NoSQL Systems for Big Data Management
|
|
|
- Georgia Campbell
- 9 years ago
- Views:
Transcription
1 NoSQL Systems for Big Data Management Venkat N Gudivada East Carolina University Greenville, North Carolina USA Venkat Gudivada NoSQL Systems for Big Data Management 1/28
2 Outline 1 An Overview of NoSQL Systems 2 Special Needs of Big Data Applications 3 Technical Enablers of NoSQL Systems 4 Data Models 5 Conclusions Venkat Gudivada NoSQL Systems for Big Data Management 2/28
3 RDBMS vs NoSQL RDBMS market revenue in 2011 was $26 billion IDC Report RDBMS revenues predicted to reach $41 billion by IDC Report Object-oriented DBMS (OODBMS) of 1980s Native XML databases of 1990s Special requirements of Web 2.0, Big Data, IoT, and mobile applications NoSQL products will generate $14 billion in revenues over the period Market Research Media Worldwide NoSQL market is expected to reach $3.4 billion by 2018 Market Research Media Venkat Gudivada NoSQL Systems for Big Data Management 3/28
4 Database Requirements for Some Applications Flexible data models that evolve over time Near real-time query response times Concurrent users in the order of millions Terabyte scale data volumes spread across multiple data centers to improve locality High availability and elastic scaling without system downtime Simple data model but fast inserts and lookups are critical for some applications In others, updates are almost non-existent and are implemented as a delete followed by an insert RDBMS for such applications the proverbial square peg in a round hole Venkat Gudivada NoSQL Systems for Big Data Management 4/28
5 Explosive Growth of NoSQL Systems DB-Engines NoSQL Databases Breakthrough Analysis Data Blogger EMC Big Data IBM Big Data & Analytics Hub Forrester Big Data Blogs Top 8 Trends in Big Data for Venkat Gudivada NoSQL Systems for Big Data Management 5/28
6 NoSQL Systems Performance at scale Do not provide all of the RDBMS features Principally focus on providing near real-time reads and writes for applications with millions of concurrent users Terminology NoSQL, NewSQL, Not only SQL, and non-rdbms Renaissance in data management - OO DBMS and Native XML Consistency, availability, and partition tolerance (CAP) Impossible for any distributed system to achieve all these three features simultaneously View CAPs as spanning a spectrum rather than as binary values Venkat Gudivada NoSQL Systems for Big Data Management 6/28
7 SQL, NoSQL and NewSQL Venkat Gudivada NoSQL Systems for Big Data Management 7/28
8 SQL, NoSQL and NewSQL Venkat Gudivada NoSQL Systems for Big Data Management 8/28
9 NoSQL Systems Bigtable, Hypertable, HBase, MongoDB, and Redis strive for consistency and partition tolerance DynamoDB, CouchDB, Cassandra, SimpleDB, Voldemort, and Riak emphasize availability and partition tolerance RDBMS provide consistency and availability, and not partition tolerance Some RDBMS vendors are introducing new features into their products to mitigate the potential risk posed by NoSQL Rivalry between the RDBMS and NoSQL vendors Exaggeration of features as well as confusion in the current DBMS product space Venkat Gudivada NoSQL Systems for Big Data Management 9/28
10 Web 2.0 Applications Web 2.0 new generation of systems that allow users to interact and collaborate with each other and contribute content Social media applications, blogs, wikis, folksonomies, image and video sharing sites, and crowdsourcing MySpace, Twitter, Facebook, YouTube, and Flickr Critically depend on integrated and real-time data from diverse sources Preponderance of insert and retrieval operations on a very large scale Fraud and anomaly detection, dynamic pricing, real-time order status through supply chain visibility, superior customer service, real-time predictive analytics, user experience personalization, and Web server access log analysis Venkat Gudivada NoSQL Systems for Big Data Management 10/28
11 Big Data Data that is too big and complex to capture, store, process, analyze, and interpret using the state-of-the-art tools and methods Five Vs: volume, velocity, variety, veracity, and value Data volume is in the order of terabytes (2 40 ) or even petabytes (2 50 ), and is rapidly heading towards exabytes (2 60 ) Stream data processing Data heterogeneity Secure data provenance Predictive models to answer what-if queries, discovering counterintuitive insights and actionable intelligence Venkat Gudivada NoSQL Systems for Big Data Management 11/28
