Cloud-WIEN2k. A Scientific Cloud Computing Platform for Condensed Matter Physics
|
|
|
- Shannon Jackson
- 10 years ago
- Views:
Transcription
1 Penn State, August 2013 Cloud-WIEN2k A Scientific Cloud Computing Platform for Condensed Matter Physics K. Jorissen University of Washington, Seattle, U.S.A. Supported by NSF grant OCI
2 Materials Science Materials Science research: Theoretical models, evaluated on a computer, are usually needed for interpretation and quantification of measurements. But HPC is often not readily available. sample Hψ=Eψ E=mc2 measurement theoretical model interpretation
3 Anecdote (High-Performance Computing is everywhere) Computational linguistics:! We automatically identify semantically related words in the 400 million word Dutch Twente corpus to! à Statistically find contextual associations and quantify association strength! à Identify syntactical relations between words! à Relevant to automatic translation software! Multivariate analysis with dozens of variables large computational needs.!!! --- an English Lit major!!
4 Quest How do we bring the best theory and simulations to the scientists who need it? (often applied scientists not computational specialists) SOLUTION: Scientific Cloud Computing
5 Are state-of-the-art! calculations work for specialists? FEFF-old (simple Einstein model for phonons)! GUI Easy install Runs on laptop Load file & Click Run ~ 1 day to learn
6 Are state-of-the-art calculations work for specialists?! FEFF-gold (accurate ab initio model for phonons)! Dynamical Matrix (DFT) -- ABINIT DFT requires cluster Configure codes Complex workflow Command-line Invented / published Clearly an improvement Debye Waller Factors -- DMDW Nobody uses it X-ray Absorption -- FEFF ~ 0.x grad students to learn
7 Are state-of-the-art calculations work for specialists?! Hardware barrier: advanced codes need clusters! Software barrier: running codes is difficult!! - Buy a cluster? IT support? - Supercomputing center? - Collaborate with specialists? - Installation of software tricky - lacking user-friendliness - multi-code workflows difficult t >> 1 before improved theory reaches applied research!
8 Scientific Cloud Computing Interface simplifies workflow (hides cloud -- app)!! Developer makes virtual XAS compute node with preinstalled WIEN2k! User requests 5 node Cloud Cluster for 3 hours when needed ($20)!
9 Contains utilities for parallel scientific computing: MPI, compilers, libraries, NFS, Becomes compute node in SCC Cloud Cluster Developer-optimized Scientific codes for your research - WIEN2k for electronic structure calculations - latest version - optimized for performance - MPI parallellization for large calculations SCC Virtual Machine Image My new research group was looking for a way to implement MEEP-mpi (MIT Electromagnetic Equation Propagation) to simulate EM fields in nanoscale optical devices for cavity QED experiments. We believe that mazon EC2 is an economical and time saving solution for our finite difference time domain (FDTD) simulations. My group s research iterates between fabrication and simulation thus it is advantageous to buy computing power only when needed. Moreover it is a relief not to have to maintain our own small cluster within our group. Kai-Mei Fu, University of Washington (USA)
10 SCC Linux interface For developers of GUIs Java interface library (jar) SCC Java interface For savvy users and developers Collection of shell scripts FEFF GUI
11 WIEN2k-cloud Starts cluster in EC2 cloud Uploads initialized calculation Runs calculation in EC2 cloud Downloads results to laptop Deletes EC2 cluster WIEN2k GUI (DFT) Other workflows / data flows can be added. Requires: - create EC2 account - install SCC program
12 Performance LOOSELY Coupled Processes DFT KS equations on 128 k-point grid Good scaling
13 Performance TIGHTLY Coupled Processes KS for large system at 1 k-point VERY DEMANDING of network performance HPC cluster instances deliver good speedup
14 5. WIEN2k Performance Benchmarks TIGHTLY Coupled Processes KS for large system at 1 k-point H size 56,000 (25GB) Runtime (16x8 processors) : Local (Infiniband) 3h:48 Cloud (10Gbps) 1h:30 ($40) VERY DEMANDING of network performance 1200 atom unit cell; SCALAPACK+MPI diagonalization, matrix size 50k-100k HPC cluster instances deliver similar speedup as local Infiniband cluster
