walberla: A software framework for CFD applications
|
|
|
- Chrystal Morrison
- 10 years ago
- Views:
Transcription
1 walberla: A software framework for CFD applications U. Rüde, S. Donath, C. Feichtinger, K. Iglberger, F. Deserno, M. Stürmer, C. Mihoubi, T. Preclic, D. Haspel (all LSS Erlangen), N. Thürey (LSS Erlangen/ now ETH Zürich) J. Götz (LSS Erlangen, [email protected]) In collaboration with many more Lehrstuhl für Informatik 10 (Systemsimulation) Universität Erlangen-Nürnberg www10.informatik.uni-erlangen.de 12. November 2008 Workshop: Computational Bio-Mechanics, IGSSE/BGCE, München 1
2 Overview Motivation Why we need yet another software for CFD? walberla: A LBM framework for CFD Flow Simulation with Lattice Boltzmann Methods LBM introduction Computational Haemodynamics Simulations on real patient data Accelerating the simulation Non-Newtonian simulation and blood clotting Towards fluid-structure interaction with moving objects Conclusions 2
3 Part I Motivation 3
4 Why we need another CFD program? In the last years many PhD students at our chair wrote nice programs for different CFD applications, but: Programming and testing basic functionality takes a lot of time Parallelizing takes even more time When the PhD student leaves the chair, the program most times was not used any more, since nobody knows how to use it 4
5 Why parallel programming? Want to simulate problems which are not possible on standard computers And: Latest standard processors are multicore processors: The free lunch is over Without explicitly parallel algorithms, the performance potential cannot be used any more CPUs will have 2, 4, 8, 16,..., 128,...,??? cores 5
6 Part II walberla: A LBM framework for CFD 6
7 walberla Widely applicable Lattice Boltzmann from Erlangen Project started in November 2006 CFD project based on lattice Boltzmann method Team of 5 PhD students: Christian Feichtinger Klaus Iglberger Stefan Donath Jan Götz Frank Deserno 7
8 walberla Modular software concept Supports various applications: Blood flow Moving particles and agglomerates Free surfaces to simulate foams, fuel cells, a.m.m. Charged colloids Integration in efficient massivelyparallel environment 8
9 walberla Modular software concept Supports various applications: Blood flow Moving particles and agglomerates Free surfaces to simulate foams, fuel cells, a.m.m. Charged colloids Integration in efficient massivelyparallel environment 8
10 walberla Patch concept enables Parallelization Combining functionality Load balancing Memory reduction 9
11 walberla Patch concept enables Parallelization Combining functionality Load balancing Memory reduction E.g. in a brain geometry only about 3-10% of the nodes are filled with blood 9
12 Parallel performance on the Woodcrest cluster RRZE LRZ Garching 10
13 Part III Flow Simulation with Lattice Boltzmann Methods 11
14 Part III-a Lattice Boltzmann Methods LBM Introduction 12
15 The Lattice Boltzmann Method Discretization in cubes (cells) 9 (or 19) numbers per cell = number of particles traveling towards neighboring cells Repeat (many times) stream collide 13
16 The stream step Move particle (numbers) into neighboring cells 14
17 The collide step Compute new particle numbers according to the collisions 15
18 Stream/Collide: LBM in equations Equilibrium DF: 16
19 Boundary treatment No-slip boundary condition for a rigid wall 17
20 Part III-b Lattice Boltzmann Methods Computational Haemodynamics 18
21 Aneurysms Aneurysm are local dilatations of the blood vessels Localized mostly at large arteries in soft tissue (e.g. aorta, brain vessels) Can be diagnosed by modern imaging techniques (e.g. MRT,DSA) Can be treated e.g by clipping or coiling 19
22 Simulation chain 20
23 Simulation chain 20
24 Simulation chain 20
25 Simulation chain 20
26 Simulation chain 20