12 Big Data Large Hadron Collider experiments 50 million sensors capturing data about nearly 600 million collisions per second 2013 Nobel Prize in Chemistry measuring and visualizing the behavior of 50,000 or more atoms in a reaction over the course of a fraction of a millisecond Square Kilometer Array telescope goal is to answer fundamental questions about the origin and evolution of the Universe Venkat Gudivada NoSQL Systems for Big Data Management 12/28
13 Mobile Computing and Location-based Services Location-based services have become an important channel for marketing, sales, and brand development Location-based services leverage users geographic location information and context in providing relevant and timely services to users Mobile devices impose additional requirements such as disconnected operation and delayed synchronization on location-based services Applications include locating a nearby business or service (e.g., retail store, ATM, restaurant), receiving alerts about traffic jams and severe weather, mobile advertising, and recommending social events in a city Facebook Places, Foursquare, Gowalla, and Where Venkat Gudivada NoSQL Systems for Big Data Management 13/28
14 Functional Inadequacy of RDBMS Accommodate increased workload and data volume by using faster CPUs, more memory, and bigger and faster disks vertical scaling Oracle Real Application Clusters (RAC) Instead, horizontal scaling is needed for economic reasons Sparse data and partial record updates are the norm in some Big Data applications Complete database schema does not exist up front and evolves over ACID-compliant transactions are an overkill as they require only relaxed consistency Multiple query methods ranging from simple REST API to complex and ad hoc queries are required Horizontal scaling using processors built from commodity hardware Venkat Gudivada NoSQL Systems for Big Data Management 14/28
15 Functional Inadequacy of RDBMS Interactive processing of ad hoc queries mandates massive parallel computation using schemes such as MapReduce Non-overlapping data partitioning (aka sharding) is necessary to address the data volumes Auto-sharding is highly desirable Simple data replication is mandatory to ensure high availability Built-in support for versioning and compression is needed Venkat Gudivada NoSQL Systems for Big Data Management 15/28
16 NoSQL Systems NoSQL systems significantly vary in functionality from each other Riak is highly scalable and available MongoDB s defining characteristic is managing deeply nested structured documents and computing aggregates on the documents Neo4j excels at managing data that is rich in relationships Redis is known for its data structures and elegant query mechanisms HBase offers extreme scalability, reliability, and flexibility, however, these features come with considerable complexity Venkat Gudivada NoSQL Systems for Big Data Management 16/28
17 NoSQL Systems Use distributed computing architectures Feature an assortment of data models query languages and data consistency models Each class of systems targets a category of applications System architectures are optimized for achieving the primary goal of providing performance at scale Command line queries moving towards declarative query languages Venkat Gudivada NoSQL Systems for Big Data Management 17/28
18 A NoSQL Cluster Venkat Gudivada NoSQL Systems for Big Data Management 18/28
19 Shared-nothing Architecture Venkat Gudivada NoSQL Systems for Big Data Management 19/28
20 NoSQL Architectures Elastic scalability through Database as a Service (DBaaS) Amazon s Simple Storage Service (S3) and DynamoDB are two examples of DBaaS Sharding and replication are orthogonal concepts contribute to high availability ACID vs. BASE Basic availability support for disconnected client operation and delayed synchronization, and tolerance to temporary inconsistency and its implications Data consistency spanning a spectrum from strict to eventual Soft state refers to state change without input, which is required for eventual consistency Venkat Gudivada NoSQL Systems for Big Data Management 20/28