15 Scientific Cloud Computing can bring novel theory & HPC modeling to more researchers.! Sa! Sdf! Comp. Phys. Comm. 183 (2012) 1911 We acknowledge: w FEFF: S. Story T. Ahmed B. Mattern M. Prange J. Vinson w UW: R. Coffey E. Lazowska J. Loudermilk w Amazon: D. Singh w NSF: C. Bouldin w supported by NSF OCI
16
17 Backup stuff
18 4. Cloud-Computing on the Amazon EC2 cloud My Laptop FEFF interface 1. Create cluster 2. Calculations 3. Stop cluster MPI Master MPI Slave MPI Slave FEFF9 FEFF9 FEFF9 Cloud Compute Instances * K. Jorissen et al., Comp. Phys. Comm. 183 (2012) 1911
19 Developer s view: ExecuteCloudContext.java: import edu.washington.scc.*; // Launch the new cluster with cs specifications: ClusterResult rl = clust.launch(cs); // Initialize the FEFF calculation on the cloud cluster: // Copy feff.inp: ClusterResult rp = clust.put(localworkingdir+"/feff.inp", CloudWorkingDir+"/feff.inp"); // Run the FEFF9-MPI calculation: ClusterResult rf9 = clust.executecommand(feff9commandline,cloudout); // Copy the output files back to the local computer: ClusterResult rg = clust.get(cloudworkingdir, LocalWorkingDir); // Terminate the cloud cluster: ClusterResult rt = clust.terminate();
20 End User s view: FEFF GUI:
Neptune. A Domain Specific Language for Deploying HPC Software on Cloud Platforms. Chris Bunch Navraj Chohan Chandra Krintz Khawaja Shams
Neptune A Domain Specific Language for Deploying HPC Software on Cloud Platforms Chris Bunch Navraj Chohan Chandra Krintz Khawaja Shams ScienceCloud 2011 @ San Jose, CA June 8, 2011 Cloud Computing Three
High Performance Computing in CST STUDIO SUITE
High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver
benchmarking Amazon EC2 for high-performance scientific computing
Edward Walker benchmarking Amazon EC2 for high-performance scientific computing Edward Walker is a Research Scientist with the Texas Advanced Computing Center at the University of Texas at Austin. He received
Building Platform as a Service for Scientific Applications
Building Platform as a Service for Scientific Applications Moustafa AbdelBaky [email protected] Rutgers Discovery Informa=cs Ins=tute (RDI 2 ) The NSF Cloud and Autonomic Compu=ng Center Department
SR-IOV: Performance Benefits for Virtualized Interconnects!
SR-IOV: Performance Benefits for Virtualized Interconnects! Glenn K. Lockwood! Mahidhar Tatineni! Rick Wagner!! July 15, XSEDE14, Atlanta! Background! High Performance Computing (HPC) reaching beyond traditional
Cloud-pilot.doc 12-12-2010 SA1 Marcus Hardt, Marcin Plociennik, Ahmad Hammad, Bartek Palak E U F O R I A
Identifier: Date: Activity: Authors: Status: Link: Cloud-pilot.doc 12-12-2010 SA1 Marcus Hardt, Marcin Plociennik, Ahmad Hammad, Bartek Palak E U F O R I A J O I N T A C T I O N ( S A 1, J R A 3 ) F I
Workshop on Parallel and Distributed Scientific and Engineering Computing, Shanghai, 25 May 2012
Scientific Application Performance on HPC, Private and Public Cloud Resources: A Case Study Using Climate, Cardiac Model Codes and the NPB Benchmark Suite Peter Strazdins (Research School of Computer Science),
HDFS Cluster Installation Automation for TupleWare
HDFS Cluster Installation Automation for TupleWare Xinyi Lu Department of Computer Science Brown University Providence, RI 02912 [email protected] March 26, 2014 Abstract TupleWare[1] is a C++ Framework
Building a Top500-class Supercomputing Cluster at LNS-BUAP
Building a Top500-class Supercomputing Cluster at LNS-BUAP Dr. José Luis Ricardo Chávez Dr. Humberto Salazar Ibargüen Dr. Enrique Varela Carlos Laboratorio Nacional de Supercómputo Benemérita Universidad
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer Stan Posey, MSc and Bill Loewe, PhD Panasas Inc., Fremont, CA, USA Paul Calleja, PhD University of Cambridge,
Cluster, Grid, Cloud Concepts
Cluster, Grid, Cloud Concepts Kalaiselvan.K Contents Section 1: Cluster Section 2: Grid Section 3: Cloud Cluster An Overview Need for a Cluster Cluster categorizations A computer cluster is a group of
LSKA 2010 Survey Report Job Scheduler
LSKA 2010 Survey Report Job Scheduler Graduate Institute of Communication Engineering {r98942067, r98942112}@ntu.edu.tw March 31, 2010 1. Motivation Recently, the computing becomes much more complex. However,
Performance Analysis of a Numerical Weather Prediction Application in Microsoft Azure
Performance Analysis of a Numerical Weather Prediction Application in Microsoft Azure Emmanuell D Carreño, Eduardo Roloff, Jimmy V. Sanchez, and Philippe O. A. Navaux WSPPD 2015 - XIII Workshop de Processamento
