Congestion Control Overview
|
|
|
- Anissa Mathews
- 10 years ago
- Views:
Transcription
1 Congestion Control Overview Problem: When too many packets are transmitted through a network, congestion occurs t very high traffic, performance collapses completely, and almost no packets are delivered Causes: bursty nature of traffic is the root cause When part of the network no longer can cope a sudden increase of traffic, congestion builds upon. Other factors, such as lack of bandwidth, ill-configuration and slow routers can also bring up congestion Packets delivered Maximum carrying capacity of subnet Perfect Packets sent Desirable Congested Solution: congestion control, and two basic approaches Open-loop: try to prevent congestion occurring by good design Closed-loop: monitor the system to detect congestion, pass this information to where action can be taken, and adjust system operation to correct the problem (detect, feedback and correct) Differences between congestion control and flow control: Congestion control try to make sure subnet can carry offered traffic, a global issue involving all the hosts and routers. It can be open-loop based or involving feedback Flow control is related to point-to-point traffic between given sender and receiver, it always involves direct feedback from receiver to sender 119
2 Open-Loop Congestion Control Prevention: Different policies at various layers can affect congestion, and these are summarised in the table Transport Retransmission policy e.g. retransmission policy at data link layer Out-of-order caching policy affects congestion: jumpy sender that times cknowledgement policy out quickly and retransmits all the outstanding Flow control policy frames using go back n will put a heavy load Timeout determination on the system than a leisurely sender that uses Network selective repeat Congestion prevention tries to design these policies carefully to minimise congestion in the first place Traffic shaping: s burstiness of traffic is a main cause of congestion, it is used to regulate average rate and burstiness of traffic Data link Virtual circuit versus datagram Packet queueing and service policy Packet discard policy Routing algorithm Packet lifetime management Retransmission policy Out-of-order caching policy cknowledgement policy Flow control policy e.g. when a virtual circuit is set up, the user and the subnet first agree certain traffic shape for that circuit. Monitoring traffic flow, called traffic policing, is left to the subset greeing to a traffic shape and policing it afterward are easier with virtual circuit subnets, but the same ideas can be applied to datagram subnet at transport layer 120
3 Leaky ucket / Token ucket Faucet Leaky bucket: consists of a finite queue Host computer When a packet arrives, if there is a room on the queue it is joined the queue; otherwise, it is discarded t every (fixed) clock tick, one packet is transmitted unless the queue is empty It eliminates bursts completely: packets passed to the subnet at the same rate Leaky bucket Water drips out of the hole at a constant rate (a) Water Interface containing a leaky bucket Network (b) Packet Unregulated flow The bucket holds packets Regulated flow This may be a bit overdone, and also packets can get lost (when bucket is full) Host computer Host computer Token bucket: Tokens are added at a constant rate. For a packet to be transmitted, it must capture and destroy one token One token is added to the bucket every T The bucket holds tokens (a) shows that the bucket holds three tokens with five packets waiting to be transmitted (b) shows that three packets have gotten through but the other two are stuck waiting for tokens to be generated Networks (a) Networks (b) 121
4 Token ucket (continue) Unlike leaky bucket, token bucket allows saving, up to maximum size of bucket n. This means that bursts of up to n packets can be sent at once, giving faster response to sudden bursts of input n important difference between two algorithms: token bucket throws away tokens when the bucket is full but never discards packetswhile leaky bucket discards packets when the bucket is full Let token bucket capacity be C (bits), token arrival rate ρ (bps), maximum output rate M (bps), and burst length S (s) During burst length of S (s), tokens generated are ρs (bits), and output burst contains a maximum of C + ρs (bits) lso output in a maximum burst of length S (s) is M S (bits), thus C + ρs = MS or S = C M ρ Token bucket still allows large bursts, even though the maximum burst length S can be regulated by careful selection of ρ and M One way to reduce the peak rate is to put a leaky bucket of a larger rate (to avoid discarding packets) after the token bucket 122
