BIG DATA and Opportunities in the Life Insurance Industry
|
|
|
- Evan Hodge
- 10 years ago
- Views:
Transcription
1 BIG DATA and Opportunities in the Life Insurance Industry Marc Sofer BSc FFA FIAA Head of Strategic Initiatives North Asia & India RGA Reinsurance Company
2 BIG DATA I keep saying the sexy job in the next ten years will be statisticians. People think I'm joking, but who would've guessed that computer engineers would've been the sexy job of the 1990s? - Hal Varian, Chief Economist at Google 2 2
3 COMPLEXITY Evolution of Business Intelligence HIGH PREDICTION MONITORING ANALYSIS Why Did It Happen? REPORTING What Happened OPTIMIZATION What Will Be Happening? What is Happening Now? What Is The Best Outcome? Business Intelligence is Evolving Historically collected business data to find information primarily through reporting and monitoring of current activities using basic analytical processes. Now using advanced statistical and quantitative tools for prediction and optimization of business processes. LOW BUSINESS VALUE HIGH 3
4 What is Predictive Modeling? Put Simply Collect large data set(s) Analyze data, identify meaningful relationships Use these relationships to predict future defined outcomes to drive decisions Why bother? Brings the rigor of advanced statistical algorithms to get the most benefit from proprietary data assets. Improve the efficiency of existing business processes: o o o Creates new opportunities to enhance the sales process for direct and intermediated distribution. Claims management can be greatly improved. More accurate and granular view of the factors that affect portfolio experience. The improvements allowed by predictive modeling can provide an advantage that competitors will find difficult to replicate. 4
5 Life Insurance is Lagging Behind Key Inhibitors Lack of management familiarity. Product nature (long term & low frequency events). Ready access to required data. Implementation challenges: o o o Data preparation efforts Lack of adequate data Lack of skills and training Insufficient proof of accuracy and case studies. So many other priorities and opportunities! Predictive Modeling in General Insurance Source: 15% 85% VS Predictive Modeling in Life Insurance 50% 50% Tower Watson: Predictive Modeling Providing Its Worth Among P&C Insurers (2012). Society of Actuaries: Report of the Society of Actuaries Predictive Modeling Survey Subcommittee (2012) 5
6 Most Popular Uses of Predictive Modeling Propensity to Buy Models use customer information to determine who is most likely to purchase a product and target them thereby reducing acquisition costs. RGA Project in Taiwan. Predictive Underwriting models find the customers most likely to have a std. underwriting decision and offer them cover with reduced underwriting. RGA Projects in US, UK, Australia and South East Asia. Experience Analysis Models understand the true drivers of experience using multivariate analysis. RGA Projects in US, UK, South Africa, Japan, China and Korea. In Force Retention Models find out which policies are most likely to lapse and develop retention strategies for them. RGA Projects in the US and UK. Fraud Detection Models use claims data to determine those claims that are most likely to be fraudulent and focus forensic efforts on them. RGA Project in India. Agent Quality Assessment Models use policyholder and claims information to determine which agents add most value to the companies profitability. 6
7 Bancassurance Predictive Underwriting Objectives Bancassurer wanting to achieve growth in sales via the bancassurance channel. Sell bank customers protection products on a guaranteed issue or simplified issue basis with minimal impact on product price. Improve the customer experience by: o Issue policies faster. o Reduce the UW process for customers most likely to be standard. Easy Identification and targeting of good customers. Make the best use of internal data. 7
8 Bancassurance Predictive Underwriting Used two different sets of data Predictors Demographic (Age, Gender, Location, Branch) Asset or Debt Related (Accounts, AUM, TRB) Transactional (Bank Account or Credit Purchases) Response The underwriting decision when normal underwriting applied: Standard risk Rated Declined Linked to the same lives 8
9 Bancassurance Predictive Underwriting The Model Building Process Data Analytics Outcome De-personalized data provided to RGA. Limited number of cases: o A total of around 9,000 fully underwritten cases. o Target variable UW decision, with very low declined/rated cases < 5%. Each record had around 85 variables: o o Generalized Linear Model: easy to understand and gain acceptance in the business. Model using 11 statistically significant variables. Good differentiation of risks: o Many missing values especially for Sub-Standard lives. Not all information collected at the time of underwriting. For the best 20%, the average non-std rate was 5x better than the overall average. 9
10 Non-Std Rate Bancassurance Predictive Underwriting Model Results Most Predictive Variables Lift Plot Declined Rated Age at entry Branch Assets Under Management Customer Segment Nationality Average Non-Std Rate Simplified Issue Guaranteed Issue Score 0-10 Most likely Non-Standard Deciles Score Most likely Standard 10