1 Bull, 2011 Bull Extreme Computing
1 Bull, 2011 Bull Extreme Computing Table of Contents HPC Overview. Cluster Overview. FLOPS. 2 Bull, 2011 Bull Extreme Computing HPC Overview Ares, Gerardo, HPC Team HPC concepts HPC: High Performance
Early Cloud Experiences with the Kepler Scientific Workflow System
Available online at www.sciencedirect.com Procedia Computer Science 9 (2012 ) 1630 1634 International Conference on Computational Science, ICCS 2012 Early Cloud Experiences with the Kepler Scientific Workflow
Cloud Computing Solutions for Genomics Across Geographic, Institutional and Economic Barriers
Cloud Computing Solutions for Genomics Across Geographic, Institutional and Economic Barriers Ntinos Krampis Asst. Professor J. Craig Venter Institute [email protected] http://www.jcvi.org/cms/about/bios/kkrampis/
Introduction to grid technologies, parallel and cloud computing. Alaa Osama Allam Saida Saad Mohamed Mohamed Ibrahim Gaber
Introduction to grid technologies, parallel and cloud computing Alaa Osama Allam Saida Saad Mohamed Mohamed Ibrahim Gaber OUTLINES Grid Computing Parallel programming technologies (MPI- Open MP-Cuda )
LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance
11 th International LS-DYNA Users Conference Session # LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance Gilad Shainer 1, Tong Liu 2, Jeff Layton 3, Onur Celebioglu
1.0. User Manual For HPC Cluster at GIKI. Volume. Ghulam Ishaq Khan Institute of Engineering Sciences & Technology
Volume 1.0 FACULTY OF CUMPUTER SCIENCE & ENGINEERING Ghulam Ishaq Khan Institute of Engineering Sciences & Technology User Manual For HPC Cluster at GIKI Designed and prepared by Faculty of Computer Science
Finite Elements Infinite Possibilities. Virtual Simulation and High-Performance Computing
Microsoft Windows Compute Cluster Server 2003 Partner Solution Brief Finite Elements Infinite Possibilities. Virtual Simulation and High-Performance Computing Microsoft Windows Compute Cluster Server Runs
HPC and Big Data. EPCC The University of Edinburgh. Adrian Jackson Technical Architect [email protected]
HPC and Big Data EPCC The University of Edinburgh Adrian Jackson Technical Architect [email protected] EPCC Facilities Technology Transfer European Projects HPC Research Visitor Programmes Training
Manual for using Super Computing Resources
Manual for using Super Computing Resources Super Computing Research and Education Centre at Research Centre for Modeling and Simulation National University of Science and Technology H-12 Campus, Islamabad
wu.cloud: Insights Gained from Operating a Private Cloud System
wu.cloud: Insights Gained from Operating a Private Cloud System Stefan Theußl, Institute for Statistics and Mathematics WU Wirtschaftsuniversität Wien March 23, 2011 1 / 14 Introduction In statistics we
SURFsara HPC Cloud Workshop
SURFsara HPC Cloud Workshop doc.hpccloud.surfsara.nl UvA workshop 2016-01-25 UvA HPC Course Jan 2016 Anatoli Danezi, Markus van Dijk [email protected] Agenda Introduction and Overview (current
Simulation Platform Overview
Simulation Platform Overview Build, compute, and analyze simulations on demand www.rescale.com CASE STUDIES Companies in the aerospace and automotive industries use Rescale to run faster simulations Aerospace
Load Balancing on a Non-dedicated Heterogeneous Network of Workstations
Load Balancing on a Non-dedicated Heterogeneous Network of Workstations Dr. Maurice Eggen Nathan Franklin Department of Computer Science Trinity University San Antonio, Texas 78212 Dr. Roger Eggen Department
Part I Courses Syllabus
Part I Courses Syllabus This document provides detailed information about the basic courses of the MHPC first part activities. The list of courses is the following 1.1 Scientific Programming Environment
Cloud computing - Architecting in the cloud
Cloud computing - Architecting in the cloud [email protected] 1 Outline Cloud computing What is? Levels of cloud computing: IaaS, PaaS, SaaS Moving to the cloud? Architecting in the cloud Best practices
Installing and running COMSOL on a Linux cluster
Installing and running COMSOL on a Linux cluster Introduction This quick guide explains how to install and operate COMSOL Multiphysics 5.0 on a Linux cluster. It is a complement to the COMSOL Installation
Performance Evaluation of Amazon EC2 for NASA HPC Applications!