5 Illustration (a) The input to a leaky bucket, 25 Mbps for 40 ms, i.e Kbits = 1 Mbits burst (b) The output of leaky bucket at 2 Mbps uniform rate for 500 ms (assuming no packet is discarded) (c) The output of token bucket with 250 Kbits capacity and token arrival rate 2 Mbps, assuming that the token bucket is full when the 1 Mbits burst arrives (a) (b) 25 M/sec for 40 msec 0 Time (msec) M/sec for 500 msec Output at first is at the full burst rate of 25 Mbps for about 11 ms (S = ms). During this burst period, 272 Kbits are send. The remaining = 728 Kbits have to be cleared at the rate 2 Mbps for a duration of 728/2 = 364 ms (d) and (e) The outputs of token buckets for capacities of 500 Kbits and 750 Kbits, respectively, with token arrival rate 2 Mbps (f) The output for 500 Kbits token bucket followed by a 10 Mbps leaky bucket (x 21.7) 2 = 10x x = 62.4 ms 0 Time (msec) M/sec for 11 msec (c) 2 M/sec for 364 msec 0 Time (msec) M/sec for 22 msec (d) 2 M/sec for 228 msec 0 Time (msec) M/sec for 33 msec (e) 2 M/sec for 92 msec 0 Time (msec) 500 (f) 10 M/sec for 62 msec 2 M/sec for 190 msec 0 Time (msec)
6 Congestion Control in Virtual Circuits These are closed-loop based designed for virtual circuits subnets, which are connection oriented during connection set up, something can be done to help congestion control The basic principle is obvious: When setting up a virtual circuit, make sure that congestion can be avoided dmission control: Once congestion has been signaled, no more new virtual circuits can be set up until the problem has gone away. This is crude but simple and easy to do Congestion Congestion Select alternative routes to (a) (b) avoid part of the network that is overloaded, i.e. temporarily rebuild your view of network e.g. Normally, when router sets a connection to, it would pass through one of the two congested routers, as this would result in a minimum-hop route (4 and 5 hops respectively). To avoid congestion, a temporary subnet is redrawn by eliminating congested routers. virtual circuit can then be established to avoid congestion Negotiate quality of connection in advance, so that network provider can reserve buffers and other resources, guaranteed to be there Virtual circuit 124
7 Choke Packets This closed-loop congestion control is applicable to both virtual circuits and datagram subnets asic idea: Router checks the status of each output line: if it is too occupied, sends a choke packet to the source. The host is assumed to be cooperative and will slow down When the source gets a chock packet, it cuts rate by half, and ignores further choke packets coming from the same destination for a fixed period fter that period has expired, the host listens for more choke packets. If one arrives, the host cut rate by half again. If no choke packet arrives, the host may increase rate Uncooperative cheating host may get all bandwidth while cooperative honest host gets penalised Use weighted fair queueing to enforce cooperation and assign priority Problem of basic Choke Packets: For high-speed WNs, return path for a choke packet may be so long that too many packets have already been sent by the source before the source notes congestion and takes action Host in San Francisco (router ) is sending heavy traffic to a host in New York (router D), and D is in trouble. It sends a choke packet to. Note how long it takes for to reduce the rate and eventually to relieve D Solution: Use push-back or hop-by-hop choke packets When choke packet reaches router F, it forwards choke packet to router E as well as reduces its traffic to D. Thus the problem that D has is push-back to F and D gets relief quickly. This process is repeated down the route until the ball is back to the root source 125
8 Choke packets in WNs: (a) basic, (b) hope-by-hope (a) (b) Choke C D E F Choke Choke Reduced flow Flow is still at maximum rate Flow is reduced C D E F Heavy flow Choke Choke Reduced flow Choke 126
9 Last Resort Load Shedding: When all the other methods cannot make congestion disappear, routers may force to use this last resort, but how to drop or discard packets? router may randomly pick packets to drop but it can usually do better than this Which packet to discard depends on the applications running Wine policy: For file transfer, an old packet is worth more than a new one. This is because dropping an old packet may force more packets to be retransmitted (since receiver will discard out-of-order packets). For this kind of applications, the older the better Milk policy: For multimedia, a new packet is more important than an old one. Thus, fresher is better Implementing some sort of intelligent discard policy: For some applications, some packets are more important than others e.g. in MPEG video standard, periodically, an entire frame is transmitted and this is followed by subsequent frames as differences from the full reference frame drop packets that is part of a difference is preferred to drop one that contains part of the last full reference frame pplications mark their packets in priority classes to indicate how important they are, such as very important never discard, or lower priority, etc. 127
