding of physical motion into three scientific laws. The laws explain how rockets work and why they are able to work in the vacuum of outer space. (See Rocket Principles for more information on Newton s Three Laws of Motion beginning on page 13.) Chinese soldier launches a fire-arrow. 6
3 Austrian rocket brigades met their match against newly designed artillery pieces. Breech-loading cannon with rifled barrels and exploding warheads were far more effective weapons of war than the best rockets. Once again, the military relegated rocketry to peacetime uses. Modern Rocketry Begins Legendary Chinese official Wan Hu braces himself for "liftoff." Newton s laws soon began to have a practical impact on the design of rockets. About 1720, a Dutch professor, Willem Gravesande, built model cars propelled by jets of steam. Rocket experimenters in Germany and Russia began working with rockets with a mass of more than 45 kilograms. Some of these rockets were so powerful that their escaping exhaust flames bored deep holes in the ground even before liftoff. During the end of the 18th century and early into the 19th, rockets experienced a brief revival as a weapon of war. The success of Indian rocket barrages against the British in 1792 and again in 1799 caught the interest of an artillery expert, Colonel William Congreve. Congreve set out to design rockets for use by the British military. The Congreve rockets were highly successful in battle. Used by British ships to pound Fort McHenry in the War of 1812, they inspired Francis Scott Key to write the rockets red glare, in his poem that later became The Star-Spangled Banner. Even with Congreve s work, the accuracy of rockets still had not improved much from the early days. The devastating nature of war rockets was not their accuracy or power, but their numbers. During a typical siege, thousands of them might be fired at the enemy. All over the world, rocket researchers experimented with ways to improve accuracy. An Englishman, William Hale, developed a technique called spin stabilization. In this method, the escaping exhaust gases struck small vanes at the bottom of the rocket, causing it to spin much as a bullet does in flight. Many rockets still use variations of this principle today. Rocket use continued to be successful in battles all over the European continent. However, in a war with Prussia, the In 1898, a Russian schoolteacher, Konstantin Tsiolkovsky ( ), proposed the idea of space exploration by rocket. In a report he published in 1903, Tsiolkovsky suggested the use of liquid propellants for rockets in order to achieve greater range. Tsiolkovsky stated that only the exhaust velocity of escaping gases limited the speed and range of a rocket. For his ideas, careful research, and great vision, Tsiolkovsky has been called the father of modern astronautics. Early in the 20th century, an American, Robert H. Goddard ( ), conducted practical experiments in rocketry. He had become interested in a way of achieving higher altitudes than were possible for lighter-than-air balloons. He published a pamphlet in 1919 entitled A Method of Reaching Extreme Altitudes. Today we call this mathematical analysis the meteorological sounding rocket. In his pamphlet, Goddard reached several conclusions important to rocketry. From his tests, he stated that a rocket operates with greater Tsiolkovsky Rocket Designs 7
4 efficiency in a vacuum than in air. At the time, most people mistakenly believed that the presence of air was necessary for a rocket to push against. A New York Times newspaper editorial of the day mocked Goddard s lack of the basic physics ladled out daily in our high schools. Goddard also stated that multistage or step rockets were the answer to achieving high altitudes and that the velocity needed to escape Earth s gravity could be achieved in this way. Goddard s earliest experiments were with solid-propellant rockets. In 1915, he began to try various types of solid fuels and to measure the exhaust velocities of the burning gases. While working on solid-propellant rockets, Goddard became convinced that a rocket could be propelled better by liquid fuel. No one had ever built a successful liquid-propellant rocket before. It was a much more difficult task than building solidpropellant rockets. Fuel and oxygen tanks, turbines, and combustion chambers would Dr. Robert H. Goddard makes adjustments on the upper end of a rocket combustion chamber in this 1940 picture taken in Roswell, New Mexico. 8 Dr. Goddard's 1926 Rocket be needed. In spite of the difficulties, Goddard achieved the first successful flight with a liquidpropellant rocket on March 16, Fueled by liquid oxygen and gasoline, the rocket flew for only two and a half seconds, climbed 12.5 meters, and landed 56 meters away in a cabbage patch. By today s standards, the flight was unimpressive, but like the first powered airplane flight by the Wright brothers in 1903, Goddard s gasoline rocket became the forerunner of a whole new era in rocket flight. Goddard s experiments in liquid-propellant rockets continued for many years. His rockets grew bigger and flew higher. He developed a gyroscope system for flight control and a payload compartment for scientific instruments. Parachute recovery systems returned the rockets and instruments safely to the ground. We call Goddard the father of modern rocketry for his achievements. A third great space pioneer, Hermann Oberth ( ) of Germany, published a book in 1923 about rocket travel into outer space. His writings were important. Because of them, many small rocket societies sprang up