21 NoSQL Architectures Applications can benefit from choosing a right level of data consistency Choose a level closer to strong consistency for writes but a weaker consistency for reads write operations will take longer to complete without contributing to read operation latency Type of architecture, data partitioning and replication methods determine the degree of difficulty involved in implementing data consistency models Some NoSQL systems provide options for clients to choose a desired data consistency level tunable consistency Venkat Gudivada NoSQL Systems for Big Data Management 21/28
22 NoSQL Architectures Cassandra provides options for choosing consistency levels for reads and writes separately Write consistency level specifies on how many replicas the write must succeed before returning an acknowledgment to the client application that the write is successful Read consistency specifies how many replicas must respond before a result is returned to the client application Venkat Gudivada NoSQL Systems for Big Data Management 22/28
23 Ad hoc and Compute-intensive Queries Venkat Gudivada NoSQL Systems for Big Data Management 23/28
24 Data Models Key-value optimized for fast inserts and retrievals; updates are almost non-existent and are implemented as a delete followed by an insert Column-family optimized for storing extremely large and sparse data with efficient support for primary key-based retrieval and partial record updates Document-oriented NoSQL systems JSON-style document data model Graph model for relationships-rich data RDF triples XML data models Venkat Gudivada NoSQL Systems for Big Data Management 24/28
25 Conclusions Data consistency, high availability, and partition tolerance are the three primary concerns that determine which data management system is suitable for a given application Scalability in NoSQL systems comes at the cost of transactional guarantees, application maintained relationships, and simpler data models Trade-off between scaling and ad hoc queries massive scaling entails simple queries; ad hoc queries typically require programming and parallel execution Venkat Gudivada NoSQL Systems for Big Data Management 25/28
26 Conclusions Many NoSQL system hide the complexity of sharding from the application developer by providing built-in algorithms for auto-sharding; however, there is an implicit assumption that shards are independent and database transactions are confined to a single shard If a transaction spans multiple shards, some systems simply reject such transactions If multi-shard transactions are prevalent, suitability of NoSQL systems needs careful analysis It is quite difficult to determine which system is the right match This problem is further exacerbated by rapidly evolving features Venkat Gudivada NoSQL Systems for Big Data Management 26/28
27 Conclusions Type of data to be managed structured, semi-structured, unstructured, or a mix of these types? Type of query language desired - declarative, procedural, or both? Are ad hoc queries so prevalent that a native MapReduce framework is required? Are the users geographically distributed to warrant data partitioning? Is an algorithmic approach needed for data partitioning with automated redistribution to avoid hotspots or performance bottlenecks? Are the read or write throughput levels so high for a conventional RDBMS to handle? Venkat Gudivada NoSQL Systems for Big Data Management 27/28
28 Conclusions What is the minimal level of consistency essential for reads and writes? Is automated failover with no service interruption essential? Does the application load fluctuate unpredictably to provision resources dynamically without service interruption? What type and level of user authentication and authorization are required? What type of replication is needed? Is versioning of data required? Is cloud hosting a required deployment option? Venkat Gudivada NoSQL Systems for Big Data Management 28/28
Structured Data Storage
Structured Data Storage Xgen Congress Short Course 2010 Adam Kraut BioTeam Inc. Independent Consulting Shop: Vendor/technology agnostic Staffed by: Scientists forced to learn High Performance IT to conduct
NoSQL Databases. Nikos Parlavantzas
!!!! NoSQL Databases Nikos Parlavantzas Lecture overview 2 Objective! Present the main concepts necessary for understanding NoSQL databases! Provide an overview of current NoSQL technologies Outline 3!
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
So What s the Big Deal?
