class 1 welcome to CS265! BIG DATA SYSTEMS prof. Stratos Idreos
|
|
|
- Brittney Lester
- 10 years ago
- Views:
Transcription
1 class 1 welcome to CS265 BIG DATA SYSTEMS prof.
2 plan for today big data + systems class structure + logistics who is who project ideas 2
3 data vs knowledge 3
4 big data 4
5 daily data 2.5 exabytes years 2012 [IBMbigdata] Every two days we create as much data as much we did from dawn of humanity to 2003 [Eric Schmidt, Google] 5
6 big data V s (it is not about size only) volume velocity variety veracity 6
7 there are good chances we already have the data for the next big breakthroughs in say biology, medicine, etc. but we simply cannot extract the knowledge 7
8 what is a db? today tomorrow 8
9 soon everyone will need to be a data scientist I should have used a column-store SELECT max(toys) FROM store WHERE mam=won t yell 9
10 big data systems big data data systems are in the middle of all this data systems 10
11 relational databases are the foundation of western civilization Bruce Lindsay, IBM ACM SIGMOD Edgar F. Codd Inovations award
12 dbs are everywhere 12
13 5 decades of research IBM, Microsoft, Oracle, Teradata,etc. and a gazillion start-ups today declarative interface ask what you want db system the system decides how to best store and access data why is this good 13
14 SQL queries >1 users concurrently correct + complete answers db system security/ robustness 14
15 Three things are important in the database world: performance, performance, and performance Bruce Lindsay, IBM ACM SIGMOD Edgar F. Codd Inovations award
16 essential steps in using a database system experts/system admins clean schema load tune query user/apps 16
17 data systems architectures data structures + algorithms data some problems: how to store data how to access data how to best answer a complex query (e.g., which data to access first and how) how to answer millions of queries concurrently how to guarantee correctness and availability 17
18 applications algorithms/operators sql database kernel cpu memory data data data disk 18
19 scale up vs scale out 19
20 ~1960s late 1990s-early 2000: new designs start appearing ~2014 dbs dbs dbs dbs dbs dbs dbs" ~2010-now: industry adoption and evolution history/timeline 20
21 data systems design (and research) is kind of an art 21
22 cs265 goals -understanding system design tradeoffs -be able to design and prototype a data system -get experience in research: project: work with instructor in a research problem which will lead to a basis for a publication 22
23 logistics Lectures twice a week: a student presents a research paper and leads a discussion and brainstorming session Office hours every week + more on demand Stratos: Wed 2:30pm-3:30pm, TF office hours: TBA 1 brainstorming session every 3-4 weeks per project Class participation 10% (presentation, feedback) No midterms, quizes, etc. Research project 90% - groups of 1-4 (research results, ideas, presentation, demo, report/paper) 23
24 cs265 topics big data systems: e.g., column-store and hybrid systems, shared nothing architectures, cache-conscious algorithms, hardware/software co-design, main memory systems, adaptive indexing, stream processing, scientific data management, key value stores, nosql, newsql, systems for mobile computing, systems for human computer interaction 24
25 who is who 25
26 prof. other names: Efstratios Ydraios Ευστράτιος Υδραίος, Στράτος Υδραίος Grew up in Greece - fav non-cs hobby: windsurfing Diploma and ME Technical University of Crete, Greece Ph.D. University of Amsterdam, Netherlands Research Intern: IBM Research, Microsoft Research, EPFL Visiting Professor: National University of Singapore, EPFL Switzerland Fav Awards: ACM SIGMOD Jim Gray Dissertation Award ERCIM Cor Baayen Award 26
27 db db explore a db system allows you to answer queries fast a data exploration db system allows you to find fast which queries to ask 27
28 tell me something interesting (fast) insert data 28
29 dbtouch S. Idreos, E. Liarou. dbtouch: Analytics at your fingertips. Conference on Innovative Data Systems Research (CIDR), 2013 design db kernels for touch-based exploration 29
30 the theory of data systems evolution 30
31 plan next class: Stratos will talk about basic column-store design (with help from cs165 students) as of next week: students lead discussion first batch of papers will be online by Friday 31
32 class 1 welcome to CS265 BIG DATA SYSTEMS prof.