11 Multi-line Company Cross-sell Model Background A large multi-line company with a very large P&C customer base. Low life product penetration. Objectives Increase life insurance penetration and leverage data from their large in-force P&C customer base. Offer a simplified underwriting and sales process with a low decline rate to the best customers. Reduce acquisition costs, improve experience, shorten underwriting turn-around time. Improve persistency of P&C customers as a result of a deeper relationship with clients. 11
12 Multi-line Company Cross-sell Model Predictive Underwriting model built using two sets of data Predictors P&C customer demographic, financial, underwriting, claims and admin data from both motor and home insurance. Other information normally collected at the life UW stage e.g. smoker status. Possible merger with 3rd party data sets. P&C data greatly increases depth of data and risk differentiation Linked to the same lives Response The underwriting decision when normal underwriting applied: Standard risk Rated Declined 12
13 Multi-line Company Cross-sell Model Model Results At least two dozen variables used for each model. Key variable examples: age, gender, auto violation points, liability limit, automobile type, no. of vehicles covered etc. Propensity to buy models were layered in on top of risk model to create a combined list of customers to target. 13
14 Fraudulent Claims Identification Model Objectives Identify which medical claims to investigate for fraud so as to make the best use of limited claims resources. Modeling Process Used a very comprehensive claims data set and built a GLM. Key Variable Examples: sum assured, duration, education, payment frequency, geography plus several interaction terms. Results Good model: Worst 20% have a 37% fraudulent claims rate and best 20% has 0.2% fraudulent claims rate. 60.0% 50.0% 40.0% 30.0% 20.0% 10.0% 0.0% Lift Curve of Claim Fraud Model Best groups Average Rate = 12% Worst groups
15 Incidence Non-Med Limit Risk Segmentation Model Objectives Determine optimal non-medical limits that should be used for different customer segments. Streamline the underwriting process by enforcing more stringent measures for high risks & vice versa. Identify low risk policyholders for upsell or cross-sell campaigns. Understand true drivers of experience to improve decision making. GLM Model using only insurance company data e.g. age, gender, marital status, occupation, region, agent rating, claims and many other variables. Incidence Rate vs. Face Amount Face Amount Model Building Process Data Source In-force + claims Study Period Product Total Exposure 5 years Critical Illness Around 7m life years Total Claims Around 10,000 15
16 Incidence Incidence Non-Med Limit Risk Segmentation Model Effectiveness of Medical Exams Non Med Med Obvious example of how a univariate analysis doesn t allow us to understand the true drivers of experience Year Year Year Year Year Impact of Medical Exam Removing the impact of age helps us understand what is driving the differences in claims experience Non Med Med - Age
17 Non-Med Limit Risk Segmentation Model Most Predictive Variables Variable Type Impact on claim Age and Gender Main/Interaction age, M F Duration Numeric Face Amount Numeric Insured Smoking Indicator Binary Y Region Categorical NE SW Relationship to Policyholder Categorical Self Agent Rating Categorical Tier X Tier Y RATING_GROUP Categorical Single Married 17
18 Non-Med Limit Risk Segmentation Model Incidence vs. Face Amount Probability of claiming increases as face amount increases. Non-medical limit is necessary to help control risks. Anti-selection appears to be the dominating force up to the NML limit. Probability to Claim
19 Incidence Incidence Non-Med Limit Risk Segmentation Model Model Results By Duration: Incidence rates reduce as policy duration increases which indicates severe anti-selective behavior. Agency Rating: The insurers current rating system works well with better experience business coming from higher rated agents Duration Factor
20 Incidence Non-Med Limit Risk Segmentation Model Setting Non Medical Limits Segment customers and set the non medical limit at or below the pricing assumption. 2.5% 2.0% 1.5% Income=100k, Risk Segment Coast1, 1 Agent Rating=Diamond Income=100k, Risk Segment Coast2, 2 Agent_Rating=Diamond Income=100k, Risk Segment Middle, 3 Agent_Rating=General 1.0% Priced Incidence Rate 0.5% 0.0% Face Amount
21 TransUnion and RGA Mortality Study Background Credit Bureaus in the US have enormous amounts of consumer credit data on nearly 200 million Americans. This data captures attributes of individuals related primarily to borrowing and repayment behaviors. Credit data captured by the credit bureaus results in nearly 1000 different variables that are used in many different credit scoring predictive models. RGA has been working closely with TransUnion (one of the 3 major credit bureaus in the United States), since April 2013 to better understand the predictive nature of credit data for life insurance. In early 2014, TransUnion completed work on the Credit Mortality Index (CMI) and shared the CMI values and 80 other credit variables on nearly 20 million individuals for RGA to complete an independent 12- year mortality study of the model. 21