27 Motivation Why simulate aneurysms? Unruptured aneurysms are a major public health issue in every developed nation The flow situation could be crucial for further treatment of the patient Goals Help to understand the development of aneurysms To support therapy planning Challenges Current imaging techniques result in data sets of and more Long runtimes on standard PCs and workstations For intra-surgery planning the algorithm should perform quasi realtime 21
28 Results Velocity near the wall in an aneurysm Oscillatory shear stress near the wall in an aneurysm 22
29 Pulsating blood flow in an aneurysm Collaboration between: Neuro-Radiology (Prof. Dörfler, Dr. Richter) Computer Science Simulation Imaging CFD Datensatz 23
30 Pulsating blood flow in an aneurysm Collaboration between: Neuro-Radiology (Prof. Dörfler, Dr. Richter) Computer Science Simulation Imaging CFD Datensatz 23
31 Pulsating blood flow in an aneurysm Collaboration between: Neuro-Radiology (Prof. Dörfler, Dr. Richter) Computer Science Simulation Imaging CFD Datensatz 23
32 Accellerating the simulation with the STI Cell processor Goal: demanding (flow) simulations at moderate cost but very fast Available cell systems: Roadrunner Blades Playstation 3 24
33 Performance results 50,0 43,8 37,5 25,0 21,1 12,5 9,1 11,7 0 Xeon 5160* Playstation 3 1 core 1 CPU *performance optimized code by LB-DC 25
34 Simulation of clotting processes using non-newtonian blood models Motivation Knowledge about the clotting of blood is important for many medical applications: Diagnostics Surgery 26
35 Non-Newtonian blood model: The Casson model Constant viscosity Shear strain rate Shear stress Yield stress 27
36 Reaction chain of clotting is well known Problems of simulating the whole clotting reaction chain: Lots of different species to be simulated Many parameters Many parameters are not known 28
37 So what to do? Usage of a well established analogous for blood clotting investigations: milk clotting Lot simpler reaction chain Similar clot forming properties 29
38 Part III - c Flow Simulation Fluid Structure Interaction: Moving Objects 30
39 Fluid structure interaction: Moving objects The rigid body physics engine pe Framework for accurate and games rigid body physics Calculation of contact forces and torque Accurate friction calculation during collision Coupling to different simulation frameworks 31
40 Rigid body dynamics with friction and objects of more general shape 32
41 Rigid body dynamics with friction and objects of more general shape 32
42 Rigid body dynamics with friction and objects of more general shape 32
43 Coupling the rigid body physics engine to the Lattice Boltzmann solver
44 Coupling the rigid body physics engine to the Lattice Boltzmann solver
45 Coupling the rigid body physics engine to the Lattice Boltzmann solver
46 Coupling the rigid body physics engine to the Lattice Boltzmann solver
47 Coupling the rigid body physics engine to the Lattice Boltzmann solver
48 Coupling the rigid body physics engine to the Lattice Boltzmann solver
49 Massively parallel simulations with many particles (LSS cluster) xsize: 540 ysize: 240 zsize: ,84 x 10 6 lattice cells 31 processes/cores on LSS cluster 750 objects timesteps 9:45h 34
50 Massively parallel simulations with many particles (LSS cluster) xsize: 540 ysize: 240 zsize: ,84 x 10 6 lattice cells 31 processes/cores on LSS cluster 750 objects timesteps 9:45h 34
51 Massively parallel simulations with many particles (Woody cluster) xsize: 540 ysize: 500 zsize: x 10 6 lattice cells 129 processes/ cores (on woody cluster) 2,500 objects 27,000 time steps 12:54h 35
52 Massively parallel simulations with many particles (Woody cluster) xsize: 540 ysize: 500 zsize: x 10 6 lattice cells 129 processes/ cores (on woody cluster) 2,500 objects 27,000 time steps 12:54h 35
53 Parallelization of flow with many particles 36
54 Part IV Conclusions 37