So What s the Big Deal? Presentation Agenda Introduction What is Big Data? So What is the Big Deal? Big Data Technologies Identifying Big Data Opportunities Conducting a Big Data Proof of Concept Big Data
Lecture Data Warehouse Systems
Lecture Data Warehouse Systems Eva Zangerle SS 2013 PART C: Novel Approaches in DW NoSQL and MapReduce Stonebraker on Data Warehouses Star and snowflake schemas are a good idea in the DW world C-Stores
Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1
Why NoSQL? Your database options in the new non- relational world 2015 IBM Cloudant 1 Table of Contents New types of apps are generating new types of data... 3 A brief history on NoSQL... 3 NoSQL s roots
Analytics March 2015 White paper. Why NoSQL? Your database options in the new non-relational world
Analytics March 2015 White paper Why NoSQL? Your database options in the new non-relational world 2 Why NoSQL? Contents 2 New types of apps are generating new types of data 2 A brief history of NoSQL 3
SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford
SQL VS. NO-SQL Adapted Slides from Dr. Jennifer Widom from Stanford 55 Traditional Databases SQL = Traditional relational DBMS Hugely popular among data analysts Widely adopted for transaction systems
NoSQL Data Base Basics
NoSQL Data Base Basics Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu HDFS
extensible record stores document stores key-value stores Rick Cattel s clustering from Scalable SQL and NoSQL Data Stores SIGMOD Record, 2010
System/ Scale to Primary Secondary Joins/ Integrity Language/ Data Year Paper 1000s Index Indexes Transactions Analytics Constraints Views Algebra model my label 1971 RDBMS O tables sql-like 2003 memcached
Evaluating NoSQL for Enterprise Applications. Dirk Bartels VP Strategy & Marketing
Evaluating NoSQL for Enterprise Applications Dirk Bartels VP Strategy & Marketing Agenda The Real Time Enterprise The Data Gold Rush Managing The Data Tsunami Analytics and Data Case Studies Where to go
Making Sense ofnosql A GUIDE FOR MANAGERS AND THE REST OF US DAN MCCREARY MANNING ANN KELLY. Shelter Island
Making Sense ofnosql A GUIDE FOR MANAGERS AND THE REST OF US DAN MCCREARY ANN KELLY II MANNING Shelter Island contents foreword preface xvii xix acknowledgments xxi about this book xxii Part 1 Introduction
Applications for Big Data Analytics
Smarter Healthcare Applications for Big Data Analytics Multi-channel sales Finance Log Analysis Homeland Security Traffic Control Telecom Search Quality Manufacturing Trading Analytics Fraud and Risk Retail:
Big Systems, Big Data
Big Systems, Big Data When considering Big Distributed Systems, it can be noted that a major concern is dealing with data, and in particular, Big Data Have general data issues (such as latency, availability,
NoSQL Databases. Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015
NoSQL Databases Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015 Database Landscape Source: H. Lim, Y. Han, and S. Babu, How to Fit when No One Size Fits., in CIDR,
The NoSQL Ecosystem, Relaxed Consistency, and Snoop Dogg. Adam Marcus MIT CSAIL [email protected] / @marcua
The NoSQL Ecosystem, Relaxed Consistency, and Snoop Dogg Adam Marcus MIT CSAIL [email protected] / @marcua About Me Social Computing + Database Systems Easily Distracted: Wrote The NoSQL Ecosystem in
Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料
Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料 美 國 13 歲 學 生 用 Big Data 找 出 霸 淩 熱 點 Puri 架 設 網 站 Bullyvention, 藉 由 分 析 Twitter 上 找 出 提 到 跟 霸 凌 相 關 的 詞, 搭 配 地 理 位 置
Composite Data Virtualization Composite Data Virtualization And NOSQL Data Stores
Composite Data Virtualization Composite Data Virtualization And NOSQL Data Stores Composite Software October 2010 TABLE OF CONTENTS INTRODUCTION... 3 BUSINESS AND IT DRIVERS... 4 NOSQL DATA STORES LANDSCAPE...
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
Introduction to NOSQL
Introduction to NOSQL Université Paris-Est Marne la Vallée, LIGM UMR CNRS 8049, France January 31, 2014 Motivations NOSQL stands for Not Only SQL Motivations Exponential growth of data set size (161Eo
Affordable, Scalable, Reliable OLTP in a Cloud and Big Data World: IBM DB2 purescale
WHITE PAPER Affordable, Scalable, Reliable OLTP in a Cloud and Big Data World: IBM DB2 purescale Sponsored by: IBM Carl W. Olofson December 2014 IN THIS WHITE PAPER This white paper discusses the concept
MongoDB in the NoSQL and SQL world. Horst Rechner [email protected] Berlin, 2012-05-15
MongoDB in the NoSQL and SQL world. Horst Rechner [email protected] Berlin, 2012-05-15 1 MongoDB in the NoSQL and SQL world. NoSQL What? Why? - How? Say goodbye to ACID, hello BASE You
How To Write A Database Program
SQL, NoSQL, and Next Generation DBMSs Shahram Ghandeharizadeh Director of the USC Database Lab Outline A brief history of DBMSs. OSs SQL NoSQL 1960/70 1980+ 2000+ Before Computers Database DBMS/Data Store
Can the Elephants Handle the NoSQL Onslaught?
Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented
BASHO DATA PLATFORM SIMPLIFIES BIG DATA, IOT, AND HYBRID CLOUD APPS
WHITEPAPER BASHO DATA PLATFORM BASHO DATA PLATFORM SIMPLIFIES BIG DATA, IOT, AND HYBRID CLOUD APPS INTRODUCTION Big Data applications and the Internet of Things (IoT) are changing and often improving our
GigaSpaces Real-Time Analytics for Big Data
GigaSpaces Real-Time Analytics for Big Data GigaSpaces makes it easy to build and deploy large-scale real-time analytics systems Rapidly increasing use of large-scale and location-aware social media and
INTRODUCTION TO CASSANDRA
INTRODUCTION TO CASSANDRA This ebook provides a high level overview of Cassandra and describes some of its key strengths and applications. WHAT IS CASSANDRA? Apache Cassandra is a high performance, open
Cloud Scale Distributed Data Storage. Jürmo Mehine
Cloud Scale Distributed Data Storage Jürmo Mehine 2014 Outline Background Relational model Database scaling Keys, values and aggregates The NoSQL landscape Non-relational data models Key-value Document-oriented
Big Data Buzzwords From A to Z. By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012
Big Data Buzzwords From A to Z By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012 Big Data Buzzwords Big data is one of the, well, biggest trends in IT today, and it has spawned a whole new generation
Comparison of the Frontier Distributed Database Caching System with NoSQL Databases
Comparison of the Frontier Distributed Database Caching System with NoSQL Databases Dave Dykstra [email protected] Fermilab is operated by the Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359
NoSQL systems: introduction and data models. Riccardo Torlone Università Roma Tre
NoSQL systems: introduction and data models Riccardo Torlone Università Roma Tre Why NoSQL? In the last thirty years relational databases have been the default choice for serious data storage. An architect
Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB
Overview of Databases On MacOS Karl Kuehn Automation Engineer RethinkDB Session Goals Introduce Database concepts Show example players Not Goals: Cover non-macos systems (Oracle) Teach you SQL Answer what
NoSQL Database Options
NoSQL Database Options Introduction For this report, I chose to look at MongoDB, Cassandra, and Riak. I chose MongoDB because it is quite commonly used in the industry. I chose Cassandra because it has
Introduction to Apache Cassandra
Introduction to Apache Cassandra White Paper BY DATASTAX CORPORATION JULY 2013 1 Table of Contents Abstract 3 Introduction 3 Built by Necessity 3 The Architecture of Cassandra 4 Distributing and Replicating
Benchmarking and Analysis of NoSQL Technologies
Benchmarking and Analysis of NoSQL Technologies Suman Kashyap 1, Shruti Zamwar 2, Tanvi Bhavsar 3, Snigdha Singh 4 1,2,3,4 Cummins College of Engineering for Women, Karvenagar, Pune 411052 Abstract The
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect
The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect IT Insight podcast This podcast belongs to the IT Insight series You can subscribe to the podcast through
Big Data Solutions. Portal Development with MongoDB and Liferay. Solutions
Big Data Solutions Portal Development with MongoDB and Liferay Solutions Introduction Companies have made huge investments in Business Intelligence and analytics to better understand their clients and
BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research &
BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research & Innovation 04-08-2011 to the EC 8 th February, Luxembourg Your Atos business Research technologists. and Innovation
Big Data Technologies Compared June 2014
Big Data Technologies Compared June 2014 Agenda What is Big Data Big Data Technology Comparison Summary Other Big Data Technologies Questions 2 What is Big Data by Example The SKA Telescope is a new development
CitusDB Architecture for Real-Time Big Data
CitusDB Architecture for Real-Time Big Data CitusDB Highlights Empowers real-time Big Data using PostgreSQL Scales out PostgreSQL to support up to hundreds of terabytes of data Fast parallel processing
NoSQL. Thomas Neumann 1 / 22
NoSQL Thomas Neumann 1 / 22 What are NoSQL databases? hard to say more a theme than a well defined thing Usually some or all of the following: no SQL interface no relational model / no schema no joins,
Slave. Master. Research Scholar, Bharathiar University