5 around the world. In Germany, the formation of one such society, the Verein fur Raumschiffahrt (Society for Space Travel), led to the development of the V-2 rocket, which the Germans used against London during World War II. In 1937, German engineers and scientists, including Oberth, assembled in Peenemunde on the shores of the Baltic Sea. There, under the directorship of Wernher von Braun, engineers and scientists built and flew the most advanced rocket of its time. The V-2 rocket (in Germany called the A-4) was small by comparison to today s rockets. It achieved its great thrust by burning a mixture of liquid oxygen and alcohol at a rate of about one ton every seven seconds. Once launched, the V-2 was a formidable weapon that could devastate whole city blocks. Fortunately for London and the Allied forces, the V-2 came too late in the war to change its outcome. Nevertheless, by war s end, German rocket scientists and engineers had already laid plans for advanced missiles capable of spanning the Atlantic Ocean and landing in the United States. These missiles would have had winged upper stages but very small payload capacities. With the fall of Germany, the Allies captured many unused V-2 rockets and components. Many German rocket scientists came to the United States. Others went to the Soviet Union. The German scientists, including Wernher von Braun, were amazed at the progress Goddard had made. Both the United States and the Soviet Union recognized the potential of rocketry as a military weapon and began a variety of experimental programs. At first, the United States began a program with high-altitude atmospheric sounding rockets, one of Goddard s early ideas. Later, they developed a variety of medium- and long-range intercontinental ballistic missiles. These became the starting point of the U.S. space program. Missiles such as the Redstone, Atlas, and Titan would eventually launch astronauts into space. On October 4, 1957, the Soviet Union stunned the world by launching an Earth-orbiting artificial satellite. Called Sputnik I, the satellite was the first successful entry in a race for space between the two superpower nations. Less than a month later, the Soviets followed with the launch of a satellite carrying a dog named Laika on board. Laika survived in space for seven days before being put to sleep before the oxygen supply ran out. A few months after the first Sputnik, the United States followed the Soviet Union with a satellite of its own. The U.S. Army Container for turbine propellant (hydrogen peroxide) Vaporizer for turbine propellant (propellant turbopump drive) Oxygen main valve Rocket motor Jet vane German V-2 (A-4) Missile Warhead (Explosive charge) Automatic gyro control Guidebeam and radio command receivers Propellant turbopump Air vane Container for alcohol-water mixture Container for liquid oxygen Steam exhaust from turbine Alcohol main valve 9
6 launched Explorer I on January 31, In October of that year, the United States formally organized its space program by creating the National Aeronautics and Space Administration (NASA). NASA became a civilian agency with the goal of peaceful exploration of space for the benefit of all humankind. Soon, rockets launched many people and machines into space. Astronauts orbited Earth and landed on the Moon. Robot spacecraft traveled to the planets. Space suddenly opened up to exploration and commercial exploitation. Satellites enabled scientists to investigate our world, forecast the weather, and communicate instantaneously around the globe. The demand for more and larger payloads created the need to develop a wide array of powerful and versatile rockets. Scientific exploration of space using robotic spacecraft proceeded at a fast pace. Both Russia and the United States began programs to investigate the Moon. Developing the technology to physically get a probe to the Moon became the initial challenge. Within nine months of Explorer 1 the United States launched the first unmanned lunar probe, but the launch vehicle, an Atlas with an Able upper stage, failed 45 seconds after liftoff when the payload fairing tore away from the vehicle. The Russians were more successful with Luna 1, which flew past the Moon in January of Later that year the Luna program impacted a probe on the Moon, taking the first pictures of its far side. Between 1958 and 1960 the United States sent a series of missions, the Pioneer Lunar Probes, to photograph and obtain scientific data about the Moon. These probes were generally unsuccessful, primarily due to launch vehicle failures. Only one of eight probes accomplished its intended mission to the Moon, though several, which were stranded in orbits between Earth and the Moon, did provide important scientific information on the number and extent of the radiation belts around Earth. The United States appeared to lag behind the Soviet Union in space. With each launch, manned spaceflight came a step closer to becoming reality. In April of 1961, a Russian named Yuri Gagarin became the first man to orbit Earth. Less than a month later the United States launched the first American, Alan Shepard, into space. The flight was a sub-orbital lofting into space, which immediately returned to Earth. The Redstone rocket was not powerful enough to place the Mercury capsule into orbit. The flight lasted only a little over 15 minutes and reached an altitude of 187 kilometers. Alan Shepard experienced about five minutes of microgravity then returned to Earth, during which he encountered forces twelve times greater than the force of gravity. Twenty days later, though still technically behind the Soviet Union, President John Kennedy announced the objective to put a man on the Moon by the end of the decade. In