22 TransUnion and RGA Mortality Study Potential Applications Target Market: o o Can be used to assist in the market segmentation process. Focus on the best risks for new customers or upsell / cross-sell campaigns. Conversion near the end of the level-term period: o o Assist in the selection of policies for conversion near end of term. Offer favorable conversion terms to less risky policyholders. Simplified issue programs: o Used in conjunction with other real-time data (violations, Rx, MIB). Additional segmentation in full underwriting. Lapse prediction and related underwriting actions (premium, face, payment terms, etc.) 22
23 TransUnion and RGA Mortality Study Credit Mortality Index (CMI) Modelling Process 1 Started with total credit-active population in 1998 included 90% of adult population 2 92m records gathered, results are credible due to size of data: 44m used to create CMI 30m used to test and validate CMI to avoid over-fitting the model 18m used for mortality study validation 3 Deaths over 12 year observation period ( ) were appended using the Social Security Master Death File, Oct 2011 version 4 Started with 800 credit variables and the final model consists of 53 variables with the highest stability, highest predictive power and low correlation amongst variables. Variable Examples: Months since oldest account opened Aggregate balance of all accounts, exc. Mortgage Payment pattern in last 18 months 5 Final CMI score is a single number ranging from (0 = lowest mortality risk) 23
24 TransUnion and RGA Mortality Study Combining Mortality Study with CMI 1 Created a 12-year ( ) traditional actuarial study on 18m lives 2 CMI was appended to the 18m records 3 Resulted in 194m exposure years 4 mapped to 1.1m deaths - Actual experience (using the Social Security Master Death file, Oct 2011 Version) 5 Base mortality table Expected experience: historical US population mortality tables with adjustments: Under-reported deaths in the Master Death file Gender mix in the data 6 A/E = Actual Experience / Expected Experience 24
25 AE (Adjusted Population) Exposure Count in Millions TransUnion and RGA Mortality Study Overall Results Blue bars represent exposure and we have a near uniform distribution of lives in the study. Each bar represents approximately 5% of the overall population. 300% Overall Mortality % % % 100% 50% % TU Mortality Index Model produces an A/E curve that is smooth and monotonically increasing. Score appears to be very predictive of mortality. The worst 5% of risks has an A/E of more than 5 times that of best 5%. The worst 10% has A/E of about 4 times that of best 10%. 0 25
26 AE (Adjusted Population) TransUnion and RGA Mortality Study Results by Entry Age Similar but parallel upward shift as age increases. Younger individuals with established credit seem to have better mortality (relative to the general population) than older individuals. Mortality by Issue Age 250% 200% % % % % TU Mortality Index Study also splits results by gender, duration (since data archive date) and US state. There is no significant difference in results when splitting into these groups (although broader state groupings did yield differences). 26
27 Typical Predictive Modeling Process 1. Define Purpose of the Model 2. Collect & Prepare the Data 3. Develop Models 4. Interpret & Apply Models 5. Monitor Results & Update Identify Business Motivations Gather Data Model Type Selection Interpret Results Monitor Output & Performance Identify Goals of the Model Understand Data Clean Data Transform Data? Split Data into Training Data& Validation Data Identify Constraints Train Model Test Model Validate Model Meets Requirements? Communicate / Gain Acceptance Create Rules Train Staff Deploy Model Test Results Against Objectives Refresh Data Refine Model 27
28 Closing Thoughts Where do I begin Figure out what current process needs to be optimized. Understand what your competitors are doing. We don t have data Few companies do but you ll be amazed by how much can be predicted with the data you already have. Speak to your business partners about data sharing. Start capturing and digitizing data so you ll have something to work with in the future. We don t have the expertize and risk appetite Locate and leverage existing resources in your organizations data/analytics teams. Seek outside resources to help build models and share in potential risks. Big projects are risky Start with a pilot and proof of concept. Learn, expand and repeat. I don t have the budget Consider the costs, benefits and risks by building a business case. Probably not as difficult and as expensive as you think 28
BIG DATA Driven Innovations in the Life Insurance Industry
BIG DATA Driven Innovations in the Life Insurance Industry Edmund Fong FIAA Vincent Or FSA RGA Reinsurance Company 13 November 2015 I keep saying the sexy job in the next ten years will be statisticians.