Volume 3, Issue 7, July 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper online at: www.ijarcsse.com Study on Basically, and Eventually
wow CPSC350 relational schemas table normalization practical use of relational algebraic operators tuple relational calculus and their expression in a declarative query language relational schemas CPSC350
Offload Enterprise Data Warehouse (EDW) to Big Data Lake. Ample White Paper
Offload Enterprise Data Warehouse (EDW) to Big Data Lake Oracle Exadata, Teradata, Netezza and SQL Server Ample White Paper EDW (Enterprise Data Warehouse) Offloads The EDW (Enterprise Data Warehouse)
Elastic Application Platform for Market Data Real-Time Analytics. for E-Commerce
Elastic Application Platform for Market Data Real-Time Analytics Can you deliver real-time pricing, on high-speed market data, for real-time critical for E-Commerce decisions? Market Data Analytics applications
How To Use Big Data For Telco (For A Telco)
ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA David Vanderfeesten, Bell Labs Belgium ANNO 2012 YOUR DATA IS MONEY BIG MONEY! Your click stream, your activity stream, your electricity consumption, your call
Integrating Big Data into the Computing Curricula
Integrating Big Data into the Computing Curricula Yasin Silva, Suzanne Dietrich, Jason Reed, Lisa Tsosie Arizona State University http://www.public.asu.edu/~ynsilva/ibigdata/ 1 Overview Motivation Big
NoSQL for SQL Professionals William McKnight
NoSQL for SQL Professionals William McKnight Session Code BD03 About your Speaker, William McKnight President, McKnight Consulting Group Frequent keynote speaker and trainer internationally Consulted to
You should have a working knowledge of the Microsoft Windows platform. A basic knowledge of programming is helpful but not required.
What is this course about? This course is an overview of Big Data tools and technologies. It establishes a strong working knowledge of the concepts, techniques, and products associated with Big Data. Attendees
A survey of big data architectures for handling massive data
CSIT 6910 Independent Project A survey of big data architectures for handling massive data Jordy Domingos - [email protected] Supervisor : Dr David Rossiter Content Table 1 - Introduction a - Context
An Approach to Implement Map Reduce with NoSQL Databases
www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 13635-13639 An Approach to Implement Map Reduce with NoSQL Databases Ashutosh
How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time
SCALEOUT SOFTWARE How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time by Dr. William Bain and Dr. Mikhail Sobolev, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T wenty-first
Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: [email protected] Website: www.qburst.com
Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...
BIG DATA-AS-A-SERVICE
White Paper BIG DATA-AS-A-SERVICE What Big Data is about What service providers can do with Big Data What EMC can do to help EMC Solutions Group Abstract This white paper looks at what service providers
Big Data and Data Science: Behind the Buzz Words
Big Data and Data Science: Behind the Buzz Words Peggy Brinkmann, FCAS, MAAA Actuary Milliman, Inc. April 1, 2014 Contents Big data: from hype to value Deconstructing data science Managing big data Analyzing
Using Big Data for Smarter Decision Making. Colin White, BI Research July 2011 Sponsored by IBM
Using Big Data for Smarter Decision Making Colin White, BI Research July 2011 Sponsored by IBM USING BIG DATA FOR SMARTER DECISION MAKING To increase competitiveness, 83% of CIOs have visionary plans that
Challenges for Data Driven Systems
Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2
Comparing SQL and NOSQL databases
COSC 6397 Big Data Analytics Data Formats (II) HBase Edgar Gabriel Spring 2015 Comparing SQL and NOSQL databases Types Development History Data Storage Model SQL One type (SQL database) with minor variations
Understanding NoSQL on Microsoft Azure
David Chappell Understanding NoSQL on Microsoft Azure Sponsored by Microsoft Corporation Copyright 2014 Chappell & Associates Contents Data on Azure: The Big Picture... 3 Relational Technology: A Quick
Advanced Data Management Technologies
ADMT 2014/15 Unit 15 J. Gamper 1/44 Advanced Data Management Technologies Unit 15 Introduction to NoSQL J. Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE ADMT 2014/15 Unit 15
The Next Wave of Data Management. Is Big Data The New Normal?