55 Conclusions walberla s modular software concept supports: Various applications: Blood flow Moving particles and agglomerates Free surfaces Charged colloids Integration in efficient massively-parallel environment Tested on different supercomputers Parallel support for compiling, restarting and visualization Extensions Work with master students/external PhD students Extensible framework for further LBM HPC software development 38
56 39
57 Talk is Over Slides, reports, thesis, animations available for download at: www10.informatik.uni-erlangen.de 40
58 Talk is Over Please wake up! Slides, reports, thesis, animations available for download at: www10.informatik.uni-erlangen.de 40
59 Talk is Over Please wake up! Slides, reports, thesis, animations available for download at: www10.informatik.uni-erlangen.de 40
walberla: A software framework for CFD applications on 300.000 Compute Cores
walberla: A software framework for CFD applications on 300.000 Compute Cores J. Götz (LSS Erlangen, [email protected]), K. Iglberger, S. Donath, C. Feichtinger, U. Rüde Lehrstuhl für Informatik 10 (Systemsimulation)
Fast Parallel Algorithms for Computational Bio-Medicine
Fast Parallel Algorithms for Computational Bio-Medicine H. Köstler, J. Habich, J. Götz, M. Stürmer, S. Donath, T. Gradl, D. Ritter, D. Bartuschat, C. Feichtinger, C. Mihoubi, K. Iglberger (LSS Erlangen)
walberla: Towards an Adaptive, Dynamically Load-Balanced, Massively Parallel Lattice Boltzmann Fluid Simulation
walberla: Towards an Adaptive, Dynamically Load-Balanced, Massively Parallel Lattice Boltzmann Fluid Simulation SIAM Parallel Processing for Scientific Computing 2012 February 16, 2012 Florian Schornbaum,
Microsoft Windows Compute Cluster Server 2003 Evaluation
Microsoft Windows Compute Cluster Server 2003 Evaluation Georg Hager,, Johannes Habich (RRZE) Stefan Donath (Lehrstuhl für Systemsimulation) Universität Erlangen-Nürnberg rnberg ZKI AK Supercomputing 25./26.10.2007,
Optimizing Performance of the Lattice Boltzmann Method for Complex Structures on Cache-based Architectures
Optimizing Performance of the Lattice Boltzmann Method for Complex Structures on Cache-based Architectures Stefan Donath 1, Thomas Zeiser, Georg Hager, Johannes Habich, Gerhard Wellein Regionales Rechenzentrum
Generating Virtual Worlds with Supercomputer Simulations
Generating Virtual Worlds with Supercomputer Simulations U. Rüde (LSS Erlangen, [email protected]) joint work with many collaborators and students Lehrstuhl für Informatik 10 (Systemsimulation) Universität
Fluid Dynamics of Blood Flow Modelling & Simulation
Fluid Dynamics of Blood Flow Modelling & Simulation 1. Masud Behnia * Basics of Fluid Mechanics 2. Makoto Ohta ** Experimental Modelling 3. Karkenahalli Srinivas * Computational Fluid Dynamics 4. Toshio
HPC Deployment of OpenFOAM in an Industrial Setting
HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment
Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations on Complex Geometries
Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations on Complex Geometries Jonas Fietz 2, Mathias J. Krause 2, Christian Schulz 1, Peter Sanders 1, and Vincent Heuveline 2 1 Karlsruhe Institute
Turbomachinery CFD on many-core platforms experiences and strategies
Turbomachinery CFD on many-core platforms experiences and strategies Graham Pullan Whittle Laboratory, Department of Engineering, University of Cambridge MUSAF Colloquium, CERFACS, Toulouse September 27-29
Design and Optimization of a Portable Lattice Boltzmann Code for Heterogeneous Architectures
Design and Optimization of a Portable Lattice Boltzmann Code for Heterogeneous Architectures E Calore, S F Schifano, R Tripiccione Enrico Calore INFN Ferrara, Italy Perspectives of GPU Computing in Physics
Numerical prediction of steel fiber orientation and distribution
Numerical prediction of steel fiber orientation and distribution Author: Oldřich Švec Supervisors: Henrik Stang John Forbes Olesen Lars Nyholm Thrane Three point bending test Source: internet 2 DTU Civil
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,