National Aeronautics and Space Administration Performance Evaluation of Amazon EC2 for NASA HPC Applications! Piyush Mehrotra!! J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff,! S. Saini, R. Biswas!
PRIMERGY server-based High Performance Computing solutions
PRIMERGY server-based High Performance Computing solutions PreSales - May 2010 - HPC Revenue OS & Processor Type Increasing standardization with shift in HPC to x86 with 70% in 2008.. HPC revenue by operating
HPC enabling of OpenFOAM R for CFD applications
HPC enabling of OpenFOAM R for CFD applications Towards the exascale: OpenFOAM perspective Ivan Spisso 25-27 March 2015, Casalecchio di Reno, BOLOGNA. SuperComputing Applications and Innovation Department,
Cellular Computing on a Linux Cluster
Cellular Computing on a Linux Cluster Alexei Agueev, Bernd Däne, Wolfgang Fengler TU Ilmenau, Department of Computer Architecture Topics 1. Cellular Computing 2. The Experiment 3. Experimental Results
Simple Introduction to Clusters
Simple Introduction to Clusters Cluster Concepts Cluster is a widely used term meaning independent computers combined into a unified system through software and networking. At the most fundamental level,
Pentaho High-Performance Big Data Reference Configurations using Cisco Unified Computing System
Pentaho High-Performance Big Data Reference Configurations using Cisco Unified Computing System By Jake Cornelius Senior Vice President of Products Pentaho June 1, 2012 Pentaho Delivers High-Performance
The Easiest Way to Run Spark Jobs. How-To Guide
The Easiest Way to Run Spark Jobs How-To Guide The Easiest Way to Run Spark Jobs Recently, Databricks added a new feature, Jobs, to our cloud service. You can find a detailed overview of this feature in
An Open MPI-based Cloud Computing Service Architecture
An Open MPI-based Cloud Computing Service Architecture WEI-MIN JENG and HSIEH-CHE TSAI Department of Computer Science Information Management Soochow University Taipei, Taiwan {wjeng, 00356001}@csim.scu.edu.tw
Scaling LS-DYNA on Rescale HPC Cloud Simulation Platform
Scaling LS-DYNA on Rescale HPC Cloud Simulation Platform Joris Poort, President & CEO, Rescale, Inc. Ilea Graedel, Manager, Rescale, Inc. 1 Cloud HPC on the Rise 1.1 Background Engineering and science
Hadoop Setup. 1 Cluster
In order to use HadoopUnit (described in Sect. 3.3.3), a Hadoop cluster needs to be setup. This cluster can be setup manually with physical machines in a local environment, or in the cloud. Creating a
ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING
ACCELERATING COMMERCIAL LINEAR DYNAMIC AND Vladimir Belsky Director of Solver Development* Luis Crivelli Director of Solver Development* Matt Dunbar Chief Architect* Mikhail Belyi Development Group Manager*
Flood Modelling for Cities using Cloud Computing FINAL REPORT. Vassilis Glenis, Vedrana Kutija, Stephen McGough, Simon Woodman, Chris Kilsby
Summary Flood Modelling for Cities using Cloud Computing FINAL REPORT Vassilis Glenis, Vedrana Kutija, Stephen McGough, Simon Woodman, Chris Kilsby Assessment of pluvial flood risk is particularly difficult
The Fastest Way to Parallel Programming for Multicore, Clusters, Supercomputers and the Cloud.