The Next Wave of Data Management Is Big Data The New Normal? Table of Contents Introduction 3 Separating Reality and Hype 3 Why Are Firms Making IT Investments In Big Data? 4 Trends In Data Management
BRAC. Investigating Cloud Data Storage UNIVERSITY SCHOOL OF ENGINEERING. SUPERVISOR: Dr. Mumit Khan DEPARTMENT OF COMPUTER SCIENCE AND ENGEENIRING
BRAC UNIVERSITY SCHOOL OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGEENIRING 12-12-2012 Investigating Cloud Data Storage Sumaiya Binte Mostafa (ID 08301001) Firoza Tabassum (ID 09101028) BRAC University
Evaluator s Guide. McKnight. Consulting Group. McKnight Consulting Group
NoSQL Evaluator s Guide McKnight Consulting Group William McKnight is the former IT VP of a Fortune 50 company and the author of Information Management: Strategies for Gaining a Competitive Advantage with
Data Modeling for Big Data
Data Modeling for Big Data by Jinbao Zhu, Principal Software Engineer, and Allen Wang, Manager, Software Engineering, CA Technologies In the Internet era, the volume of data we deal with has grown to terabytes
CloudDB: A Data Store for all Sizes in the Cloud
CloudDB: A Data Store for all Sizes in the Cloud Hakan Hacigumus Data Management Research NEC Laboratories America http://www.nec-labs.com/dm www.nec-labs.com What I will try to cover Historical perspective
The Quest for Extreme Scalability
The Quest for Extreme Scalability In times of a growing audience, very successful internet applications have all been facing the same database issue: while web servers can be multiplied without too many
In Memory Accelerator for MongoDB
In Memory Accelerator for MongoDB Yakov Zhdanov, Director R&D GridGain Systems GridGain: In Memory Computing Leader 5 years in production 100s of customers & users Starts every 10 secs worldwide Over 15,000,000
bigdata Managing Scale in Ontological Systems
Managing Scale in Ontological Systems 1 This presentation offers a brief look scale in ontological (semantic) systems, tradeoffs in expressivity and data scale, and both information and systems architectural
Scalable Architecture on Amazon AWS Cloud
Scalable Architecture on Amazon AWS Cloud Kalpak Shah Founder & CEO, Clogeny Technologies [email protected] 1 * http://www.rightscale.com/products/cloud-computing-uses/scalable-website.php 2 Architect
Introduction to Hadoop. New York Oracle User Group Vikas Sawhney
Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop
Actian SQL in Hadoop Buyer s Guide
Actian SQL in Hadoop Buyer s Guide Contents Introduction: Big Data and Hadoop... 3 SQL on Hadoop Benefits... 4 Approaches to SQL on Hadoop... 4 The Top 10 SQL in Hadoop Capabilities... 5 SQL in Hadoop
No-SQL Databases for High Volume Data
Target Conference 2014 No-SQL Databases for High Volume Data Edward Wijnen 3 November 2014 The New Connected World Needs a Revolutionary New DBMS Today The Internet of Things 1990 s Mobile 1970 s Mainfram
nosql and Non Relational Databases
nosql and Non Relational Databases Image src: http://www.pentaho.com/big-data/nosql/ Matthias Lee Johns Hopkins University What NoSQL? Yes no SQL.. Atleast not only SQL Large class of Non Relaltional Databases
Cisco UCS and Fusion- io take Big Data workloads to extreme performance in a small footprint: A case study with Oracle NoSQL database
Cisco UCS and Fusion- io take Big Data workloads to extreme performance in a small footprint: A case study with Oracle NoSQL database Built up on Cisco s big data common platform architecture (CPA), a
Oracle s Big Data solutions. Roger Wullschleger. <Insert Picture Here>
s Big Data solutions Roger Wullschleger DBTA Workshop on Big Data, Cloud Data Management and NoSQL 10. October 2012, Stade de Suisse, Berne 1 The following is intended to outline
Luncheon Webinar Series May 13, 2013
