Tutorial for the WGCNA package for R I. Network analysis of liver expression data in female mice
|
|
|
- Sharyl Perkins
- 10 years ago
- Views:
Transcription
1 Tutorial for the WGCNA package for R I. Network analysis of liver expression data in female mice 2.c Dealing with large data sets: block-wise network construction and module detection Peter Langfelder and Steve Horvath November 25, 2014 Contents 0 Preliminaries: setting up the R session 1 2 Construction of the gene network and identification of modules 2 2.c Automatic block-wise network construction and module detection c.1 Choosing the soft-thresholding power: analysis of network topology c.2 Block-wise network construction and module detection c.3 Comparing the single block and block-wise network analysis Preliminaries: setting up the R session Here we assume that a new R session has just been started. We load the WGCNA package, set up basic parameters and load data saved in the first part of the tutorial. Important note: The code below uses parallel computation where multiple cores are available. This works well when R is run from a terminal or from the Graphical User Interface (GUI) shipped with R itself, but at present it does not work with RStudio and possibly other third-party R environments. If you use RStudio or other third-party R environments, skip the enablewgcnathreads() call below. # Display the current working directory getwd(); # If necessary, change the path below to the directory where the data files are stored. # "." means current directory. On Windows use a forward slash / instead of the usual \. workingdir = "."; setwd(workingdir); # Load the WGCNA package library(wgcna) # The following setting is important, do not omit. options(stringsasfactors = FALSE); # Allow multi-threading within WGCNA. This helps speed up certain calculations. # At present this call is necessary. # Any error here may be ignored but you may want to update WGCNA if you see one. # Caution: skip this line if you run RStudio or other third-party R environments. # See note above. enablewgcnathreads() # Load the data saved in the first part
2 lnames = load(file = "FemaleLiver-01-dataInput.RData"); #The variable lnames contains the names of loaded variables. lnames We have loaded the variables datexpr and dattraits containing the expression and trait data, respectively. 2 Construction of the gene network and identification of modules This step is the bedrock of all network analyses using the WGCNA methodology. We present three different ways of constructing a network and identifying modules: a. Using a convenient 1-step network construction and module detection function, suitable for users wishing to arrive at the result with minimum effort; b. Step-by-step network construction and module detection for users who would like to experiment with customized/alternate methods; c. An automatic block-wise network construction and module detection method for users who wish to analyze data sets too large to be analyzed all in one. In this tutorial section, we illustrate the automatic block-wise network construction and module detection, suitable for large data sets. 2.c Automatic block-wise network construction and module detection 2.c.1 Choosing the soft-thresholding power: analysis of network topology Constructing a weighted gene network entails the choice of the soft thresholding power β to which co-expression similarity is raised to calculate adjacency [1]. The authors of [1] have proposed to choose the soft thresholding power based on the criterion of approximate scale-free topology. We refer the reader to that work for more details; here we illustrate the use of the function picksoftthreshold that performs the analysis of network topology and aids the user in choosing a proper soft-thresholding power. The user chooses a set of candidate powers (the function provides suitable default values), and the function returns a set of network indices that should be inspected, for example as follows: # Choose a set of soft-thresholding powers powers = c(c(1:10), seq(from = 12, to=20, by=2)) # Call the network topology analysis function sft = picksoftthreshold(datexpr, powervector = powers, verbose = 5) # Plot the results: sizegrwindow(9, 5) par(mfrow = c(1,2)); cex1 = 0.9; # Scale-free topology fit index as a function of the soft-thresholding power plot(sft$fitindices[,1], -sign(sft$fitindices[,3])*sft$fitindices[,2], xlab="soft Threshold (power)",ylab="scale Free Topology Model Fit,signed R^2",type="n", main = paste("scale independence")); text(sft$fitindices[,1], -sign(sft$fitindices[,3])*sft$fitindices[,2], labels=powers,cex=cex1,col="red"); # this line corresponds to using an R^2 cut-off of h abline(h=0.90,col="red") # Mean connectivity as a function of the soft-thresholding power plot(sft$fitindices[,1], sft$fitindices[,5], xlab="soft Threshold (power)",ylab="mean Connectivity", type="n", main = paste("mean connectivity")) text(sft$fitindices[,1], sft$fitindices[,5], labels=powers, cex=cex1,col="red") The result is shown in Fig. 1. We choose the power 6, which is the lowest power for which the scale-free topology fit index curve flattens out upon reaching a high value (in this case, roughly 0.90).