Modeling and Numerical Blood Flow Analysis of Tibial Artery using CFD
Modeling and Numerical Blood Flow Analysis of Tibial Artery using CFD S.Manimaran Department of Biomedical Engineering C.Muralidharan M.E Assistant Professor Department of Biomedical Engineering Surendra
Computational Fluid Dynamic Modeling Applications
Computational Fluid Dynamic Modeling Applications Canadian Heavy Oil Conference Dr. Marvin Weiss What is CFD Computational Fluid Dynamics Colorful Fluid Dynamics Colors For Directors Carefully Fitted Data
Mathematical Model of Blood Flow in Carotid Bifurcation. Phd student: Eng. Emanuel Muraca. 16/10/09 Milan
Presented at the COMSOL Conference 2009 Milan Mathematical Model of Blood Flow in Carotid Bifurcation Phd student: Eng. Emanuel Muraca 16/10/09 Milan 1 Research s s goal The goal of this research is to
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR Frédéric Kuznik, frederic.kuznik@insa lyon.fr 1 Framework Introduction Hardware architecture CUDA overview Implementation details A simple case:
OpenFOAM Workshop. Yağmur Gülkanat Res.Assist.
OpenFOAM Workshop Yağmur Gülkanat Res.Assist. Introduction to OpenFOAM What is OpenFOAM? FOAM = Field Operation And Manipulation OpenFOAM is a free-to-use open-source numerical simulation software with
AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL
14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski
Very special thanks to Wolfgang Gentzsch and Burak Yenier for making the UberCloud HPC Experiment possible.
Digital manufacturing technology and convenient access to High Performance Computing (HPC) in industry R&D are essential to increase the quality of our products and the competitiveness of our companies.
HPC enabling of OpenFOAM R for CFD applications
HPC enabling of OpenFOAM R for CFD applications Towards the exascale: OpenFOAM perspective Ivan Spisso 25-27 March 2015, Casalecchio di Reno, BOLOGNA. SuperComputing Applications and Innovation Department,
Simulation Platform Overview
Simulation Platform Overview Build, compute, and analyze simulations on demand www.rescale.com CASE STUDIES Companies in the aerospace and automotive industries use Rescale to run faster simulations Aerospace
High Performance Computing. Course Notes 2007-2008. HPC Fundamentals
High Performance Computing Course Notes 2007-2008 2008 HPC Fundamentals Introduction What is High Performance Computing (HPC)? Difficult to define - it s a moving target. Later 1980s, a supercomputer performs
Simulation of Fluid-Structure Interactions in Aeronautical Applications
Simulation of Fluid-Structure Interactions in Aeronautical Applications Martin Kuntz Jorge Carregal Ferreira ANSYS Germany D-83624 Otterfing [email protected] December 2003 3 rd FENET Annual Industry
High Performance Computing in CST STUDIO SUITE
High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver
Multicore Parallel Computing with OpenMP
Multicore Parallel Computing with OpenMP Tan Chee Chiang (SVU/Academic Computing, Computer Centre) 1. OpenMP Programming The death of OpenMP was anticipated when cluster systems rapidly replaced large
GPGPU accelerated Computational Fluid Dynamics
t e c h n i s c h e u n i v e r s i t ä t b r a u n s c h w e i g Carl-Friedrich Gauß Faculty GPGPU accelerated Computational Fluid Dynamics 5th GACM Colloquium on Computational Mechanics Hamburg Institute
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry
PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms
PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms P. E. Vincent! Department of Aeronautics Imperial College London! 25 th March 2014 Overview Motivation Flux Reconstruction Many-Core
Writing Applications for the GPU Using the RapidMind Development Platform
Writing Applications for the GPU Using the RapidMind Development Platform Contents Introduction... 1 Graphics Processing Units... 1 RapidMind Development Platform... 2 Writing RapidMind Enabled Applications...