Luncheon Webinar Series May 13, 2013 InfoSphere DataStage is Big Data Integration Sponsored By: Presented by : Tony Curcio, InfoSphere Product Management 0 InfoSphere DataStage is Big Data Integration
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing
BIG DATA TECHNOLOGY. Hadoop Ecosystem
BIG DATA TECHNOLOGY Hadoop Ecosystem Agenda Background What is Big Data Solution Objective Introduction to Hadoop Hadoop Ecosystem Hybrid EDW Model Predictive Analysis using Hadoop Conclusion What is Big
Understanding traffic flow
White Paper A Real-time Data Hub For Smarter City Applications Intelligent Transportation Innovation for Real-time Traffic Flow Analytics with Dynamic Congestion Management 2 Understanding traffic flow
Enterprise Operational SQL on Hadoop Trafodion Overview
Enterprise Operational SQL on Hadoop Trafodion Overview Rohit Jain Distinguished & Chief Technologist Strategic & Emerging Technologies Enterprise Database Solutions Copyright 2012 Hewlett-Packard Development
BIG DATA TRENDS AND TECHNOLOGIES
BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.
Hadoop and Data Warehouse Friends, Enemies or Profiteers? What about Real Time?
Hadoop and Data Warehouse Friends, Enemies or Profiteers? What about Real Time? Kai Wähner [email protected] @KaiWaehner www.kai-waehner.de Disclaimer! These opinions are my own and do not necessarily
Cloud & Big Data a perfect marriage? Patrick Valduriez
Cloud & Big Data a perfect marriage? Patrick Valduriez Cloud & Big Data: the hype! 2 Cloud & Big Data: the hype! 3 Behind the Hype? Every one who wants to make big money Intel, IBM, Microsoft, Oracle,
Yahoo! Cloud Serving Benchmark
Yahoo! Cloud Serving Benchmark Overview and results March 31, 2010 Brian F. Cooper [email protected] Joint work with Adam Silberstein, Erwin Tam, Raghu Ramakrishnan and Russell Sears System setup and
Bigdata : Enabling the Semantic Web at Web Scale
Bigdata : Enabling the Semantic Web at Web Scale Presentation outline What is big data? Bigdata Architecture Bigdata RDF Database Performance Roadmap What is big data? Big data is a new way of thinking
Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase
Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform
NewSQL: Towards Next-Generation Scalable RDBMS for Online Transaction Processing (OLTP) for Big Data Management
NewSQL: Towards Next-Generation Scalable RDBMS for Online Transaction Processing (OLTP) for Big Data Management A B M Moniruzzaman Department of Computer Science and Engineering, Daffodil International
Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013
Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics
Big Data on AWS. Services Overview. Bernie Nallamotu Principle Solutions Architect
on AWS Services Overview Bernie Nallamotu Principle Solutions Architect \ So what is it? When your data sets become so large that you have to start innovating around how to collect, store, organize, analyze
Design and Evolution of the Apache Hadoop File System(HDFS)
Design and Evolution of the Apache Hadoop File System(HDFS) Dhruba Borthakur Engineer@Facebook Committer@Apache HDFS SDC, Sept 19 2011 Outline Introduction Yet another file-system, why? Goals of Hadoop
BIG DATA TOOLS. Top 10 open source technologies for Big Data
BIG DATA TOOLS Top 10 open source technologies for Big Data We are in an ever expanding marketplace!!! With shorter product lifecycles, evolving customer behavior and an economy that travels at the speed
Reference Architecture, Requirements, Gaps, Roles
Reference Architecture, Requirements, Gaps, Roles The contents of this document are an excerpt from the brainstorming document M0014. The purpose is to show how a detailed Big Data Reference Architecture
Making Sense of NoSQL Dan McCreary Ann Kelly
Sample Chapter Making Sense of NoSQL Dan McCreary Ann Kelly Chapter 1 Copyright 2013 Manning Publications brief contents PART 1 INTRODUCTION...1 1 NoSQL: It s about making intelligent choices 3 2 NoSQL