February of 1962, John Glen became the first American to orbit Earth in a small capsule so filled with equipment that he only had room to sit. Launched by the more powerful Atlas vehicle, John Glen remained in orbit for four hours and fifty-five minutes before splashing down in the Atlantic Ocean. The Mercury program had a total of six launches: two suborbital and four orbital. These launches demonstrated the United States ability to send men into orbit, allowed the crew to function in space, operate the spacecraft, and make scientific observations. The United States then began an extensive unmanned program aimed at supporting the manned lunar landing program. Three separate projects gathered information on landing sites and other data about the lunar surface and the surrounding environment. The first was the Ranger series, which was the United States first attempt to Close-up picture of the Moon taken by the Ranger 9 spacecraft just before impact. The small circle to the left is the impact site. 10
7 take close-up photographs of the Moon. The spacecraft took thousands of black and white photographs of the Moon as it descended and crashed into the lunar surface. Though the Ranger series supplied very detailed data, mission planners for the coming Apollo mission wanted more extensive data. The final two lunar programs were designed to work in conjunction with one another. Lunar Orbiter provided an extensive map of the lunar surface. Surveyor provided detailed color photographs of the lunar surface as well as data on the elements of the lunar sediment and an assessment of the ability of the sediment to support the weight of the manned landing vehicles. By examining both sets of data, planners were able to identify sites for the manned landings. However, a significant problem existed, the Surveyor spacecraft was too large to be launched by existing Atlas/Agena rockets, so a new high energy upper stage called the Centaur was developed to replace the Agena specifically for this mission. The Centaur upper stage used efficient hydrogen and oxygen propellants to dramatically improve its performance, but the super cold temperatures and highly explosive nature presented significant technical challenges. In addition, they built the tanks of the Centaur with thin stainless steel to save precious weight. Moderate pressure had to be maintained in the tank to prevent it from collapsing upon itself. Rocket building was refining the United State's capability to explore the Moon. The Gemini was the second manned capsule developed by the United States. It was designed to carry two crew members and was launched on the largest launch vehicle available the Titan II. President Kennedy s mandate significantly altered the Gemini mission from the general goal of expanding experience in space to prepare for a manned lunar landing on the Moon. It paved the way for the Apollo program by demonstrating rendezvous and docking required for the lunar lander to return to the lunar orbiting spacecraft, the extravehicular activity (EVA) required for the lunar surface exploration and any emergency repairs, and finally the ability of humans to function during the eight day manned lunar mission duration. The Gemini program launched ten manned missions in 1965 and 1966, eight flights rendezvous and docked with unmanned stages in Earth orbit and seven performed EVA. Launching men to the moon required launch vehicles much larger than those available. To achieve this goal the United States A fish-eye camera view of a Saturn 5 rocket just after engine ignition. developed the Saturn launch vehicle. The Apollo capsule, or command module, held a crew of three. The capsule took the astronauts into orbit about the Moon, where two astronauts transferred into a lunar module and descended to the lunar surface. After completing the lunar mission, the upper section of the lunar module returned to orbit to rendezvous with the Apollo capsule. The Moonwalkers transferred back to the command module and a service module, with an engine, propelled them back to Earth. After four manned test flights, Apollo 11 astronaut Neil Armstrong became the first man on the moon. The United States returned to the lunar surface five more times before the manned lunar program was completed. After the lunar program the Apollo program and the Saturn booster launched Skylab, the United State's first space station. A smaller version of the Saturn vehicle ransported the United States' crew for the first rendezvous in space between the United States and Russia on the Apollo-Soyuz mission. 11
8 During this manned lunar program, unmanned launch vehicles sent many satellites to investigate our planet, forecast the weather, and communicate instantaneously around the world. In addition, scientists began to explore other planets. Mariner 2 successfully flew by Venus in 1962, becoming the first probe to fly past another planet. The United State s interplanetary space program then took off with an amazing string of successful launches. The program has visited every planet except Pluto. After the Apollo program the United States began concentrating on the development of a reusable launch system, the Space Shuttle. Solid rocket boosters and three main engines on the orbiter launch the Space Shuttle. The reusable boosters jettison little more than 2 minutes into the flight, their fuel expended. Parachutes deploy to decelerate the solid rocket boosters for a safe splashdown in the Atlantic ocean, where two ships recover them. The orbiter and external tank continue to ascend. When the main engines shut down, the external tank jettisons from the orbiter, eventually disintegrating