and RISC Optimization Techniques for the Hitachi SR8000 Architecture
1 KONWIHR Project: Centre of Excellence for High Performance Computing Pseudo-Vectorization and RISC Optimization Techniques for the Hitachi SR8000 Architecture F. Deserno, G. Hager, F. Brechtefeld, G.
Laminar Flow in a Baffled Stirred Mixer
Laminar Flow in a Baffled Stirred Mixer Introduction This exercise exemplifies the use of the rotating machinery feature in the CFD Module. The Rotating Machinery interface allows you to model moving rotating
LS-DYNA Scalability on Cray Supercomputers. Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp.
LS-DYNA Scalability on Cray Supercomputers Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp. WP-LS-DYNA-12213 www.cray.com Table of Contents Abstract... 3 Introduction... 3 Scalability
Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
Introduction to Computational Fluid Dynamics (CFD) for Combustion. www.reaction-eng.com (801) 364-6925
Introduction to Computational Fluid Dynamics (CFD) for Combustion www.reaction-eng.com (801) 364-6925 What is CFD? CFD stands for Computational Fluid Dynamics CFD uses computers to represent (or model)
Real Time Simulation of Power Plants
Real Time Simulation of Power Plants Torsten Dreher 1 System Simulation Group Friedrich-Alexander-University Erlangen-Nuremberg Siemens Simulation Center, Erlangen December 14, 2008 1 [email protected]
OpenFOAM Optimization Tools
OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov [email protected] and [email protected] Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation
Accelerating CFD using OpenFOAM with GPUs
Accelerating CFD using OpenFOAM with GPUs Authors: Saeed Iqbal and Kevin Tubbs The OpenFOAM CFD Toolbox is a free, open source CFD software package produced by OpenCFD Ltd. Its user base represents a wide
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer Stan Posey, MSc and Bill Loewe, PhD Panasas Inc., Fremont, CA, USA Paul Calleja, PhD University of Cambridge,
NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: [email protected] Research field: Statics and Dynamics Fluids mechanics
SOFA an Open Source Framework for Medical Simulation
SOFA an Open Source Framework for Medical Simulation J. ALLARD a P.-J. BENSOUSSAN b S. COTIN a H. DELINGETTE b C. DURIEZ b F. FAURE b L. GRISONI b and F. POYER b a CIMIT Sim Group - Harvard Medical School
Development of Simulation Tools Software
Development of Simulation Tools Software Vincent Luboz Department of Biosurgery and Surgical Technology Imperial College London BSc VR Surgical Simulation Software Slide 1 Contents Virtual Reality VR Surgical
Microscopic and mesoscopic simulations of amorphous systems using LAMMPS and GPU-based algorithms
Microscopic and mesoscopic simulations of amorphous systems using LAMMPS and GPU-based algorithms E. Ferrero and F. Puosi Laboratoire Interdisciplinaire de Physique (LIPhy), UJF and CNRS 14/5/214 Journée
Parallel 3D Image Segmentation of Large Data Sets on a GPU Cluster
Parallel 3D Image Segmentation of Large Data Sets on a GPU Cluster Aaron Hagan and Ye Zhao Kent State University Abstract. In this paper, we propose an inherent parallel scheme for 3D image segmentation
Multiphase Flow - Appendices
Discovery Laboratory Multiphase Flow - Appendices 1. Creating a Mesh 1.1. What is a geometry? The geometry used in a CFD simulation defines the problem domain and boundaries; it is the area (2D) or volume