10 Congestion Control for Multicasting Congestion control algorithms discussed so far deal with single-source to single-destination case In the advent of all kinds of services on the Internet that deal with broadcasting streams of data (voice and video) with a limited bandwidth, managing multicast flows from multiple sources to multiple destinations becomes critical Multicast routing uses spanning trees Hosts 1 and 2 are multicast senders, and hosts 3, 4 and 5 are multicast receivers (a) shows network topology, multicast trees from hosts 1 and 2 are shown in (b) and (c) D G J Resource reservation protocol: The basic idea is that, to avoid congestion, extra information can be broadcasted to Receivers (a) (b) (c) the group periodically to tell the routers along the tree to maintain certain data structures in their memories Senders 1 2 E H K C F I L D G J 1 2 E H K C F I L D G J 1 2 E H K C F I L 128
11 RSVP (continue) ny receiver can send a reservation message up the tree to the sender, using the reverse path forwarding routing algorithm t each hop, router notes reservation and reserve necessary bandwidth If insufficient bandwidth is available, it reports back failure y the time the message gets back to source, bandwidth has been reserved all the way from sender to receiver along the spanning tree D G J 1 2 E H K (a) C F andwidth reserved for source 1 I L D G J K E H (b) C andwidth reserved for source 2 F I L D G J K E H Host 3 has requested a channel to host 1. Once it has been established, packets can flow from 1 to 3 without congestion. Next host 3 decides to reserve a channel to the other sender, host 2, and 2nd path is reserved Now, host 5 makes a reservation to host 1. First, dedicated bandwidth has to be reserved as far as router H. Router H can see that it already has a feed from host 1 ssume bandwidth requested for host 1 to host 5 is no more than that reserved for host 1 to host 3. s the necessary bandwidth has already been reserved, it does not have to reserve any more (c) C F I L 129
12 Summary Congestion: the root cause is the bursty nature of traffic Open-loop based congestion control Prevention and traffic shaping, leaky bucket, token bucket Closed-loop based congestion control For single source to single destination: congestion control in virtual circuits subnets and (hop-by-hop) choke packets approach For multiple sources to multiple destinations: resource reservation protocol 130
Announcements. Midterms. Mt #1 Tuesday March 6 Mt #2 Tuesday April 15 Final project design due April 11. Chapters 1 & 2 Chapter 5 (to 5.
Announcements Midterms Mt #1 Tuesday March 6 Mt #2 Tuesday April 15 Final project design due April 11 Midterm #1 Chapters 1 & 2 Chapter 5 (to 5.2) 1 Congestion Too much traffic can destroy performance
1. The subnet must prevent additional packets from entering the congested region until those already present can be processed.
Congestion Control When one part of the subnet (e.g. one or more routers in an area) becomes overloaded, congestion results. Because routers are receiving packets faster than they can forward them, one
The Network Layer Functions: Congestion Control
The Network Layer Functions: Congestion Control Network Congestion: Characterized by presence of a large number of packets (load) being routed in all or portions of the subnet that exceeds its link and
QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS
Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:
Distributed Systems 3. Network Quality of Service (QoS)
Distributed Systems 3. Network Quality of Service (QoS) Paul Krzyzanowski [email protected] 1 What factors matter for network performance? Bandwidth (bit rate) Average number of bits per second through
Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm
Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:
Motivation. QoS Guarantees. Internet service classes. Certain applications require minimum level of network performance:
QoS Guarantees Motivation introduction call admission traffic specification link-level scheduling call setup protocol reading: Tannenbaum, 393-395, 458-471 Ch 6 in Ross/Kurose Certain applications require
Multimedia Requirements. Multimedia and Networks. Quality of Service
Multimedia Requirements Chapter 2: Representation of Multimedia Data Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Transfer/Control Protocols Quality of Service
Per-Flow Queuing Allot's Approach to Bandwidth Management
White Paper Per-Flow Queuing Allot's Approach to Bandwidth Management Allot Communications, July 2006. All Rights Reserved. Table of Contents Executive Overview... 3 Understanding TCP/IP... 4 What is Bandwidth
Introduction to Quality of Service. Andrea Bianco Telecommunication Network Group [email protected] http://www.telematica.polito.