Predictive modelling around the world 28.11.13
Predictive modelling around the world 28.11.13 Agenda Why this presentation is really interesting Introduction to predictive modelling Case studies Conclusions Why this presentation is really interesting
SOA 2013 Life & Annuity Symposium May 6-7, 2013. Session 30 PD, Predictive Modeling Applications for Life and Annuity Pricing and Underwriting
SOA 2013 Life & Annuity Symposium May 6-7, 2013 Session 30 PD, Predictive Modeling Applications for Life and Annuity Pricing and Underwriting Moderator: Barry D. Senensky, FSA, FCIA, MAAA Presenters: Jonathan
Applications of Credit in Life Insurance
Applications of Credit in Life Insurance Southeastern Actuaries Conference Derek Kueker, FSA MAAA June 25, 2015 1 Proprietary & Confidential All of the information contained in this document is proprietary
Predictive Modeling Techniques in Insurance
Predictive Modeling Techniques in Insurance Tuesday May 5, 2015 JF. Breton Application Engineer 2014 The MathWorks, Inc. 1 Opening Presenter: JF. Breton: 13 years of experience in predictive analytics
Insurance Solutions. 17 October 2013. Risk Solutions
Insurance Solutions 17 October 2013 FORWARD LOOKING STATEMENTS This presentation contains forward looking statements within the meaning of Section 27A of the US Securities Act of 1933, as amended, and
Finding New Opportunities with Predictive Analytics. Stephanie Banfield 2013 Seminar for the Appointed Actuary Session 4 (Life)
Finding New Opportunities with Predictive Analytics Stephanie Banfield 2013 Seminar for the Appointed Actuary Session 4 (Life) Agenda First a Story What is Predictive Analytics? Predictive Underwriting
Report on the Lapse and Mortality Experience of Post-Level Premium Period Term Plans
Report on the Lapse and Mortality Experience of Post-Level Premium Period Term Plans Sponsored by The Product Development Section and The Committee on Life Insurance Research of the Society of Actuaries
Lessons From Down Under The D2C Market in Australia and what the UK can learn.
Lessons From Down Under The D2C Market in Australia and what the UK can learn. Kate Gillmore, Business Development Director, RGA Mick James, Business Development Director, RGA 7 May 2015 Australia: The
Predictive Analytics for Property Insurance Carriers
INSIGHT GUIDE Predictive Analytics for Property Insurance Carriers Michelle Jackson, Product Development Manager, TransUnion Lisa Volmar, Senior Director, Product Development, TransUnion 2015 TransUnion
Anti-Trust Notice. Agenda. Three-Level Pricing Architect. Personal Lines Pricing. Commercial Lines Pricing. Conclusions Q&A
Achieving Optimal Insurance Pricing through Class Plan Rating and Underwriting Driven Pricing 2011 CAS Spring Annual Meeting Palm Beach, Florida by Beth Sweeney, FCAS, MAAA American Family Insurance Group
Report on the Lapse and Mortality Experience of Post-Level Premium Period Term Plans (2014)
Report on the Lapse and Mortality Experience of Post-Level Premium Period Term Plans (2014) REVISED MAY 2014 SPONSORED BY Society of Actuaries PREPARED BY Derek Kueker, FSA Tim Rozar, FSA, CERA, MAAA Michael
Session 60 PD, Predictive Modeling Real Applications in Life Insurance and Annuities. Moderator: Ricardo Trachtman, FSA, MAAA
Session 60 PD, Predictive Modeling Real Applications in Life Insurance and Annuities Moderator: Ricardo Trachtman, FSA, MAAA Presenters: JJ Lane Carroll, FSA, MAAA Allen M. Klein, FSA, MAAA Scott Anthony
Predictive Analytics in Business. Oliver Werneyer Data and Distribution Leader 19 March 2014 Polish Business Analytics Summit, Warsaw
Predictive Analytics in Business Oliver Werneyer Data and Distribution Leader 19 March 2014 Polish Business Analytics Summit, Warsaw Everyone's talking about it November 2010 The Economist June 2012 August
Does smoking impact your mortality?