Real Time Simulation for Off-Road Vehicle Analysis. Dr. Pasi Korkealaakso Mevea Ltd., May 2015
Real Time Simulation for Off-Road Vehicle Analysis Dr. Pasi Korkealaakso Mevea Ltd., May 2015 Contents Introduction Virtual machine model Machine interaction with environment and realistic environment
LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance
11 th International LS-DYNA Users Conference Session # LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance Gilad Shainer 1, Tong Liu 2, Jeff Layton 3, Onur Celebioglu
ME6130 An introduction to CFD 1-1
ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
Hardware Acceleration for CST MICROWAVE STUDIO
Hardware Acceleration for CST MICROWAVE STUDIO Chris Mason Product Manager Amy Dewis Channel Manager Agenda 1. Introduction 2. Why use Hardware Acceleration? 3. Hardware Acceleration Technologies 4. Current
TwinMesh for Positive Displacement Machines: Structured Meshes and reliable CFD Simulations
TwinMesh for Positive Displacement Machines: Structured Meshes and reliable CFD Simulations 05.06.2014 Dipl.-Ing. Jan Hesse, Dr. Andreas Spille-Kohoff CFX Berlin Software GmbH Karl-Marx-Allee 90 A 10243
OpenFOAM Opensource and CFD
OpenFOAM Opensource and CFD Andrew King Department of Mechanical Engineering Curtin University Outline What is Opensource Software OpenFOAM Overview Utilities, Libraries and Solvers Data Formats The CFD
Finite Elements Infinite Possibilities. Virtual Simulation and High-Performance Computing
Microsoft Windows Compute Cluster Server 2003 Partner Solution Brief Finite Elements Infinite Possibilities. Virtual Simulation and High-Performance Computing Microsoft Windows Compute Cluster Server Runs
XFlow CFD results for the 1st AIAA High Lift Prediction Workshop
XFlow CFD results for the 1st AIAA High Lift Prediction Workshop David M. Holman, Dr. Monica Mier-Torrecilla, Ruddy Brionnaud Next Limit Technologies, Spain THEME Computational Fluid Dynamics KEYWORDS
Fire Simulations in Civil Engineering
Contact: Lukas Arnold l.arnold@fz- juelich.de Nb: I had to remove slides containing input from our industrial partners. Sorry. Fire Simulations in Civil Engineering 07.05.2013 Lukas Arnold Fire Simulations
Scientific Computing Programming with Parallel Objects
Scientific Computing Programming with Parallel Objects Esteban Meneses, PhD School of Computing, Costa Rica Institute of Technology Parallel Architectures Galore Personal Computing Embedded Computing Moore
What You Should Know About Cerebral Aneurysms
What You Should Know About Cerebral Aneurysms From the Cerebrovascular Imaging and Interventions Committee of the American Heart Association Cardiovascular Radiology Council Randall T. Higashida, M.D.,
Christof Hinterberger, Mark Olesen
Application of of a Continuous Adjoint Flow Solver for for Geometry Optimisation of of Automotive Exhaust Systems Christof Hinterberger, Mark Olesen FLOWHEAD Workshop, Varna Sept. 2010 Workshop on industrial
Self Financed One Week Training
Self Financed One Week Training On Computational Fluid Dynamics (CFD) with OpenFOAM December 14 20, 2015 (Basic Training: 3days, Advanced Training: 5days and Programmer Training: 7days) Organized by Department
Bildgebende Verfahren als. Control 2011 Alexander Nolte CADFEM GmbH
Bildgebende Verfahren als Basis für die FEM-Simulation Control 2011 Alexander Nolte CADFEM GmbH CADFEM: FEM Software and Services CADFEM FEM Software & Services 25+ years experience 140+ employees 40 Mio.