in the atmosphere. A brief firing of the spacecraft s two orbital maneuvering system thrusters changes the trajectory to achieve orbit at a range of kilometers above Earth s surface. The Space Shuttle orbiter can carry approximately 25,000 kilograms of payload into orbit so crew members can conduct experiments in a microgravity environment. The orbital maneuvering system thrusters fire to slow the spacecraft for reentry into Earth s atmosphere, heating up the orbiter s thermal protection shield up to 816 Celsius. On the Shuttle s final descent, it returns to Earth gliding like an airplane. Since the earliest days of discovery and experimentation, rockets have evolved from simple gunpowder devices into giant vehicles capable of traveling into outer space, taking astronauts to the Moon, launching satellites to explore our universe, and enabling us to conduct scientific experiments aboard the Space Shuttle. Without a doubt rockets have opened the universe to direct exploration by humankind. What role will rockets play in our future? The goal of the United States space program is to expand our horizons in space, and then to open the space frontier to international human expansion and the commercial development. For this to happen, rockets must become more cost effective and more reliable as a means of getting to space. Expensive hardware cannot be thrown away each time we go to space. It is necessary to continue the drive for more reusability started during the Space Shuttle program. Eventually NASA may develop aerospace planes that will take off from runways, fly into orbit, and land on those same runways, with operations similar to airplanes. To achieve this goal two programs are currently under development. The X33 and X34 programs will develop reusable vehicles, which significantly decrease the cost to orbit. The X33 will be a manned vehicle lifting about the same payload capacity as the Space Shuttle. The X34 will be a small, reusable unmanned launch vehicle capable of launching 905 kilograms to space and reduce the launch cost relative to current vehicles by two thirds. The first step towards building fully reusable vehicles has already occurred. A project called the Delta Clipper is currently being tested. The Delta Clipper is a vertical takeoff and soft landing vehicle. It has demonstrated the ability to hover and maneuver over Earth using the same hardware over and over again. The program uses much existing technology and minimizes the operating cost. Reliable, inexpensive rockets are the key to enabling humans to truly expand into space. Three reusable future space vehicles concepts under consideration by NASA. 12
How Rockets Work Newton s Laws of Motion
How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means
Space Exploration. A Visual History. Philip Stooke
Space Exploration A Visual History Philip Stooke It all began with Sputnik 4 th October 1957 It all began with Sputnik 4 th October 1957 It all began with Sputnik 4 th October 1957 and Laika Laika on the
Educational Guide. Educators. Grades K 12 EG-2007-12-179-MSFC
Educational Guide Educators Grades K 12 EG-2007-12-179-MSFC Acknowledgements Adventures in Rocket Science is an expansion of the NASA guidebook Rockets by Deborah Shearer, Greg Vogt and Carla Rosenberg.
Newton s Laws of Motion
Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off
The Space Shuttle: Teacher s Guide
The Space Shuttle: Teacher s Guide Grade Level: 6-8 Curriculum Focus: Astronomy/Space Lesson Duration: Two class periods Program Description This video, divided into four segments, explores scientists'
Elements of Physics Motion, Force, and Gravity Teacher s Guide
Teacher s Guide Grade Level: 9 12 Curriculum Focus: Physical Science Lesson Duration: Three class periods Program Description Examine Isaac Newton's laws of motion, the four fundamental forces of the universe,
ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 6 EO C240.03 IDENTIFY PARTS OF A ROCKET PREPARATION
ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 6 EO C240.03 IDENTIFY PARTS OF A ROCKET Total Time: 30 min PREPARATION PRE-LESSON INSTRUCTIONS Resources needed for the delivery
Saturn V Straw Rocket
Saturn V Straw Rocket Saturn V Rocket Activity Background Information As part of our NASA Tram Tour, you have the opportunity to view a Saturn V Rocket at our Rocket Park. This particular rocket was slated
Earth Is Not the Center of the Universe
Earth Is Not the Center of the Universe Source: Utah State Office of Education Introduction Have you ever looked up at the night sky and wondered about all the pinpoint lights? People through the ages
The Apollo Program. PTYS 395 October 9, 2008 Sarah Mattson
The Apollo Program PTYS 395 October 9, 2008 Sarah Mattson May 25, 1961 President Kennedy announces the Apollo Program. The goal was to put a man on the Moon, and return him safely to Earth, by the end
The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:
Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section
Sputnik and the Space Race. By: AJ Scangamor and Joseph Reed
Sputnik and the Space Race By: AJ Scangamor and Joseph Reed Background After WWII ended the Cold War had just begun. Within this war between two great powers competed in the battle of the Space Race, the
Can Hubble be Moved to the International Space Station? 1
Can Hubble be Moved to the International Space Station? 1 On January 16, NASA Administrator Sean O Keefe informed scientists and engineers at the Goddard Space Flight Center (GSFC) that plans to service
Space Shuttle Mission SPACE SHUTTLE SYSTEM. Operation. Luca d Agostino, Dipartimento di Ingegneria Aerospaziale, Università di Pisa, 2010/11.