An estimated 25% of the medically underwritten, assured population can be classified as smokers Does smoking impact your mortality? Introduction Your smoking habits influence the premium that you pay for
Predictive Modelling Not just an underwriting tool
Predictive Modelling Not just an underwriting tool Joan Coverson 15 May 2013 Predictive Modelling - Agenda Predictive Modelling High level overview Some uses: Lapse propensity Geodemographics Business
How Automated Underwriting Engine and Analytics Software can transform insurers new business growth
How Automated Underwriting Engine and Analytics Software can transform insurers new business growth 3 rd Asia Insurance CIO Technology Summit 2014 Raphael P Young Raphael P. Young Senior Vice President,
Session1: Commercial Pricing & Rate Adequacy
08/08/2014 INSTITUTE OF ACTUARIES OF INDIA 5th Capacity Building Seminar in GI Session1: Commercial Pricing & Rate Adequacy Table of Contents 1. What is Commercial Insurance? 2. SME and Large Enterprises
Combining Linear and Non-Linear Modeling Techniques: EMB America. Getting the Best of Two Worlds
Combining Linear and Non-Linear Modeling Techniques: Getting the Best of Two Worlds Outline Who is EMB? Insurance industry predictive modeling applications EMBLEM our GLM tool How we have used CART with
PNB Life Insurance Inc. Risk Management Framework
1. Capital Management and Management of Insurance and Financial Risks Although life insurance companies are in the business of taking risks, the Company limits its risk exposure only to measurable and
SCORES OVERVIEW. TransUnion Scores
S OVERVIEW Scores 1 Table of Contents CreditVision Scores CreditVision Account Management Score.... 2 CreditVision Auto Score....3 CreditVision Bankruptcy Score....3 CreditVision HELOC Score....4 CreditVision
Preliminary Report on. Hong Kong Assured Lives Mortality and Critical Illness. Experience Study 2000-2003
Preliminary Report on Hong Kong Assured Lives Mortality and Critical Illness Experience Study 2000-2003 Actuarial Society of Hong Kong Experience Committee ASHK - Hong Kong Assured Lives Mortality and
BIG DATA ANALYTICS. in Insurance. How Big Data is Transforming Property and Casualty Insurance
BIG DATA ANALYTICS in Insurance How Big Data is Transforming Property and Casualty Insurance Contents Data: The Insurance Asset 1 Insurance in the Age of Big Data 1 Big Data Types in Property and Casualty
Moderator: Gregory A. Brandner, FSA, MAAA. Presenters: Gregory A. Brandner, FSA, MAAA Sean J. Conrad, FSA, MAAA Lisa Hollenbeck Renetzky, FSA, MAAA
Session 138 PD, Streamlined Underwriting and Product Development: Good, Fast and Cheap? Can I Get More than Just Two of Three? Moderator: Gregory A. Brandner, FSA, MAAA Presenters: Gregory A. Brandner,
Banking on Business Intelligence (BI)
Banking on Business Intelligence (BI) Building a business case for the Kenyan Banking Sector The new banking environment in Kenya is all about differentiating banking products, increased choices, security
IBM Business Analytics software for Insurance
IBM Business Analytics software for Insurance Nischal Kapoor Global Insurance Leader - APAC 2 Non-Life Insurance in Thailand Rising vehicle sales and mandatory motor third-party insurance supported the
LEVERAGING DATA ANALYTICS TO ACQUIRE AND RETAIN LIFE INSURANCE CUSTOMERS
Tactful Management Research Journal ISSN: 2319-7943 Impact Factor : 2.1632(UIF) LEVERAGING DATA ANALYTICS TO ACQUIRE AND RETAIN LIFE INSURANCE CUSTOMERS Ms. Archana V. Rao Assistant Professor, Model College
Credit Life Insurance (Group A)
Credit Life Insurance (Group A) By D Sai Srinivas, AASI Stuart Land, FIA, FASSA Prepared for the 8 th Global Conference of Actuaries, Mumbai, 2006 ABSTRACT This paper discusses the current situation of
Using Analytics beyond Price Optimisation. Francisco Gómez-Alvado, Towers Perrin Marcus Looft, Earnix
Using Analytics beyond Price Optimisation Francisco Gómez-Alvado, Towers Perrin Marcus Looft, Earnix 1 Agenda Introduction Using PO techniques for improved business analytics Some business cases Discussion
Predictive Analytics: Achieving Greater Decision Accuracy, Better Risk Segmentation, and Greater Profitability
Predictive Analytics: Achieving Greater Decision Accuracy, Better Risk Segmentation, and Greater Profitability Lamont D. Boyd, CPCU, AIM Insurance Market Director FICO Scoring Solutions [email protected]
Article from: Reinsurance News. February 2010 Issue 67
Article from: Reinsurance News February 2010 Issue 67 Life Settlements A Window Of Opportunity For The Life Insurance Industry? By Michael Shumrak Michael Shumrak, FSA, MAAA, FCA, is president of Shumrak
How To Price Insurance In Canada
The New Paradigm of Property & Casualty Insurance Pricing: Multivariate analysis and Predictive Modeling The ability to effectively price personal lines insurance policies to accurately match rate with
Price Optimization. For New Business Profit and Growth
Property & Casualty Insurance Price Optimization For New Business Profit and Growth By Angel Marin and Thomas Bayley Non-life companies want to maximize profits from new business. Price optimization can
Session 2 Generating Value from 'Big Data' Mark T. Bain
Session 2 Generating Value from 'Big Data' Mark T. Bain Presented by Mark Bain Head of Insurance Consulting KPMG GENERATING VALUE FROM BIG DATA 1 BIG DATA IS EVERYWHERE WHAT IS BIG DATA ALL ABOUT? WHAT
Specialty Insurance Where Are We Headed?