Introduction to Quality of Service Andrea Bianco Telecommunication Network Group [email protected] http://www.telematica.polito.it/ QoS Issues in Telecommunication Networks - 1 Quality of service
Wide Area Networks. Learning Objectives. LAN and WAN. School of Business Eastern Illinois University. (Week 11, Thursday 3/22/2007)
School of Business Eastern Illinois University Wide Area Networks (Week 11, Thursday 3/22/2007) Abdou Illia, Spring 2007 Learning Objectives 2 Distinguish between LAN and WAN Distinguish between Circuit
Chapter 5: Sample Questions, Problems and Solutions Bölüm 5: Örnek Sorular, Problemler ve Çözümleri Örnek Sorular (Sample Questions):
Chapter 5: Sample Questions, Problems and Solutions Bölüm 5: Örnek Sorular, Problemler ve Çözümleri Örnek Sorular (Sample Questions): What is Store-and-Forward packet switching? What is a connectionless
CHAPTER 1 ATM TRAFFIC MANAGEMENT
CHAPTER 1 ATM TRAFFIC MANAGEMENT Webster s New World Dictionary defines congestion as filled to excess, or overcrowded; for example, highway congestion. Although, the best solution of congestion is to
Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION
Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012 Network Chapter# 19 INTERNETWORK OPERATION Review Questions ٢ Network Chapter# 19 INTERNETWORK OPERATION 19.1 List
Quality of Service. Translation of QoS Parameters. Quality of Service
Quality of Service Chapter 2: Basics Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Multimedia Transfer and Control Protocols Quality of Service
Stop And Wait. ACK received; transmit frame 2 CS 455 3
Data Link Layer, Part 5 Sliding Window Protocols These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable
A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman
A Preferred Service Architecture for Payload Data Flows Ray Gilstrap, Thom Stone, Ken Freeman NASA Research and Engineering Network NASA Advanced Supercomputing Division NASA Ames Research Center Outline
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page
Introduction to LAN/WAN. Network Layer
Introduction to LAN/WAN Network Layer Topics Introduction (5-5.1) Routing (5.2) (The core) Internetworking (5.5) Congestion Control (5.3) Network Layer Design Isues Store-and-Forward Packet Switching Services
Internet Packets. Forwarding Datagrams
Internet Packets Packets at the network layer level are called datagrams They are encapsulated in frames for delivery across physical networks Frames are packets at the data link layer Datagrams are formed
Routing in packet-switching networks
Routing in packet-switching networks Circuit switching vs. Packet switching Most of WANs based on circuit or packet switching Circuit switching designed for voice Resources dedicated to a particular call
Lecture 16: Quality of Service. CSE 123: Computer Networks Stefan Savage
Lecture 16: Quality of Service CSE 123: Computer Networks Stefan Savage Final Next week (trust Blink wrt time/location) Will cover entire class Style similar to midterm I ll post a sample (i.e. old) final
Final for ECE374 05/06/13 Solution!!
1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -
Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS?
18-345: Introduction to Telecommunication Networks Lectures 20: Quality of Service Peter Steenkiste Spring 2015 www.cs.cmu.edu/~prs/nets-ece Overview What is QoS? Queuing discipline and scheduling Traffic
Network management and QoS provisioning - QoS in the Internet
QoS in the Internet Inernet approach is based on datagram service (best effort), so provide QoS was not a purpose for developers. Mainly problems are:. recognizing flows;. manage the issue that packets
ΤΕΙ Κρήτης, Παράρτηµα Χανίων
ΤΕΙ Κρήτης, Παράρτηµα Χανίων ΠΣΕ, Τµήµα Τηλεπικοινωνιών & ικτύων Η/Υ Εργαστήριο ιαδίκτυα & Ενδοδίκτυα Η/Υ Modeling Wide Area Networks (WANs) ρ Θεοδώρου Παύλος Χανιά 2003 8. Modeling Wide Area Networks
Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control?