adaptive loading adaptive indexing dbtouch 3 Ideas for Big Data Exploration
adaptive loading adaptive indexing dbtouch Ideas for Big Data Exploration Stratos Idreos CWI, INS-, Amsterdam data is everywhere daily data years daily data years Eric Schmidt: Every two days we create
Reference Architecture, Requirements, Gaps, Roles
Reference Architecture, Requirements, Gaps, Roles The contents of this document are an excerpt from the brainstorming document M0014. The purpose is to show how a detailed Big Data Reference Architecture
Overview of Data Management
Overview of Data Management Grant Weddell Cheriton School of Computer Science University of Waterloo CS 348 Introduction to Database Management Winter 2015 CS 348 (Intro to DB Mgmt) Overview of Data Management
Let the data speak to you. Look Who s Peeking at Your Paycheck. Big Data. What is Big Data? The Artemis project: Saving preemies using Big Data
CS535 Big Data W1.A.1 CS535 BIG DATA W1.A.2 Let the data speak to you Medication Adherence Score How likely people are to take their medication, based on: How long people have lived at the same address
Overview of Database Management
Overview of Database Management M. Tamer Özsu David R. Cheriton School of Computer Science University of Waterloo CS 348 Introduction to Database Management Fall 2012 CS 348 Overview of Database Management
CSE 544 Principles of Database Management Systems. Magdalena Balazinska (magda) Fall 2007 Lecture 1 - Class Introduction
CSE 544 Principles of Database Management Systems Magdalena Balazinska (magda) Fall 2007 Lecture 1 - Class Introduction Outline Introductions Class overview What is the point of a db management system
Logistics. Database Management Systems. Chapter 1. Project. Goals for This Course. Any Questions So Far? What This Course Cannot Do.
Database Management Systems Chapter 1 Mirek Riedewald Many slides based on textbook slides by Ramakrishnan and Gehrke 1 Logistics Go to http://www.ccs.neu.edu/~mirek/classes/2010-f- CS3200 for all course-related
CSE 544 Principles of Database Management Systems. Magdalena Balazinska (magda) Spring 2006 Lecture 1 - Class Introduction
CSE 544 Principles of Database Management Systems Magdalena Balazinska (magda) Spring 2006 Lecture 1 - Class Introduction Outline Introductions Class overview What is the point of a database? Course Staff
Databases and BigData
Eduardo Cunha de Almeida [email protected] Outline of the course Introduction Database Systems (E. Almeida) Distributed Hash Tables and P2P (C. Cassagnes) NewSQL (D. Kim and J. Meira) NoSQL (D. Kim)
ICOM 6005 Database Management Systems Design. Dr. Manuel Rodríguez Martínez Electrical and Computer Engineering Department Lecture 2 August 23, 2001
ICOM 6005 Database Management Systems Design Dr. Manuel Rodríguez Martínez Electrical and Computer Engineering Department Lecture 2 August 23, 2001 Readings Read Chapter 1 of text book ICOM 6005 Dr. Manuel
CSE 544 Principles of Database Management Systems. Magdalena Balazinska (magda) Winter 2009 Lecture 1 - Class Introduction
CSE 544 Principles of Database Management Systems Magdalena Balazinska (magda) Winter 2009 Lecture 1 - Class Introduction Outline Introductions Class overview What is the point of a db management system
Big Data Database Revenue and Market Forecast, 2012-2017
Wikibon.com - http://wikibon.com Big Data Database Revenue and Market Forecast, 2012-2017 by David Floyer - 13 February 2013 http://wikibon.com/big-data-database-revenue-and-market-forecast-2012-2017/
Customized Report- Big Data
GINeVRA Digital Research Hub Customized Report- Big Data 1 2014. All Rights Reserved. Agenda Context Challenges and opportunities Solutions Market Case studies Recommendations 2 2014. All Rights Reserved.