2013 PLUS D&O Symposium Specialty Insurance Where Are We Headed? David Cash Endurance Specialty New York - February 6-7, 2013 Keynote Outline 1. Who are the Specialty Companies? 2. Economic drivers for
Pricing the Critical Illness Risk: The Continuous Challenge.
Pricing the Critical Illness Risk: The Continuous Challenge. To be presented at the 6 th Global Conference of Actuaries, New Delhi 18 19 February 2004 Andres Webersinke, ACTUARY (DAV), FASSA, FASI 9 RAFFLES
U.S. Individual Life Insurance Persistency
Full Report U.S. Individual Life Insurance Persistency A Joint Study Sponsored by the Society of Actuaries and LIMRA Cathy Ho Product Research (860) 285-7794 [email protected] Reviewers Al Klein Tony R. Literer
Life Settlements. Southeastern Actuaries Conference. David J. Weinsier. November 20, 2008. 2008 Towers Perrin
Life Settlements Southeastern Actuaries Conference David J. Weinsier November 20, 2008 2008 Towers Perrin Agenda Introduction to the secondary market Valuing policies Impact on the life insurance industry
U.S. INDIVIDUAL LIFE INSURANCE PERSISTENCY UPDATE
A 2007 Report U.S. INDIVIDUAL LIFE INSURANCE PERSISTENCY UPDATE A JOINT STUDY SPONSORED BY LIMRA INTERNATIONAL AND THE SOCIETY OF ACTUARIES 2008, LIMRA International, Inc. 300 Day Hill Road, Windsor, Connecticut
SOA Annual Symposium Shanghai. November 5-6, 2012. Shanghai, China. Session 2a: Capital Market Drives Investment Strategy.
SOA Annual Symposium Shanghai November 5-6, 2012 Shanghai, China Session 2a: Capital Market Drives Investment Strategy Genghui Wu Capital Market Drives Investment Strategy Genghui Wu FSA, CFA, FRM, MAAA
Analytics: A Powerful Tool for the Life Insurance Industry
Life Insurance the way we see it Analytics: A Powerful Tool for the Life Insurance Industry Using analytics to acquire and retain customers Contents 1 Introduction 3 2 Analytics Support for Customer Acquisition
CANADA & TELEMATICS 1
CANADA & TELEMATICS 1 Telematics is expanding globally, with the US, Italy and UK leading EUROPE Market: Allianz making significant investment and partnering with OEMs. CANADA ~5% of insured private vehicles
Distribution Channels
Distribution Channels Johann van Niekerk FASSA/FIA RGA Reinsurance Company of South Africa Technical Seminar: Peering over our Borders June 2009 The security of experience. The power of innovation. www.rgare.com
Critical Illness Fit for the Elderly?