Space Shuttle Mission SPACE SHUTTLE SYSTEM Operation SPACE SHUTTLE SYSTEM Operation The flight plan and operation of the Space Shuttle differs markedly from that of the now-familiar launch procedures and
Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line
Image taken by NASA Asteroids About 6,000 asteroids have been discovered; several hundred more are found each year. There are likely hundreds of thousands more that are too small to be seen from Earth.
THE SOLAR SYSTEM - EXERCISES 1
THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?
Good evening and thank you for inviting me. I ve been asked to. talk about space exploration, but since this is the Farnborough Airshow,
Remarks by the Honorable Michael D. Griffin NASA Administrator Space Foundation Dinner Farnborough International Airshow Farnborough, England July 19, 2006 Good evening and thank you for inviting me. I
1. Soaring Through Our Solar System By Laura G. Smith
1. Soaring Through Our Solar System By Laura G. Smith 1 Five, four, three, two, one... BLAST OFF! Come along as we explore our solar system! If we were flying high above the Earth, what would you see?
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around
SPACE EXPLORATION BYU Merit Badge PowWow Official Merit Badge Worksheet
SPACE EXPLORATION BYU Merit Badge PowWow Official Merit Badge Worksheet Scout's Name Instructor's Name Scout's Address City State Zip Instructions 1) The Scout is to review the merit badge book before
NJ Physics Professor Has the 'Right Stuff' Valorie Sands
NJ Physics Professor Has the Right Stuff NJ Physics Professor Has the 'Right Stuff' Valorie Sands In 2005, Dr. Greg Olsen became the third person ever to travel into outer space as a private citizen. Unlike
How Long Do You Need To Achieve Your Scientific Objectives?
How Long Do You Need To Achieve Your Scientific Objectives? Time seconds minutes days/weeks months Drop Towers/Drop Tubes KC-135 Parabolic Flights Balloons* Sounding Rockets Alternate Carriers* Shuttle
Science 9 Worksheet 13-1 The Solar System
Name Date Due Date Science 9 Read pages 264-287 of SP to help you answer the following questions: Also, go to a school computer connected to the internet. Go to Mr. Colgur s Webpage at http://sd67.bc.ca/teachers/dcolgur
Sources of Space Policy and Law
Sources of Space Policy and Law Custom Domestic and International Laws Treaties and Agreements Policy Statements and Directives - Presidential - DoD and The Armed Services - Other Government Organizations
Spacecraft Power for Cassini
NASA Fact Sheet Spacecraft Power for Cassini Cassini s electrical power source Radioisotope Thermoelectric Generators (RTGs) have provided electrical power for some of the U.S. space program s greatest
SPACE OPERATIONS, INC. Executive Summary October 2013
SPACE OPERATIONS, INC. Executive Summary October 2013 Point of Contact Craig Russell Chief Executive Officer Space Operations, Inc. 2903 Wall Triana Highway, Suite 5 Huntsville, AL 35824-1529 Office: (256)
Science Investigations: Investigating Astronomy Teacher s Guide
Teacher s Guide Grade Level: 6 12 Curriculum Focus: Astronomy/Space Duration: 7 segments; 66 minutes Program Description This library of videos contains seven segments on celestial bodies and related science.