Introduction to Cloud Computing
Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic
Extreme Scaling on Energy Efficient SuperMUC
Extreme Scaling on Energy Efficient SuperMUC Dieter Kranzlmüller Munich Network Management Team Ludwig- Maximilians- Universität München (LMU) & Leibniz SupercompuFng Centre (LRZ) of the Bavarian Academy
AgoraLink Agora for Life Science Technologies Linköpings Universitet Kurs i Fysiologisk mätteknik Biofluidflöden
AgoraLink Agora for Life Science Technologies Linköpings Universitet Kurs i Fysiologisk mätteknik Biofluidflöden Fysiologisk mätteknik Anatomy of the heart The complex myocardium structure right ventricle
High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates
High Performance Computing (HPC) CAEA elearning Series Jonathan G. Dudley, Ph.D. 06/09/2015 2015 CAE Associates Agenda Introduction HPC Background Why HPC SMP vs. DMP Licensing HPC Terminology Types of
Very special thanks to Wolfgang Gentzsch and Burak Yenier for making the UberCloud HPC Experiment possible.
Digital manufacturing technology and convenient access to High Performance Computing (HPC) in industry R&D are essential to increase the quality of our products and the competitiveness of our companies.
FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG
FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 10 (Systemsimulation) Massively Parallel Multilevel Finite
A Novel Cloud Based Elastic Framework for Big Data Preprocessing
School of Systems Engineering A Novel Cloud Based Elastic Framework for Big Data Preprocessing Omer Dawelbeit and Rachel McCrindle October 21, 2014 University of Reading 2008 www.reading.ac.uk Overview
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749
2003 Visiting researcher. Lawrence-Livermore National Laboratory, work on optimizing compilers for high-level C++ with Dr. D. Quinlan.
CURRICULUM VITAE Nils Thuerey, Ph.D. Boltzmannstr. 3 85748 Garching Germany E-Mail [email protected] Web www.ntoken.com Phone +49 (0)89 289 19484 Date of birth 1979-07-06 Citizenship German Employment
Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.
Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,
CFD Based Air Flow and Contamination Modeling of Subway Stations
CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George
1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids
1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.
LIGGGHTS OPEN SOURCE DEM: COUPLING TO DNS OF TURBULENT CHANNEL FLOW
LIGGGHTS OPEN SOURCE DEM: COUPLING TO DNS OF TURBULENT CHANNEL FLOW 6th ERCOFTAC SIG43 Workshop, Udine, October 2013 Daniel Queteschiner 1, Christoph Kloss 1, Stefan Pirker 1 Cristian Marchioli 2, Alfredo
CFD SIMULATION OF NATURAL GAS COMBUSTION AND IST APPLICATION TO TUNNEL KILN FIRING
CFD SIMULATION OF NATURAL GAS COMBUSTION AND IST APPLICATION TO TUNNEL KILN FIRING. R. Obenaus-Emler University of Leoben Contents 1. Intoduction to combustion models in OpenFOAM 2. The Flamelet-Model
Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains
INSTITUT FÜR MECHANIK UND MECHATRONIK Messtechnik und Aktorik Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains A. Hüppe 1, M. Kaltenbacher 1, A. Reppenhagen 2,
Computational Engineering Programs at the University of Erlangen-Nuremberg
Computational Engineering Programs at the University of Erlangen-Nuremberg Ulrich Ruede Lehrstuhl für Simulation, Institut für Informatik Universität Erlangen http://www10.informatik.uni-erlangen.de/ ruede
Introduction to High Performance Cluster Computing. Cluster Training for UCL Part 1
Introduction to High Performance Cluster Computing Cluster Training for UCL Part 1 What is HPC HPC = High Performance Computing Includes Supercomputing HPCC = High Performance Cluster Computing Note: these
A Guide to the free mesh program Discretizer with OpenFOAM for CFD (Computational Fluid Dynamics)
Discretizer Manual Release date 09/01/10 Side 1 of 13 A Guide to the free mesh program Discretizer with OpenFOAM for CFD (Computational Fluid Dynamics) Homepage: http://www.discretizer.org/ Creator of