No. 31, October 2014 Critical Illness Fit for the Elderly? by Tim Eppert + Critical illness (CI) insurance provides a financial lifeline to people facing the consequences of being diagnosed with a severe
Major Trends in the Insurance Industry
To survive in today s volatile marketplace? Information or more precisely, Actionable Information is the key factor. For no other industry is it as important as for the Insurance Industry, which is almost
Actuarial Guidance Note 9: Best Estimate Assumptions
ACTUARIAL SOCIETY OF HONG KONG Actuarial Guidance Note 9: Best Estimate Assumptions 1. BACKGROUND AND PURPOSE 1.1 Best estimate assumptions are an essential and important component of actuarial work. The
Enhancement in Predictive Model for Insurance Underwriting
Enhancement in Predictive Model for Insurance Underwriting Akshay Bhalla ([email protected]) Application Developer, Computer Sciences Corporation India Ltd, Noida, UP Abstract Underwriting is the most
Art or Science? Modeling and Challenges in the Post-Financial Crisis Economy
Art or Science? Modeling and Challenges in the Post-Financial Crisis Economy Emre Sahingur, Ph.D. Chief Risk Officer for Model Risk Fannie Mae May 2015 2011 Fannie Mae. Trademarks of Fannie Mae. 2015 Fannie
Driving Insurance World through Science - 1 - Murli D. Buluswar Chief Science Officer
Driving Insurance World through Science - 1 - Murli D. Buluswar Chief Science Officer What is The Science Team s Mission? 2 What Gap Do We Aspire to Address? ü The insurance industry is data rich but ü
Assessing Sources of Funding for Insurance Risk Based Capital
Assessing Sources of Funding for Insurance Risk Based Capital Louis Lee Session Number: (ex. MBR4) AGENDA for Today 1. Motivations of Capital Needs 2. Practical Risk Based Capital Funding Options 3. Types
FUTURE CHALLENGES FOR THE LIFE INSURANCE INDUSTRY AN INTERNATIONAL PERSPECTIVE
FUTURE CHALLENGES FOR THE LIFE INSURANCE INDUSTRY AN INTERNATIONAL PERSPECTIVE ACLI Executive Roundtable 10 January 2013 Dr. Joachim Wenning Agenda 1 Economic growth and life business prospects 2 Product
LONG-TERM CARE INSURANCE PERSISTENCY EXPERIENCE
A 2006 Report LONG-TERM CARE INSURANCE PERSISTENCY EXPERIENCE A JOINT STUDY SPONSORED BY LIMRA INTERNATIONAL AND THE SOCIETY OF ACTUARIES LTC EXPERIENCE COMMITTEE Marianne Purushotham, FSA Product Research
U.S. INDIVIDUAL LIFE PERSISTENCY UPDATE
A 2005 Report U.S. INDIVIDUAL LIFE PERSISTENCY UPDATE A JOINT STUDY SPONSORED BY LIMRA INTERNATIONAL AND THE SOCIETY OF ACTUARIES Marianne Purushotham Product Research 860-285-7794 [email protected]
Intelligent Use of Competitive Analysis
Intelligent Use of Competitive Analysis 2011 Ratemaking and Product Management Seminar Kelleen Arquette March 21 22, 2011 2011 Towers Watson. All rights reserved. AGENDA Session agenda and objectives The
Product Management Case Study. What makes Effective Product Management Process?
What makes Effective Product Management Process? The Product: The steps involved in developing a product to eventually manage What is involved in the development of a product? Identify a Niche Consumer
Session 8: The Latest on Practical Uses of Big Data and Predictive Analytics. Moderator: Phil Murphy
Session 8: The Latest on Practical Uses of Big Data and Predictive Analytics Moderator: Phil Murphy Presenters: Ron Schaber Tim Hill Derek Kueker Jean Marc Fix Chris Stehno PRACTICAL USES OF BIG DATA AND
Growing Customer Value, One Unique Customer at a Time
Increasing Customer Value for Insurers How Predictive Analytics Can Help Insurance Organizations Maximize Customer Growth Opportunities www.spss.com/perspectives Introduction Trends Influencing Insurers
CRISIL Methodology for rating Life Insurance Companies. Tarun Bhatia Head Financial Sector Ratings
CRISIL Methodology for rating Life Insurance Companies Tarun Bhatia Head Financial Sector Ratings August 3, 2007 2. CRISIL Background First Rating Agency in India Largest Rating Agency outside of USA (fourth
U.S. Individual Life Insurance Persistency
Full Report U.S. Individual Life Insurance Persistency A Joint Study Sponsored by the Society of Actuaries and LIMRA Cathy Ho Product Research () 5-779 [email protected] Nancy S. Muise, CLU Product Research
Multi-channel Marketing
RIGHT TIME REVENUE OPTIMIZATION How To Get Started RIGHT TIME REVENUE OPTIMIZATION How To Get Started Summary: The Short List Here s our suggested short list from this paper: Multi-channel marketing is
White Paper. High Value Data and Analytics: Building a Platform for Growth
White Paper High Value Data and Analytics: Building a Platform for Growth What s hidden in your data? Analyze, realize and optimize the possibilities. Created by industry experts, this publication is the
Innovations and Value Creation in Predictive Modeling. David Cummings Vice President - Research
Innovations and Value Creation in Predictive Modeling David Cummings Vice President - Research ISO Innovative Analytics 1 Innovations and Value Creation in Predictive Modeling A look back at the past decade
Bancassurance Direct Marketing Strategies in Developing Markets
Bancassurance Direct Marketing Strategies in Developing Markets A Paper presented to the AIO Life Conference, Livingstone, Zambia on 5 November 2008 Bruce Sahd, General Manager: ReMark Africa Key Questions
Direct Marketing of Insurance. Integration of Marketing, Pricing and Underwriting
Direct Marketing of Insurance Integration of Marketing, Pricing and Underwriting As insurers move to direct distribution and database marketing, new approaches to the business, integrating the marketing,
Preneed Insurance Mortality Study
Preneed Insurance Mortality Study by the Deloitte-UConn Actuarial Center May 2008 Revised July 2008 Table of contents Introduction... 2 1. Background and Collection of Data... 3 2. Validation of Data and
Global Trends in Life Insurance: Policy Administration and Underwriting
What you need to know INSURANCE Global Trends in Life Insurance: Policy Administration and Underwriting Key policy administration and underwriting trends and their implications for the life insurance industry
Customer Segmentation and Predictive Modeling It s not an either / or decision.