White Paper 021313-3 Page 1 : A Software Framework for Parallel Programming* The Fastest Way to Parallel Programming for Multicore, Clusters, Supercomputers and the Cloud. ABSTRACT Programming for Multicore,
Visualisation in the Google Cloud
Visualisation in the Google Cloud by Kieran Barker, 1 School of Computing, Faculty of Engineering ABSTRACT Providing software as a service is an emerging trend in the computing world. This paper explores
An HPC Application Deployment Model on Azure Cloud for SMEs
An HPC Application Deployment Model on Azure Cloud for SMEs Fan Ding CLOSER 2013, Aachen, Germany, May 9th,2013 Rechen- und Kommunikationszentrum (RZ) Agenda Motivation Windows Azure Relevant Technology
HPC Wales Skills Academy Course Catalogue 2015
HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses
Overview of HPC Resources at Vanderbilt
Overview of HPC Resources at Vanderbilt Will French Senior Application Developer and Research Computing Liaison Advanced Computing Center for Research and Education June 10, 2015 2 Computing Resources
Cloud Computing on Amazon's EC2
Technical Report Number CSSE10-04 1. Introduction to Amazon s EC2 Brandon K Maharrey [email protected] COMP 6330 Parallel and Distributed Computing Spring 2009 Final Project Technical Report Cloud Computing
Final Project Proposal. CSCI.6500 Distributed Computing over the Internet
Final Project Proposal CSCI.6500 Distributed Computing over the Internet Qingling Wang 660795696 1. Purpose Implement an application layer on Hybrid Grid Cloud Infrastructure to automatically or at least
Using the Windows Cluster
Using the Windows Cluster Christian Terboven [email protected] aachen.de Center for Computing and Communication RWTH Aachen University Windows HPC 2008 (II) September 17, RWTH Aachen Agenda o Windows Cluster
Amazon EC2 Product Details Page 1 of 5
Amazon EC2 Product Details Page 1 of 5 Amazon EC2 Functionality Amazon EC2 presents a true virtual computing environment, allowing you to use web service interfaces to launch instances with a variety of
A Cost-Evaluation of MapReduce Applications in the Cloud
1/23 A Cost-Evaluation of MapReduce Applications in the Cloud Diana Moise, Alexandra Carpen-Amarie Gabriel Antoniu, Luc Bougé KerData team 2/23 1 MapReduce applications - case study 2 3 4 5 3/23 MapReduce
ABAQUS High Performance Computing Environment at Nokia
ABAQUS High Performance Computing Environment at Nokia Juha M. Korpela Nokia Corporation Abstract: The new commodity high performance computing (HPC) hardware together with the recent ABAQUS performance
How To Set Up Wiremock In Anhtml.Com On A Testnet On A Linux Server On A Microsoft Powerbook 2.5 (Powerbook) On A Powerbook 1.5 On A Macbook 2 (Powerbooks)
The Journey of Testing with Stubs and Proxies in AWS Lucy Chang [email protected] Abstract Intuit, a leader in small business and accountants software, is a strong AWS(Amazon Web Services) partner
CloudFTP: A free Storage Cloud
CloudFTP: A free Storage Cloud ABSTRACT: The cloud computing is growing rapidly for it offers on-demand computing power and capacity. The power of cloud enables dynamic scalability of applications facing
PARALLEL & CLUSTER COMPUTING CS 6260 PROFESSOR: ELISE DE DONCKER BY: LINA HUSSEIN
1 PARALLEL & CLUSTER COMPUTING CS 6260 PROFESSOR: ELISE DE DONCKER BY: LINA HUSSEIN Introduction What is cluster computing? Classification of Cluster Computing Technologies: Beowulf cluster Construction
MapReduce and Hadoop Distributed File System V I J A Y R A O
MapReduce and Hadoop Distributed File System 1 V I J A Y R A O The Context: Big-data Man on the moon with 32KB (1969); my laptop had 2GB RAM (2009) Google collects 270PB data in a month (2007), 20000PB
Agenda. HPC Software Stack. HPC Post-Processing Visualization. Case Study National Scientific Center. European HPC Benchmark Center Montpellier PSSC
HPC Architecture End to End Alexandre Chauvin Agenda HPC Software Stack Visualization National Scientific Center 2 Agenda HPC Software Stack Alexandre Chauvin Typical HPC Software Stack Externes LAN Typical
Leveraging Windows HPC Server for Cluster Computing with Abaqus FEA
Leveraging Windows HPC Server for Cluster Computing with Abaqus FEA This white paper outlines the benefits of using Windows HPC Server as part of a cluster computing solution for performing realistic simulation.