Congestion Control Review What is congestion control? 15-441 Computer Networking What is the principle of TCP? Lecture 22 Queue Management and QoS 2 Traffic and Resource Management Resource Management
Dynamic Source Routing in Ad Hoc Wireless Networks
Dynamic Source Routing in Ad Hoc Wireless Networks David B. Johnson David A. Maltz Computer Science Department Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213-3891 [email protected] Abstract
Introduction to LAN/WAN. Network Layer (part II)
Introduction to LAN/WAN Network Layer (part II) Topics The Network Layer Introduction Routing (5.2) The Internet (5.5) IP, IP addresses ARP (5.5.4) OSPF (5.5.5) BGP (5.5.6) Congestion Control (5.3) Internetworking
Configuring an efficient QoS Map
Configuring an efficient QoS Map This document assumes the reader has experience configuring quality of service (QoS) maps and working with traffic prioritization. Before reading this document, it is advisable
Transport Layer Protocols
Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements
How To Provide Qos Based Routing In The Internet
CHAPTER 2 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 22 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 2.1 INTRODUCTION As the main emphasis of the present research work is on achieving QoS in routing, hence this
Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation
Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.
Quality of Service (QoS)) in IP networks
Quality of Service (QoS)) in IP networks Petr Grygárek rek 1 Quality of Service (QoS( QoS) QoS is the ability of network to support applications without limiting it s s function or performance ITU-T T
Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding
Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)
Communication Systems Internetworking (Bridges & Co)
Communication Systems Internetworking (Bridges & Co) Prof. Dr.-Ing. Lars Wolf TU Braunschweig Institut für Betriebssysteme und Rechnerverbund Mühlenpfordtstraße 23, 38106 Braunschweig, Germany Email: [email protected]
28 Networks and Communication Protocols
113 28 Networks and ommunication Protocols Trend in computer systems: personal computing. Reasons why: ost: economies of scale. lso, avoids large initial investment in timesharing system. Performance:
Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software
Local Area What s a LAN? A transmission system, usually private owned, very speedy and secure, covering a geographical area in the range of kilometres, comprising a shared transmission medium and a set
Introduction. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross
Introduction Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross Roadmap 1.1 what is the Inter? 1.2 work edge end systems, works, links 1.3 work core packet switching,
Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage
Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource
Computer Network. Interconnected collection of autonomous computers that are able to exchange information
Introduction Computer Network. Interconnected collection of autonomous computers that are able to exchange information No master/slave relationship between the computers in the network Data Communications.
TCP in Wireless Mobile Networks
TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer
College 5, Routing, Internet. Host A. Host B. The Network Layer: functions
CSN-s 5/1 College 5, Routing, Internet College stof 1 Inleiding: geschiedenis, OSI model, standaarden, ISOC/IETF/IRTF structuur Secties: 1.2, 1.3, 1.4, 1.5 2 Fysieke laag: Bandbreedte/bitrate Secties:
CS 268: Lecture 13. QoS: DiffServ and IntServ
CS 268: Lecture 13 QoS: DiffServ and IntServ Ion Stoica Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720-1776 1
Overview of Network Hardware and Software. CS158a Chris Pollett Jan 29, 2007.
Overview of Network Hardware and Software CS158a Chris Pollett Jan 29, 2007. Outline Scales of Networks Protocol Hierarchies Scales of Networks Last day, we talked about broadcast versus point-to-point
Computer Networks. Chapter 5 Transport Protocols
Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data
Computer Networks Homework 1
Computer Networks Homework 1 Reference Solution 1. (15%) Suppose users share a 1 Mbps link. Also suppose each user requires 100 kbps when transmitting, but each user transmits only 10 percent of the time.