WHITEPAPER SEPTEMBER 2007 Mike McGuirk Vice President, Behavioral Sciences 35 CORPORATE DRIVE, SUITE 100, BURLINGTON, MA 01803 T 781 494 9989 F 781 494 9766 WWW.IKNOWTION.COM PAGE 2 A baseball player would
Content. Christian Cypris SCOR Global Life SE, R&D Centre Karsten de Braaf SCOR Global Life SE, Asia Pacific, Product Development 07/05/2013
Critical i Illness in Asia A success story Christian Cypris SCOR Global Life SE, R&D Centre Karsten de Braaf SCOR Global Life SE, Asia Pacific, Product Development 07 May 2013 Content 1 International overview
FINANCIAL REVIEW. 18 Selected Financial Data 20 Management s Discussion and Analysis of Financial Condition and Results of Operations
2012 FINANCIAL REVIEW 18 Selected Financial Data 20 Management s Discussion and Analysis of Financial Condition and Results of Operations 82 Quantitative and Qualitative Disclosures About Market Risk 88
INDIVIDUAL DISABILITY INCOME INSURANCE LAPSE EXPERIENCE
A 2004 Report INDIVIDUAL DISABILITY INCOME INSURANCE LAPSE EXPERIENCE A JOINT STUDY SPONSORED BY LIMRA INTERNATIONAL AND THE SOCIETY OF ACTUARIES Marianne Purushotham, FSA Product Research 860 285 7794
U.S. Individual Life Insurance Persistency
A Joint Study Sponsored by LIMRA and the Society of Actuaries Full Report Cathy Ho Product Research 860.285.7794 [email protected] Nancy Muise Product Research 860.285.7892 [email protected] A 2009 Report
How To Buy Health Insurance
Post Retirement Health Insurance KC Cheung, FSA Regional Product Actuary Swiss Re, Life & Health Session Number: MBR10 Post-Retirement Health My Challenges What is post retirement healthcare? Post retirement
Big Data for Insurance Industry A perspective from Swiss Re
Big Data for Insurance Industry A perspective from Swiss Re Fredi Lienhardt, Manager Big Data & Smart Analytics Centre, Swiss Re 01 July 2014, Rüschlikon Picture Copyright: thep urai/shutterstock everything
A Deeper Look Inside Generalized Linear Models
A Deeper Look Inside Generalized Linear Models University of Minnesota February 3 rd, 2012 Nathan Hubbell, FCAS Agenda Property & Casualty (P&C Insurance) in one slide The Actuarial Profession Travelers
A Property & Casualty Insurance Predictive Modeling Process in SAS
Paper AA-02-2015 A Property & Casualty Insurance Predictive Modeling Process in SAS 1.0 ABSTRACT Mei Najim, Sedgwick Claim Management Services, Chicago, Illinois Predictive analytics has been developing
Statement of the Fair, Isaac and Company Inc. To the Office of Financial and Insurance Services. 2002 Public Hearings
Statement of the Fair, Isaac and Company Inc. To the Office of Financial and Insurance Services 2002 Public Hearings Fair, Isaac is a global provider of custom analytics and decision technology. Widely
Aspects of Underwriting for Actuaries
Aspects of Underwriting for Actuaries Cathal Rabbitte Presented to: Global Conference of Actuaries February 2009, Mumbai Introduction This presentation does not set out to be comprehensive on the broad
Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví. Pavel Kříž. Seminář z aktuárských věd MFF 4.
Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví Pavel Kříž Seminář z aktuárských věd MFF 4. dubna 2014 Summary 1. Application areas of Insurance Analytics 2. Insurance Analytics