Cloud Web-Based Operating System (Cloud Web Os)
Cloud Web-Based Operating System (Cloud Web Os) Hesham Abusaimeh Department of Computer Science, Faculty of Information Technology, Applied Science University, Amman, 11931 Jordan. ABSTRACT The cloud computing
How To Compare Amazon Ec2 To A Supercomputer For Scientific Applications
Amazon Cloud Performance Compared David Adams Amazon EC2 performance comparison How does EC2 compare to traditional supercomputer for scientific applications? "Performance Analysis of High Performance
Cloud Computing. Adam Barker
Cloud Computing Adam Barker 1 Overview Introduction to Cloud computing Enabling technologies Different types of cloud: IaaS, PaaS and SaaS Cloud terminology Interacting with a cloud: management consoles
Kashif Iqbal - PhD [email protected]
HPC/HTC vs. Cloud Benchmarking An empirical evalua.on of the performance and cost implica.ons Kashif Iqbal - PhD [email protected] ICHEC, NUI Galway, Ireland With acknowledgment to Michele MicheloDo
A programming model in Cloud: MapReduce
A programming model in Cloud: MapReduce Programming model and implementation developed by Google for processing large data sets Users specify a map function to generate a set of intermediate key/value
Data Sharing Options for Scientific Workflows on Amazon EC2
Data Sharing Options for Scientific Workflows on Amazon EC2 Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, Benjamin P. Berman, Bruce Berriman, Phil Maechling Francesco Allertsen Vrije Universiteit
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Haohuan Fu [email protected] High Performance Geo-Computing (HPGC) Group Center for Earth System Science Tsinghua University
SURFsara HPC Cloud Workshop
SURFsara HPC Cloud Workshop www.cloud.sara.nl Tutorial 2014-06-11 UvA HPC and Big Data Course June 2014 Anatoli Danezi, Markus van Dijk [email protected] Agenda Introduction and Overview (current
U"lizing the SDSC Cloud Storage Service
U"lizing the SDSC Cloud Storage Service PASIG Conference January 13, 2012 Richard L. Moore [email protected] San Diego Supercomputer Center University of California San Diego SAN DIEGO SUPERCOMPUTER CENTER
owncloud Enterprise Edition on IBM Infrastructure
owncloud Enterprise Edition on IBM Infrastructure A Performance and Sizing Study for Large User Number Scenarios Dr. Oliver Oberst IBM Frank Karlitschek owncloud Page 1 of 10 Introduction One aspect of
IBM Platform Computing Cloud Service Ready to use Platform LSF & Symphony clusters in the SoftLayer cloud
IBM Platform Computing Cloud Service Ready to use Platform LSF & Symphony clusters in the SoftLayer cloud February 25, 2014 1 Agenda v Mapping clients needs to cloud technologies v Addressing your pain
High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates
High Performance Computing (HPC) CAEA elearning Series Jonathan G. Dudley, Ph.D. 06/09/2015 2015 CAE Associates Agenda Introduction HPC Background Why HPC SMP vs. DMP Licensing HPC Terminology Types of
ST 810, Advanced computing
ST 810, Advanced computing Eric B. Laber & Hua Zhou Department of Statistics, North Carolina State University January 30, 2013 Supercomputers are expensive. Eric B. Laber, 2011, while browsing the internet.
MIKE by DHI 2014 e sviluppi futuri
MIKE by DHI 2014 e sviluppi futuri Johan Hartnack Torino, 9-10 Ottobre 2013 Technology drivers/trends Smart devices Cloud computing Services vs. Products Technology drivers/trends Multiprocessor hardware