Based on Computer Networking, 4 th Edition by Kurose and Ross
Computer Networks Ethernet Hubs and Switches Based on Computer Networking, 4 th Edition by Kurose and Ross Ethernet dominant wired LAN technology: cheap $20 for NIC first widely used LAN technology Simpler,
1 Introduction to mobile telecommunications
1 Introduction to mobile telecommunications Mobile phones were first introduced in the early 1980s. In the succeeding years, the underlying technology has gone through three phases, known as generations.
Data Link Layer. Flow Control. Flow Control
Data Link Layer Flow Control 1 Flow Control Flow Control is a technique for speed-matching of transmitter and receiver. Flow control ensures that a transmitting station does not overflow a receiving station
Referring to the above question, the end-to-end delay (transmission delay plus propagation delay) is
CS326e Quiz 3 The first correct 10 answers will be worth 1 point each. Each subsequent correct answer will be worth 0.2 points. Circle the correct answer. UTEID In the following 7 problems, we are sending
Differentiated Services
March 19, 1998 Gordon Chaffee Berkeley Multimedia Research Center University of California, Berkeley Email: [email protected] URL: http://bmrc.berkeley.edu/people/chaffee 1 Outline Architecture
QoS issues in Voice over IP
COMP9333 Advance Computer Networks Mini Conference QoS issues in Voice over IP Student ID: 3058224 Student ID: 3043237 Student ID: 3036281 Student ID: 3025715 QoS issues in Voice over IP Abstract: This
TCOM 370 NOTES 99-12 LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL
1. Local Area Networks TCOM 370 NOTES 99-12 LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL These are networks spanning relatively short distances (e.g. within one building) for local point-to-point and point-to-multipoint
Network Management Quality of Service I
Network Management Quality of Service I Patrick J. Stockreisser [email protected] Lecture Outline Basic Network Management (Recap) Introduction to QoS Packet Switched Networks (Recap) Common
PART III. OPS-based wide area networks
PART III OPS-based wide area networks Chapter 7 Introduction to the OPS-based wide area network 7.1 State-of-the-art In this thesis, we consider the general switch architecture with full connectivity
Smart Queue Scheduling for QoS Spring 2001 Final Report
ENSC 833-3: NETWORK PROTOCOLS AND PERFORMANCE CMPT 885-3: SPECIAL TOPICS: HIGH-PERFORMANCE NETWORKS Smart Queue Scheduling for QoS Spring 2001 Final Report By Haijing Fang([email protected]) & Liu Tang([email protected])
Encapsulating Voice in IP Packets
Encapsulating Voice in IP Packets Major VoIP Protocols This topic defines the major VoIP protocols and matches them with the seven layers of the OSI model. Major VoIP Protocols 15 The major VoIP protocols
CS640: Introduction to Computer Networks. Why a New Service Model? Utility curve Elastic traffic. Aditya Akella. Lecture 20 QoS
CS640: Introduction to Computer Networks Aditya Akella Lecture 20 QoS Why a New Service Model? Best effort clearly insufficient Some applications need more assurances from the network What is the basic
10CS64: COMPUTER NETWORKS - II
QUESTION BANK 10CS64: COMPUTER NETWORKS - II Part A Unit 1 & 2: Packet-Switching Networks 1 and Packet-Switching Networks 2 1. Mention different types of network services? Explain the same. 2. Difference
Computer Networks. Definition of LAN. Connection of Network. Key Points of LAN. Lecture 06 Connecting Networks
Computer Networks Lecture 06 Connecting Networks Kuang-hua Chen Department of Library and Information Science National Taiwan University Local Area Networks (LAN) 5 kilometer IEEE 802.3 Ethernet IEEE 802.4
Protagonist International Journal of Management And Technology (PIJMT) Online ISSN- 2394-3742. Vol 2 No 3 (May-2015) Active Queue Management
Protagonist International Journal of Management And Technology (PIJMT) Online ISSN- 2394-3742 Vol 2 No 3 (May-2015) Active Queue Management For Transmission Congestion control Manu Yadav M.Tech Student
Internet Quality of Service
Internet Quality of Service Weibin Zhao [email protected] 1 Outline 1. Background 2. Basic concepts 3. Supporting mechanisms 4. Frameworks 5. Policy & resource management 6. Conclusion 2 Background:
CS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012
CS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012 Important: The solutions to the homework problems from the course book have been provided by the authors.