CSE 132A. Database Systems Principles
CSE 132A Database Systems Principles Prof. Victor Vianu 1 Data Management An evolving, expanding field: Classical stand-alone databases (Oracle, DB2, SQL Server) Computer science is becoming data-centric:
Microsoft Analytics Platform System. Solution Brief
Microsoft Analytics Platform System Solution Brief Contents 4 Introduction 4 Microsoft Analytics Platform System 5 Enterprise-ready Big Data 7 Next-generation performance at scale 10 Engineered for optimal
Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum
Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum Siva Ravada Senior Director of Development Oracle Spatial and MapViewer 2 Evolving Technology Platforms
SAP HANA SAP s In-Memory Database. Dr. Martin Kittel, SAP HANA Development January 16, 2013
SAP HANA SAP s In-Memory Database Dr. Martin Kittel, SAP HANA Development January 16, 2013 Disclaimer This presentation outlines our general product direction and should not be relied on in making a purchase
Survey of Big Data Architecture and Framework from the Industry
Survey of Big Data Architecture and Framework from the Industry NIST Big Data Public Working Group Sanjay Mishra May13, 2014 3/19/2014 NIST Big Data Public Working Group 1 NIST BD PWG Survey of Big Data
Comprehensive Job Analysis. With MPG s Performance Navigator
Comprehensive Job Analysis With MPG s Performance Navigator Thanks For Your Patience 500 Year Flood Agenda Understand Why Structured Job Analysis Is So Important Learn Where In The Product One Can Do Job
Preview of Oracle Database 12c In-Memory Option. Copyright 2013, Oracle and/or its affiliates. All rights reserved.
Preview of Oracle Database 12c In-Memory Option 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any
Big Data a threat or a chance?
Big Data a threat or a chance? Helwig Hauser University of Bergen, Dept. of Informatics Big Data What is Big Data? well, lots of data, right? we come back to this in a moment. certainly, a buzz-word but
Introduction to Database Systems CS4320/CS5320. CS4320/4321: Introduction to Database Systems. CS4320/4321: Introduction to Database Systems
Introduction to Database Systems CS4320/CS5320 Instructor: Johannes Gehrke http://www.cs.cornell.edu/johannes [email protected] CS4320/CS5320, Fall 2012 1 CS4320/4321: Introduction to Database Systems
Cloud Big Data Architectures
Cloud Big Data Architectures Lynn Langit QCon Sao Paulo, Brazil 2016 About this Workshop Real-world Cloud Scenarios w/aws, Azure and GCP 1. Big Data Solution Types 2. Data Pipelines 3. ETL and Visualization
Data Centric Computing Revisited
Piyush Chaudhary Technical Computing Solutions Data Centric Computing Revisited SPXXL/SCICOMP Summer 2013 Bottom line: It is a time of Powerful Information Data volume is on the rise Dimensions of data
Big Data Technologies. Prof. Dr. Uta Störl Hochschule Darmstadt Fachbereich Informatik Sommersemester 2015
Big Data Technologies Prof. Dr. Uta Störl Hochschule Darmstadt Fachbereich Informatik Sommersemester 2015 Situation: Bigger and Bigger Volumes of Data Big Data Use Cases Log Analytics (Web Logs, Sensor
CS 564: DATABASE MANAGEMENT SYSTEMS
Fall 2013 CS 564: DATABASE MANAGEMENT SYSTEMS 9/4/13 CS 564: Database Management Systems, Jignesh M. Patel 1 Teaching Staff Instructor: Jignesh Patel, [email protected] Office Hours: Mon, Wed 1:30-2:30
Report Data Management in the Cloud: Limitations and Opportunities
Report Data Management in the Cloud: Limitations and Opportunities Article by Daniel J. Abadi [1] Report by Lukas Probst January 4, 2013 In this report I want to summarize Daniel J. Abadi's article [1]
Big Data & Cloud Computing. Faysal Shaarani
Big Data & Cloud Computing Faysal Shaarani Agenda Business Trends in Data What is Big Data? Traditional Computing Vs. Cloud Computing Snowflake Architecture for the Cloud Business Trends in Data Critical
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
Introduction to Database Systems CS4320. Instructor: Christoph Koch [email protected] CS 4320 1
Introduction to Database Systems CS4320 Instructor: Christoph Koch [email protected] CS 4320 1 CS4320/1: Introduction to Database Systems Underlying theme: How do I build a data management system? CS4320
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
In-Memory Data Management for Enterprise Applications
In-Memory Data Management for Enterprise Applications Jens Krueger Senior Researcher and Chair Representative Research Group of Prof. Hasso Plattner Hasso Plattner Institute for Software Engineering University
Introduction to Databases and Data Mining
Introduction to Databases and Data Mining Computer Science 105 Boston University David G. Sullivan, Ph.D. Welcome to CS 105! This course examines how collections of data are organized, stored, and processed.