Open Source CFD Solver - OpenFOAM
Open Source CFD Solver - OpenFOAM Wang Junhong (HPC, Computer Centre) 1. INTRODUCTION The OpenFOAM (Open Field Operation and Manipulation) Computational Fluid Dynamics (CFD) Toolbox is a free, open source
Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics
Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer
Large-Data Software Defined Visualization on CPUs
Large-Data Software Defined Visualization on CPUs Greg P. Johnson, Bruce Cherniak 2015 Rice Oil & Gas HPC Workshop Trend: Increasing Data Size Measuring / modeling increasingly complex phenomena Rendering
Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity
1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood
Overview of the Cardiovascular System
Overview of the Cardiovascular System 2 vascular (blood vessel) loops: Pulmonary circulation: from heart to lungs and back) Systemic circulation: from heart to other organs and back Flow through systemic
Particle Tracking in the Circle of Willis
Particle Tracking in the Circle of Willis Pim van Ooij A report of work carried out at the Centre of Bioengineering University of Canterbury TU Eindhoven BMTE05.40 June 2005 1 Summary An ischemic stroke
www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING VISUALISATION GPU COMPUTING
www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING GPU COMPUTING VISUALISATION XENON Accelerating Exploration Mineral, oil and gas exploration is an expensive and challenging
Numerical Calculation of Laminar Flame Propagation with Parallelism Assignment ZERO, CS 267, UC Berkeley, Spring 2015
Numerical Calculation of Laminar Flame Propagation with Parallelism Assignment ZERO, CS 267, UC Berkeley, Spring 2015 Xian Shi 1 bio I am a second-year Ph.D. student from Combustion Analysis/Modeling Lab,
How To Run A Steady Case On A Creeper
Crash Course Introduction to OpenFOAM Artur Lidtke University of Southampton [email protected] November 4, 2014 Artur Lidtke Crash Course Introduction to OpenFOAM 1 / 32 What is OpenFOAM? Using OpenFOAM
Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines
Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines SIMPACK User Meeting 2014 Augsburg, Germany October 9 th, 2014 Dipl.-Ing.
HPC technology and future architecture
HPC technology and future architecture Visual Analysis for Extremely Large-Scale Scientific Computing KGT2 Internal Meeting INRIA France Benoit Lange [email protected] Toàn Nguyên [email protected]
CFD SIMULATION OF IPR-R1 TRIGA SUBCHANNELS FLUID FLOW
2013 International Nuclear Atlantic Conference - INAC 2013 Recife, PE, Brazil, November 24-29, 2013 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-05-2 CFD SIMULATION OF IPR-R1 TRIGA
Particles, Flocks, Herds, Schools
CS 4732: Computer Animation Particles, Flocks, Herds, Schools Robert W. Lindeman Associate Professor Department of Computer Science Worcester Polytechnic Institute [email protected] Control vs. Automation Director's
ANSYS FLUENT. Using Moving Reference Frames and Sliding Meshes WS5-1. Customer Training Material
Workshop 5 Using Moving Reference Frames and Sliding Meshes Introduction to ANSYS FLUENT WS5-1 Introduction [1] Several solution strategies exist when there are moving parts in the domain. This workshop
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics David Corson Altair Engineering, Inc. Todd Griffith Sandia National Laboratories Tom Ashwill (Retired) Sandia National
Computational Modeling of Wind Turbines in OpenFOAM
Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi [email protected] ForWind - Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational
Introduction to CFD Analysis
Introduction to CFD Analysis Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 2-2 What is CFD? Computational fluid dynamics (CFD) is the science
CFD analysis for road vehicles - case study
CFD analysis for road vehicles - case study Dan BARBUT*,1, Eugen Mihai NEGRUS 1 *Corresponding author *,1 POLITEHNICA University of Bucharest, Faculty of Transport, Splaiul Independentei 313, 060042, Bucharest,