18: Enhanced Quality of Service
18: Enhanced Quality of Service Mark Handley Traditional best-effort queuing behaviour in routers Data transfer: datagrams: individual packets no recognition of flows connectionless: no signalling Forwarding:
Quality of Service in ATM Networks
Quality of Service in ATM Networks Components of a QoS Network 1. At network entrance: Policing and Shaping 2. Somewhere in the network: Admission Control 3. At switches: Classification, Scheduling 4.
Infrastructure Components: Hub & Repeater. Network Infrastructure. Switch: Realization. Infrastructure Components: Switch
Network Infrastructure or building computer networks more complex than e.g. a short bus, some additional components are needed. They can be arranged hierarchically regarding their functionality: Repeater
Internet structure: network of networks
Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and s 1.6 Delay & loss in packet-switched networks 1.7 Protocol
Chapter 6. The Network Layer
Chapter 6 The Network Layer 1 Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation of Connection-Oriented
Voice over IP: RTP/RTCP The transport layer
Advanced Networking Voice over IP: /RTCP The transport layer Renato Lo Cigno Requirements For Real-Time Transmission Need to emulate conventional telephone system Isochronous output timing same with input
CSE3214 Computer Network Protocols and Applications. Chapter 1 Examples and Homework Problems
CSE3214 Computer Network Protocols and Applications Chapter 1 Examples and Homework Problems Example 1 (review question 18) (1) How long does it take a packet of length 1000 bytes to propagate over a link
Communication Networks. MAP-TELE 2011/12 José Ruela
Communication Networks MAP-TELE 2011/12 José Ruela Network basic mechanisms Introduction to Communications Networks Communications networks Communications networks are used to transport information (data)
First Midterm for ECE374 02/25/15 Solution!!
1 First Midterm for ECE374 02/25/15 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam
Ethernet. Ethernet Frame Structure. Ethernet Frame Structure (more) Ethernet: uses CSMA/CD
Ethernet dominant LAN technology: cheap -- $20 for 100Mbs! first widely used LAN technology Simpler, cheaper than token rings and ATM Kept up with speed race: 10, 100, 1000 Mbps Metcalfe s Etheret sketch
Answer: that dprop equals dtrans. seconds. a) d prop. b) d trans
Chapter 1 1) p. 98: P-6 This elementary problem begins to explore propagation delay and transmission delay, two central concepts in data networking. Consider two hosts, A and B, connected by single link
Chapter 7 outline. 7.5 providing multiple classes of service 7.6 providing QoS guarantees RTP, RTCP, SIP. 7: Multimedia Networking 7-71
Chapter 7 outline 7.1 multimedia networking applications 7.2 streaming stored audio and video 7.3 making the best out of best effort service 7.4 protocols for real-time interactive applications RTP, RTCP,
Real-time apps and Quality of Service
Real-time apps and Quality of Service Focus What transports do applications need? What network mechanisms provide which kinds of quality assurances? Topics Real-time versus Elastic applications Adapting
How To Solve A Network Communication Problem
A White Paper by NEC Unified Solutions, Inc. What VoIP Requires From a Data Network Introduction Here is a very common story. A customer has a data network based on TCP/IP that is working well. He can
[Prof. Rupesh G Vaishnav] Page 1
Basics The function of transport layer is to provide a reliable end-to-end communications service. It also provides data transfer service for the user layers above and shield the upper layers from the
Transport and Network Layer
Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a
Improving Quality of Service
Improving Quality of Service Using Dell PowerConnect 6024/6024F Switches Quality of service (QoS) mechanisms classify and prioritize network traffic to improve throughput. This article explains the basic
CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013
CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60
Level 2 Routing: LAN Bridges and Switches
Level 2 Routing: LAN Bridges and Switches Norman Matloff University of California at Davis c 2001, N. Matloff September 6, 2001 1 Overview In a large LAN with consistently heavy traffic, it may make sense
Burst Testing. New mobility standards and cloud-computing network. This application note will describe how TCP creates bursty
Burst Testing Emerging high-speed protocols in mobility and access networks, combined with qualityof-service demands from business customers for services such as cloud computing, place increased performance
Requirements of Voice in an IP Internetwork
Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.