A long time ago, people looked
Supercool Space Tools! By Linda Hermans-Killam A long time ago, people looked into the dark night sky and wondered about the stars, meteors, comets and planets they saw. The only tools they had to study
TOPO Trajectory Operations Officer
ISS Live! was developed at NASA s Johnson Space Center (JSC) under NASA Contracts NNJ14RA02C and NNJ11HA14C wherein the U.S. Government retains certain rights. Console Handbook TOPO Trajectory Operations
Chapter 5: Circular Motion, the Planets, and Gravity
Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but
What s better than a milliondollar
F o r k i d s o f a l l a g e s BY MEMORIE YASUDA What s better than a milliondollar view from the top of a skyscraper? Try a multimillion-dollar view from a satellite flying around Earth. A satellite
SpaceLoft XL Sub-Orbital Launch Vehicle
SpaceLoft XL Sub-Orbital Launch Vehicle The SpaceLoft XL is UP Aerospace s workhorse space launch vehicle -- ideal for significant-size payloads and multiple, simultaneous-customer operations. SpaceLoft
Delimitation and Commercial Use of Outer Space. Sang-Myon Rhee Seoul National University March 28, 2011
Delimitation and Commercial Use of Outer Space Sang-Myon Rhee Seoul National University March 28, 2011 Where to Delimit? Problems & Issues Problems in Traditional Delimitation Air Space Outer Space Necessity
FAQ. Q: What do you do on the International Space Station (ISS)? Q: How fast and how high do you go? Q: How long are the missions?
Q: What do you do on the International Space Station (ISS)? A: Astronauts and cosmonauts on the space station stay busy. There s lots of work to operate the many science experiments on board. The crew
Bored of Studies - www.boredofstudies.org
Space Exploration The Contributions of Major Scientists Konstantin Eduardovitch Tsiolkovsky (1857-1935) Tsiolkovsky, a mathematics teacher at Borovsk, Kulaga Province, became interested in space flight
The Invention Of The Jet Engine. Milo Whittle
The Invention Of The Jet Engine Milo Whittle Contents: PG.1 - Introduction To An Imaginative Idea: Yuck! PG.2 - Engine Innovator: Shy Boy Becomes Daredevil Pilot PG.3 - R.A.F. What On Earth Is The R.A.F.?
Solar System Facts & Fun
Solar System Facts & Fun Space is such a fascinating place. God put the Earth in just the right place so everything was just right for life as we know it. Have you ever wondered about the other planets
The Science of Flight
The Science of Flight This resource pack is a collaborative effort between the Royal Air Force Museum, Cosford and St. Patrick s Catholic Primary School, Wellington. Supported by MLA West Midlands. CATHOLIC
tal OFFICE OF THE SECRETARY OF DEFENSE Col. Paul E. Worthrnan, SAF-SS, 4C1000 SUBJECT: Public Affairs Guidance for MOL
RELEASE 1 JULY 2015 rgrrrmr tal WHEN WITH ATTACHMENTS OFFICE OF THE SECRETARY OF DEFENSE 21 October 1965 MEMO FOR Col. Paul E. Worthrnan, SAF-SS, 4C1000 SUBJECT: Public Affairs Guidance for MOL Request
Video Transcript for Archival Research Catalog (ARC) Identifier 45017
The Eagle Has Landed 1969 Ed Aldrin: Contact light. Okay. Engine stop. ACA out of detent. Mode control both auto. Descent engine command override off. Engine alarm off. 413 is in. Capsule Communicator
Name Class Date. true
Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized
LEADER GUIDE for MODULE SIX
LEADER GUIDE for MODULE SIX SPACECRAFT Chapter 1 Unmanned Spacecraft Learning Outcomes After completing this chapter, you should be able to: Define a satellite. Describe an orbit. Define apogee and perigee.
Does currently available technology have the capacity to facilitate a manned mission to Mars?
Furze Platt Senior School Does currently available technology have the capacity to facilitate a manned mission to Mars? Daniel Messias Date: 8/03/2015 Candidate Number: 7158 Centre Number: 51519 Contents
Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all
Section 4: The Basics of Satellite Orbits
Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,
1 A Solar System Is Born
CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD
SpaceÊ ShuttleÊ Program Artifacts
SpaceÊ ShuttleÊ Program Artifacts Information Pamphlet As we celebrate the 40th anniversary of the first human presence on the Moon, NASA continues to move forward with a new focus for the human space
The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html
The Solar System What is the solar system? It is our Sun and everything that travels around it. Our solar system is elliptical in shape. That means it is shaped like an egg. Earth s orbit is nearly circular.