Performance Tuning and Optimizing SQL Databases 2016
Performance Tuning and Optimizing SQL Databases 2016 http://www.homnick.com [email protected] +1.561.988.0567 Boca Raton, Fl USA About this course This four-day instructor-led course provides students
Data Integration and Exchange. L. Libkin 1 Data Integration and Exchange
Data Integration and Exchange L. Libkin 1 Data Integration and Exchange Traditional approach to databases A single large repository of data. Database administrator in charge of access to data. Users interact
How To Write A Database Program
SQL, NoSQL, and Next Generation DBMSs Shahram Ghandeharizadeh Director of the USC Database Lab Outline A brief history of DBMSs. OSs SQL NoSQL 1960/70 1980+ 2000+ Before Computers Database DBMS/Data Store
OLTP Meets Bigdata, Challenges, Options, and Future Saibabu Devabhaktuni
OLTP Meets Bigdata, Challenges, Options, and Future Saibabu Devabhaktuni Agenda Database trends for the past 10 years Era of Big Data and Cloud Challenges and Options Upcoming database trends Q&A Scope
Introduction. Introduction: Database management system. Introduction: DBS concepts & architecture. Introduction: DBS versus File system
Introduction: management system Introduction s vs. files Basic concepts Brief history of databases Architectures & languages System User / Programmer Application program Software to process queries Software
Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1
Why NoSQL? Your database options in the new non- relational world 2015 IBM Cloudant 1 Table of Contents New types of apps are generating new types of data... 3 A brief history on NoSQL... 3 NoSQL s roots
Big Data: Tools and Technologies in Big Data
Big Data: Tools and Technologies in Big Data Jaskaran Singh Student Lovely Professional University, Punjab Varun Singla Assistant Professor Lovely Professional University, Punjab ABSTRACT Big data can
Introduction: Database management system
Introduction Databases vs. files Basic concepts Brief history of databases Architectures & languages Introduction: Database management system User / Programmer Database System Application program Software
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing
Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料
Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料 美 國 13 歲 學 生 用 Big Data 找 出 霸 淩 熱 點 Puri 架 設 網 站 Bullyvention, 藉 由 分 析 Twitter 上 找 出 提 到 跟 霸 凌 相 關 的 詞, 搭 配 地 理 位 置
Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist, Graph Computing. October 29th, 2015
E6893 Big Data Analytics Lecture 8: Spark Streams and Graph Computing (I) Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist, Graph Computing
Hurtownie Danych i Business Intelligence: Big Data
Hurtownie Danych i Business Intelligence: Big Data Robert Wrembel Politechnika Poznańska Instytut Informatyki [email protected] www.cs.put.poznan.pl/rwrembel Outline Introduction to Big Data
Complexity and Scalability in Semantic Graph Analysis Semantic Days 2013
Complexity and Scalability in Semantic Graph Analysis Semantic Days 2013 James Maltby, Ph.D 1 Outline of Presentation Semantic Graph Analytics Database Architectures In-memory Semantic Database Formulation
Scope of this Course. Database System Environment. CSC 440 Database Management Systems Section 1