CS268 Exam Solutions. 1) End-to-End (20 pts)
CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in email a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person
Solving complex performance problems in TCP/IP and SNA environments.
IBM Global Services Solving complex performance problems in TCP/IP and SNA environments. Key Topics Discusses how performance analysis of networks relates to key issues in today's business environment
R2. The word protocol is often used to describe diplomatic relations. How does Wikipedia describe diplomatic protocol?
Chapter 1 Review Questions R1. What is the difference between a host and an end system? List several different types of end systems. Is a Web server an end system? 1. There is no difference. Throughout
Optimizing Enterprise Network Bandwidth For Security Applications. Improving Performance Using Antaira s Management Features
Optimizing Enterprise Network Bandwidth For Security Applications Improving Performance Using Antaira s Management Features By: Brian Roth, Product Marketing Engineer April 1, 2014 April 2014 Optimizing
Quality of Service Analysis of site to site for IPSec VPNs for realtime multimedia traffic.
Quality of Service Analysis of site to site for IPSec VPNs for realtime multimedia traffic. A Network and Data Link Layer infrastructure Design to Improve QoS in Voice and video Traffic Jesús Arturo Pérez,
Advanced Networking Voice over IP: RTP/RTCP The transport layer
Advanced Networking Voice over IP: RTP/RTCP The transport layer Renato Lo Cigno Requirements For Real-Time Transmission Need to emulate conventional telephone system Isochronous output timing same with
CS 78 Computer Networks. Internet Protocol (IP) our focus. The Network Layer. Interplay between routing and forwarding
CS 78 Computer Networks Internet Protocol (IP) Andrew T. Campbell [email protected] our focus What we will lean What s inside a router IP forwarding Internet Control Message Protocol (ICMP) IP
Three Key Design Considerations of IP Video Surveillance Systems
Three Key Design Considerations of IP Video Surveillance Systems 2012 Moxa Inc. All rights reserved. Three Key Design Considerations of IP Video Surveillance Systems Copyright Notice 2012 Moxa Inc. All
Optimizing Converged Cisco Networks (ONT)
Optimizing Converged Cisco Networks (ONT) Module 3: Introduction to IP QoS Introducing QoS Objectives Explain why converged networks require QoS. Identify the major quality issues with converged networks.
Sources: Chapter 6 from. Computer Networking: A Top-Down Approach Featuring the Internet, by Kurose and Ross
M ultimedia Communication Multimedia Systems(Module 5 Lesson 3) Summary: Beyond Best-Effort Motivating QoS Q uality of Service (QoS) Scheduling and Policing Sources: Chapter 6 from Computer Networking:
Subnetting,Supernetting, VLSM & CIDR
Subnetting,Supernetting, VLSM & CIDR WHAT - IP Address Unique 32 or 128 bit Binary, used to identify a system on a Network or Internet. Network Portion Host Portion CLASSFULL ADDRESSING IP address space
Mixer/Translator VOIP/SIP. Translator. Mixer
Mixer/Translator VOIP/SIP RTP Mixer, translator A mixer combines several media stream into a one new stream (with possible new encoding) reduced bandwidth networks (video or telephone conference) appears
Introduction to IP v6
IP v 1-3: defined and replaced Introduction to IP v6 IP v4 - current version; 20 years old IP v5 - streams protocol IP v6 - replacement for IP v4 During developments it was called IPng - Next Generation
Traffic Mangement in ATM Networks Dollar Day Sale
Traffic Mangement in ATM Networks Dollar Day Sale One Megabit memory, One Megabyte disk, One Mbps link, One MIP processor, 10 cents each... Professor of Computer and Information Sciences Columbus, OH 43210-1277