Gravity SEN. Answers (in the wrong order) Force Isaac Newton Energy Gravity Apple Powerful engines less Newtons Gravity
Gravity Gravity is a force, which we don t think a lot about. It is gravity that holds things to the Earth s surface and prevents things from floating off into the atmosphere. Isaac Newton was one of the
AeroVironment, Inc. Unmanned Aircraft Systems Overview Background
AeroVironment, Inc. Unmanned Aircraft Systems Overview Background AeroVironment is a technology solutions provider with a more than 40-year history of practical innovation in the fields of unmanned aircraft
Introduction to the Solar System
Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction
Look at Our Galaxy. by Eve Beck. Space and Technology. Scott Foresman Reading Street 2.1.2
Suggested levels for Guided Reading, DRA, Lexile, and Reading Recovery are provided in the Pearson Scott Foresman Leveling Guide. Space and Technology Look at Our Galaxy Genre Expository nonfiction Comprehension
Unit 8 Lesson 2 Gravity and the Solar System
Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe
UNIT 2 GCSE PHYSICS 2.2.1 Forces and Energy 2011 FXA WORK DONE (J) = ENERGY TRANSFERRED (J) WORK
29 When a force causes an object to move through a distance, work is done. Work done, force and distance are related by the equation : W = F x d WORK When a force is applied to an object and cause it to
4.1.6. Interplanetary Travel. Outline. In This Section You ll Learn to...
Interplanetary Travel 4.1.6 In This Section You ll Learn to... Describe the basic steps involved in getting from one planet in the solar system to another Explain how we can use the gravitational pull
Overview of the Orbiting Carbon Observatory (OCO) Mishap Investigation Results For Public Release
Overview of the Orbiting Carbon Observatory (OCO) Mishap Investigation Results For Public Release SUMMARY The Orbiting Carbon Observatory was a National Aeronautics and Space Administration satellite mission
WEIGHTLESS WONDER Reduced Gravity Flight
WEIGHTLESS WONDER Reduced Gravity Flight Instructional Objectives Students will use trigonometric ratios to find vertical and horizontal components of a velocity vector; derive a formula describing height
Another Giant Leap. for Mankind. Lesson Development
Lesson Development Apollo capsule (Image: NASA) Earth (Image: NASA) Instructional Objectives Students will decompose a geometric shape into smaller parts; apply the appropriate formulas for various geometric
The Earth, Sun, and Moon
reflect The Sun and Moon are Earth s constant companions. We bask in the Sun s heat and light. It provides Earth s energy, and life could not exist without it. We rely on the Moon to light dark nights.
Introduction to Aerospace Engineering
Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Introduction to Aerospace Engineering AE1102 Dept. Space Engineering Astrodynamics & Space Missions (AS) Prof. ir. B.A.C. Ambrosius
The Solar System. Olivia Paquette
The Solar System Olivia Paquette Table of Contents The Sun 1 Mercury 2,3 Venus 4,5 Earth 6,7 Mars 8,9 Jupiter 10,11 Saturn 12 Uranus 13 Neptune Pluto 14 15 Glossary. 16 The Sun Although it may seem like
STUDY GUIDE: Earth Sun Moon
The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all
The University of Texas at Austin. Gravity and Orbits
UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the
Case Study 1 The Challenger Space Shuttle disaster and the Solid-Fuel Rocket Booster (SRB) project
Case Study 1 The Challenger Space Shuttle disaster and the Solid-Fuel Rocket Booster (SRB) project Overview On 28 January,1986 the Challenger space shuttle blew up 73 seconds after launch. Seven lives
Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma
Rocket Dynamics orces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors Thrust orces on the Rocket Equation of otion: = a orces at through the Center of ass Center of
DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science
DESCRIPTION Host Tom Selleck conducts a stellar tour of Jupiter, Saturn, Uranus, Neptune, and Pluto--the outer planets of Earth's solar system. Information from the Voyager space probes plus computer models
Inhibition of an Arms Race in Outer Space
Inhibition of an Arms Race in Outer Space Introduction Jinseong Joo The exploration and use of outer space shall be for peaceful purposes and should be carried out for the benefit and in the interest of
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
Astrodynamics (AERO0024)
Astrodynamics (AERO0024) 6. Interplanetary Trajectories Gaëtan Kerschen Space Structures & Systems Lab (S3L) Course Outline THEMATIC UNIT 1: ORBITAL DYNAMICS Lecture 02: The Two-Body Problem Lecture 03:
PUSD High Frequency Word List
PUSD High Frequency Word List For Reading and Spelling Grades K-5 High Frequency or instant words are important because: 1. You can t read a sentence or a paragraph without knowing at least the most common.