CSC 440 Database Management Systems Section 1 Acknowledgment: Slides borrowed from Dr. Rada Chirkova. This presentation uses slides and lecture notes available from http://www-db.stanford.edu/~ullman/dscb.html#slides
EECS 678: Introduction to Operating Systems
EECS 678: Introduction to Operating Systems 1 About Me Heechul Yun, Assistant Prof., Dept. of EECS Office: 3040 Eaton, 236 Nichols Email: [email protected] Research Areas Operating systems and architecture
DATABASE REPLICATION A TALE OF RESEARCH ACROSS COMMUNITIES
DATABASE REPLICATION A TALE OF RESEARCH ACROSS COMMUNITIES Bettina Kemme Dept. of Computer Science McGill University Montreal, Canada Gustavo Alonso Systems Group Dept. of Computer Science ETH Zurich,
NoSQL Systems for Big Data Management
NoSQL Systems for Big Data Management Venkat N Gudivada East Carolina University Greenville, North Carolina USA Venkat Gudivada NoSQL Systems for Big Data Management 1/28 Outline 1 An Overview of NoSQL
CS6905 - Programming OLAP
CS6905 - Programming OLAP DANIEL LEMIRE Research Officer, NRC Adjunct Professor, UNB CS6905 - Programming OLAP DANIEL LEMIRE Research Officer, NRC Adjunct Professor, UNB These slides will be made available
Main Memory Data Warehouses
Main Memory Data Warehouses Robert Wrembel Poznan University of Technology Institute of Computing Science [email protected] www.cs.put.poznan.pl/rwrembel Lecture outline Teradata Data Warehouse
Architecture and Implementation of Database Systems
Architecture and Implementation of Database Systems Winter 2010/11 Wilhelm-Schickard-Institut für Informatik Universität Tübingen 1.1 Chapter 1 Preliminaries and Architecture and Implementation of Database
NextGen Infrastructure for Big DATA Analytics.
NextGen Infrastructure for Big DATA Analytics. So What is Big Data? Data that exceeds the processing capacity of conven4onal database systems. The data is too big, moves too fast, or doesn t fit the structures
Improving Data Processing Speed in Big Data Analytics Using. HDFS Method
Improving Data Processing Speed in Big Data Analytics Using HDFS Method M.R.Sundarakumar Assistant Professor, Department Of Computer Science and Engineering, R.V College of Engineering, Bangalore, India
Cost-Effective Business Intelligence with Red Hat and Open Source
Cost-Effective Business Intelligence with Red Hat and Open Source Sherman Wood Director, Business Intelligence, Jaspersoft September 3, 2009 1 Agenda Introductions Quick survey What is BI?: reporting,
CSE 544 Principles of Database Management Systems. Magdalena Balazinska Fall 2007 Lecture 5 - DBMS Architecture
CSE 544 Principles of Database Management Systems Magdalena Balazinska Fall 2007 Lecture 5 - DBMS Architecture References Anatomy of a database system. J. Hellerstein and M. Stonebraker. In Red Book (4th
Towards Fast SQL Query Processing in DB2 BLU Using GPUs A Technology Demonstration. Sina Meraji [email protected]
Towards Fast SQL Query Processing in DB2 BLU Using GPUs A Technology Demonstration Sina Meraji [email protected] Please Note IBM s statements regarding its plans, directions, and intent are subject to
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# So What is Data Science?" Doing Data Science" Data Preparation" Roles" This Lecture" What is Data Science?" Data Science aims to derive knowledge!
CS2Bh: Current Technologies. Introduction to XML and Relational Databases. Introduction to Databases. Why databases? Why not use XML?
CS2Bh: Current Technologies Introduction to XML and Relational Databases Spring 2005 Introduction to Databases CS2 Spring 2005 (LN5) 1 Why databases? Why not use XML? What is missing from XML: Consistency
D61830GC30. MySQL for Developers. Summary. Introduction. Prerequisites. At Course completion After completing this course, students will be able to:
D61830GC30 for Developers Summary Duration Vendor Audience 5 Days Oracle Database Administrators, Developers, Web Administrators Level Technology Professional Oracle 5.6 Delivery Method Instructor-led
Big Data Management and Analytics
Big Data Management and Analytics Lecture Notes Winter semester 2015 / 2016 Ludwig-Maximilians-University Munich Prof. Dr. Matthias Renz 2015 Based on lectures by Donald Kossmann (ETH Zürich), as well
IN-MEMORY DATABASE SYSTEMS. Prof. Dr. Uta Störl Big Data Technologies: In-Memory DBMS - SoSe 2015 1
IN-MEMORY DATABASE SYSTEMS Prof. Dr. Uta Störl Big Data Technologies: In-Memory DBMS - SoSe 2015 1 Analytical Processing Today Separation of OLTP and OLAP Motivation Online Transaction Processing (OLTP)
News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren
News and trends in Data Warehouse Automation, Big Data and BI Johan Hendrickx & Dirk Vermeiren Extreme Agility from Source to Analysis DWH Appliances & DWH Automation Typical Architecture 3 What Business
E6895 Advanced Big Data Analytics Lecture 14:! NVIDIA GPU Examples and GPU on ios devices
E6895 Advanced Big Data Analytics Lecture 14: NVIDIA GPU Examples and GPU on ios devices Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist,
Application of Predictive Analytics for Better Alignment of Business and IT
Application of Predictive Analytics for Better Alignment of Business and IT Boris Zibitsker, PhD [email protected] July 25, 2014 Big Data Summit - Riga, Latvia About the Presenter Boris Zibitsker
Data-intensive HPC: opportunities and challenges. Patrick Valduriez
Data-intensive HPC: opportunities and challenges Patrick Valduriez Big Data Landscape Multi-$billion market! Big data = Hadoop = MapReduce? No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard,
Big Data Analytics. Chances and Challenges. Volker Markl
Volker Markl Professor and Chair Database Systems and Information Management (DIMA), Technische Universität Berlin www.dima.tu-berlin.de Big Data Analytics Chances and Challenges Volker Markl DIMA BDOD
Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect
Matteo Migliavacca (mm53@kent) School of Computing Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect Simple past - Traditional
In-memory database 1
In-memory database 1 2 Write a review to receive any FREE ebook from our Catalogue - $99 Value! If you recently bought this book we would love to hear from you! Benefit from receiving a free ebook from
THE DEVELOPER GUIDE TO BUILDING STREAMING DATA APPLICATIONS
THE DEVELOPER GUIDE TO BUILDING STREAMING DATA APPLICATIONS WHITE PAPER Successfully writing Fast Data applications to manage data generated from mobile, smart devices and social interactions, and the
Northeastern University Online College of Professional Studies Course Syllabus
Northeastern University Online College of Professional Studies Course Syllabus Instructor Name: Stephen Kafka E-mail: [email protected] Phone Number: 781-461-3581 (W) 508-944-8180 (C) ITC3020 Leveraging
DATA BASE. Copyright @ www.bcanotes.com
DATA BASE This Is About Managing and structuring the collections of data held on computers. A database consists of an organized collection of data for one or more uses, typically in digital form. Database
How to make BIG DATA work for you. Faster results with Microsoft SQL Server PDW
How to make BIG DATA work for you. Faster results with Microsoft SQL Server PDW Roger Breu PDW Solution Specialist Microsoft Western Europe Marcus Gullberg PDW Partner Account Manager Microsoft Sweden
Cleveland State University
Cleveland State University CIS 612 Modern Database Processing & Big Data (3-0-3) Fall 2015 Section 50 Class Nbr. 5378. Tues, Thu 4:30 5:45 PM Prerequisites: CIS 505 and CIS 530. CIS 611 Preferred. Instructor:
CISC 432/CMPE 432/CISC 832 Advanced Database Systems
CISC 432/CMPE 432/CISC 832 Advanced Database Systems Course Info Instructor: Patrick Martin Goodwin Hall 630 613 533 6063 [email protected] Office Hours: Wednesday 11:00 1:00 or by appointment Schedule:
Topics in basic DBMS course
Topics in basic DBMS course Database design Transaction processing Relational query languages (SQL), calculus, and algebra DBMS APIs Database tuning (physical database design) Basic query processing (ch
Database Design and Programming
Database Design and Programming Peter Schneider-Kamp DM 505, Spring 2012, 3 rd Quarter 1 Course Organisation Literature Database Systems: The Complete Book Evaluation Project and 1-day take-home exam,
Harnessing the Power of the Microsoft Cloud for Deep Data Analytics
1 Harnessing the Power of the Microsoft Cloud for Deep Data Analytics Today's Focus How you can operate your business more efficiently and effectively by tapping into Cloud based data analytics solutions
Bussiness Intelligence and Data Warehouse. Tomas Bartos CIS 764, Kansas State University
Bussiness Intelligence and Data Warehouse Schedule Bussiness Intelligence (BI) BI tools Oracle vs. Microsoft Data warehouse History Tools Oracle vs. Others Discussion Business Intelligence (BI) Products
INTRODUCTION DATABASE MANAGEMENT SYSTEMS
Based on set of slides provided by Silberschatz, Korth, Sudarshan, 2010. Content modified by Sarajane Marques Peres, Ph.D. INTRODUCTION DATABASE MANAGEMENT SYSTEMS History of Database Systems 1950s and
6.830 Lecture 3 9.16.2015 PS1 Due Next Time (Tuesday!) Lab 1 Out today start early! Relational Model Continued, and Schema Design and Normalization
6.830 Lecture 3 9.16.2015 PS1 Due Next Time (Tuesday!) Lab 1 Out today start early! Relational Model Continued, and Schema Design and Normalization Animals(name,age,species,cageno,keptby,feedtime) Keeper(id,name)
<Insert Picture Here> Extending Hyperion BI with the Oracle BI Server
Extending Hyperion BI with the Oracle BI Server Mark Ostroff Sr. BI Solutions Consultant Agenda Hyperion BI versus Hyperion BI with OBI Server Benefits of using Hyperion BI with the
SAP Business Objects Business Intelligence platform Document Version: 4.1 Support Package 7 2015-11-24. Data Federation Administration Tool Guide
SAP Business Objects Business Intelligence platform Document Version: 4.1 Support Package 7 2015-11-24 Data Federation Administration Tool Guide Content 1 What's new in the.... 5 2 Introduction to administration
How to Build a High-Performance Data Warehouse By David J. DeWitt, Ph.D.; Samuel Madden, Ph.D.; and Michael Stonebraker, Ph.D.
1 How To Build a High-Performance Data Warehouse How to Build a High-Performance Data Warehouse By David J. DeWitt, Ph.D.; Samuel Madden, Ph.D.; and Michael Stonebraker, Ph.D. Over the last decade, the
CS 525 Advanced Database Organization - Spring 2013 Mon + Wed 3:15-4:30 PM, Room: Wishnick Hall 113
CS 525 Advanced Database Organization - Spring 2013 Mon + Wed 3:15-4:30 PM, Room: Wishnick Hall 113 Instructor: Boris Glavic, Stuart Building 226 C, Phone: 312 567 5205, Email: [email protected] Office Hours:
A Novel Cloud Based Elastic Framework for Big Data Preprocessing
School of Systems Engineering A Novel Cloud Based Elastic Framework for Big Data Preprocessing Omer Dawelbeit and Rachel McCrindle October 21, 2014 University of Reading 2008 www.reading.ac.uk Overview
Data Warehousing. Jens Teubner, TU Dortmund [email protected]. Winter 2015/16. Jens Teubner Data Warehousing Winter 2015/16 1
Jens Teubner Data Warehousing Winter 2015/16 1 Data Warehousing Jens Teubner, TU Dortmund [email protected] Winter 2015/16 Jens Teubner Data Warehousing Winter 2015/16 2 A Few Words About
Benchmarking Cassandra on Violin
Technical White Paper Report Technical Report Benchmarking Cassandra on Violin Accelerating Cassandra Performance and Reducing Read Latency With Violin Memory Flash-based Storage Arrays Version 1.0 Abstract
What s next for the Berkeley Data Analytics Stack?
What s next for the Berkeley Data Analytics Stack? Michael Franklin June 30th 2014 Spark Summit San Francisco UC BERKELEY AMPLab: Collaborative Big Data Research 60+ Students, Postdocs, Faculty and Staff
Open Cloud Computing A Case for HPC CRO NGI Day Zagreb, Oct, 26th
Open Cloud Computing A Case for HPC CRO NGI Day Zagreb, Oct, 26th Philippe Trautmann HPC Business Development Manager Global Education @ Research Sun Microsystems, Inc. 1 The Cloud HPC and Cloud: any needs?