Science Standard 4 Earth in Space Grade Level Expectations
Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal
Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:
Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose
To construct and launch a simple bottle rocket.
Teacher Information Bottle Rocket Objective To construct and launch a simple bottle rocket. Description: Working in teams, learners will construct a simple bottle rocket from 2-liter soft drink bottles
A Comparison of Methods for the Mars Sample Return Mission
AIAA-2941 A Comparison of Methods for the Mars Sample Return Mission Robert Zubrin* Pioneer Astronautics 445 Union Blvd., Suite 125 Lakewood, CO 80228 (303) 980-0890 Abstract This paper analyzes the three
Swarthmore College Newsletter
93 Fog, clouds, and light pollution limit the effectiveness of even the biggest optical telescopes on Earth. Astronomers who study ultraviolet or X-ray emission of stars have been more limited because
UNIT V. Earth and Space. Earth and the Solar System
UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system
Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion
Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,
The Solar System: Cosmic encounter with Pluto
Earth and Space Sciences The Solar System: Cosmic encounter with Pluto The size and nature of our Solar System is truly awe inspiring, and things are going to get even more exciting once the New Horizons
Perspective and Scale Size in Our Solar System
Perspective and Scale Size in Our Solar System Notes Clue Session in Mary Gates RM 242 Mon 6:30 8:00 Read Lang Chpt. 1 Moodle Assignment due Thursdays at 6pm (first one due 1/17) Written Assignments due
FUTURE OF SPACE TRAVEL SPACE TRAVEL FOR THE MASSES: HISTORY, CURRENT STATUS, PROBLEMS, AND FUTURE DIRECTIONS. Bo Rim Seo
FUTURE OF SPACE TRAVEL SPACE TRAVEL FOR THE MASSES: HISTORY, CURRENT STATUS, PROBLEMS, AND FUTURE DIRECTIONS By Bo Rim Seo Submitted in Partial Fulfillment of B.S. Worcester Polytechnic Institute Table
EXPLORE! A Cooperative Project of the Lunar and Planetary Institute, NASA's Office of Space Science and public libraries
EXPLORE! A Cooperative Project of the Lunar and Planetary Institute, NASA's Office of Space Science and public libraries Activity: Space Capsules: The Egg-stronaut Egg Drop Level: Grades 5-8 To Take Home:
Materials: Internet connection and browser for displaying the lesson; Reading Guide (appended at the end of this lesson plan).
Multiwavelength Astronomy: The History of X-ray Astronomy, by Herbert Friedman http://ecuip.lib.uchicago.edu/multiwavelength-astronomy/x-ray/history/index.html Subject(s): Astronomy/Space Science Grade(s)
REMARKS FOR ADMINISTRATOR BOLDEN THOMAS JEFFERSON HIGH SCHOOL FOR SCIENCE AND TECHNOLOGY. June 16, 2012
REMARKS FOR ADMINISTRATOR BOLDEN THOMAS JEFFERSON HIGH SCHOOL FOR SCIENCE AND TECHNOLOGY June 16, 2012 Greetings and congratulations to the graduating class of 2012 of the Thomas Jefferson High School
Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System
Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!
A Solar System Coloring Book
A Solar System Coloring Book Courtesy of the Windows to the Universe Project http://www.windows2universe.org The Sun Size: The Sun is wider than 100 Earths. Temperature: ~27,000,000 F in the center, ~10,000
Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc.
Our Planetary System Earth, as viewed by the Voyager spacecraft 7.1 Studying the Solar System Our goals for learning: What does the solar system look like? What can we learn by comparing the planets to
TELESCOPE AS TIME MACHINE
TELESCOPE AS TIME MACHINE Read this article about NASA s latest high-tech space telescope. Then, have fun doing one or both of the word puzzles that use the important words in the article. A TELESCOPE
Space Exploration - Merit Badge Workbook Page. 2 of 11
c. Benefits related to Earth resources, technology, and new products. d. International relations and cooperation. 2. Design a collector s card, with a picture on the front and information on the back,
SpaceX Overview Tom Markusic Director, McGregor Rocket Development Facility 27 July, 2010. SpaceX
SpaceX Overview Tom Markusic Director, McGregor Rocket Development Facility 27 July, 2010 SpaceX Vehicles Falcon 1 Falcon 9 Dragon Spacecraft 2 SpaceX Overview Founded in mid-2002 with the singular goal