3 Scale independence Mean connectivity Scale Free Topology Model Fit,signed R^ Soft Threshold (power) Mean Connectivity Soft Threshold (power) Figure 1: Analysis of network topology for various soft-thresholding powers. The left panel shows the scale-free fit index (y-axis) as a function of the soft-thresholding power (x-axis). The right panel displays the mean connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis). 2.c.2 Block-wise network construction and module detection Throughout this tutorial we work with a relatively small data set of 3600 measured probes. However, modern microarrays measure up to 50,000 probe expression levels at once. Constructing and analyzing networks with such large numbers of nodes is computationally challenging even on a large server. We now illustrate a method, implemented in the WGCNA package, that allows the user to perform a network analysis with such a large number of genes. Instead of actually using a very large data set, we will for simplicity pretend that hardware limitations restrict the number of genes that can be analyzed at once to The basic idea is to use a two-level clustering. First, we use a fast, computationally inexpensive and relatively crude clustering method to pre-cluster genes into blocks of size close to and not exceeding the maximum of 2000 genes. We then perform a full network analysis in each block separately. At the end, modules whose eigengenes are highly correlated are merged. The advantage of the block-wise approach is a much smaller memory footprint (which is the main problem with large data sets on standard desktop computers), and a significant speed-up of the calculations. The trade-off is that due to using a simpler clustering to obtain blocks, the blocks may not be optimal, causing some outlying genes to be assigned to a different module than they would be in a full network analysis. We will now pretend that even the relatively small number of genes, 3600, that we have been using here is too large, and the computer we run the analysis on is not capable of handling more than 2000 genes in one block. The automatic network construction and module detection function blockwisemodules can handle the splitting into blocks automatically; the user just needs to specify the largest number of genes that can fit in a block: bwnet = blockwisemodules(datexpr, maxblocksize = 2000, power = 6, TOMType = "unsigned", minmodulesize = 30, reassignthreshold = 0, mergecutheight = 0.25, numericlabels = TRUE, savetoms = TRUE, savetomfilebase = "femalemousetom-blockwise", verbose = 3) We have chosen the soft thresholding power 6, a relatively large minimum module size of 30, and a medium sensitivity (deepsplit=2) to cluster splitting. The parameter mergecutheight is the threshold for merging of modules. We have also instructed the function to return numeric, rather than color, labels for modules, and to save the Topological Overlap Matrix. The output of the function may seem somewhat cryptic, but it is easy to use. For example,
4 bwnet$colors contains the module assignment, and bwnet$mes contains the module eigengenes of the modules. A word of caution for the readers who would like to adapt this code for their own data. The function blockwisemodules has many parameters, and in this example most of them are left at their default value. We have attempted to provide reasonable default values, but they may not be appropriate for the particular data set the reader wishes to analyze. We encourage the user to read the help file provided within the package in the R environment and experiment with tweaking the network construction and module detection parameters. The potential reward is, of course, better (biologically more relevant) results of the analysis. A second word of caution concerning block size. In particular, the parameter maxblocksize tells the function how large the largest block can be that the reader s computer can handle. In this example we have set the maximum block size to 2000 to illustrate the block-wise analysis and its results, but this value is needlessly small for most modern computers; the default is 5000 which is appropriate for most modern desktops. If the reader has access to a large workstation with more than 4 GB of memory, the parameter maxblocksize can be increased. A 16GB workstation should handle up to probes; a 32GB workstation should handle perhaps A 4GB standard desktop or a laptop may handle up to probes, depending on operating system and other running programs. In general it is preferable to analyze a data set in as few blocks as possible. Below we will compare the results of this analysis to the results of Section 2.a in which all genes were analyzed in a single block. To make the comparison easier, we relabel the block-wise module labels so that modules with a significant overlap with single-block modules have the same label: # Load the results of single-block analysis load(file = "FemaleLiver-02-networkConstruction-auto.RData"); # Relabel blockwise modules bwlabels = matchlabels(bwnet$colors, modulelabels); # Convert labels to colors for plotting bwmodulecolors = labels2colors(bwlabels) To see how many modules were identified and what the module sizes are, one can use table(bwlabels). Its output is > table(bwlabels) and indicates that there are 20 modules, labeled 1 through 20, The label 0 is reserved for genes outside of all modules. The hierarchical clustering dendrograms (trees) used for the module identification for each block are returned in bwnet$dendrograms[[1]], bwnet$dendrograms[[2]]. The dendrograms can be displayed together with the color assignment using the following code: # open a graphics window sizegrwindow(6,6) # Plot the dendrogram and the module colors underneath for block 1 plotdendroandcolors(bwnet$dendrograms[[1]], bwmodulecolors[bwnet$blockgenes[[1]]], "Module colors", main = "Gene dendrogram and module colors in block 1", dendrolabels = FALSE, hang = 0.03, addguide = TRUE, guidehang = 0.05) # Plot the dendrogram and the module colors underneath for block 2 plotdendroandcolors(bwnet$dendrograms[[2]], bwmodulecolors[bwnet$blockgenes[[2]]], "Module colors", main = "Gene dendrogram and module colors in block 2", dendrolabels = FALSE, hang = 0.03, addguide = TRUE, guidehang = 0.05) The resulting plots are shown in Fig. 2. We note that if the user would like to change some of the tree cut, module membership, and module merging criteria, the package provides the function recutblockwisetrees that can apply modified criteria without having to recompute the network and the clustering dendrogram, thus saving a substantial amount of time.
5 Gene dendrogram and module colors in block 1 Gene dendrogram and module colors in block 2 Height Height Module colors Module colors Figure 2: Clustering dendrograms of genes, with dissimilarity based on topological overlap, together with assigned module colors. There is one gene dendrogram per block. 2.c.3 Comparing the single block and block-wise network analysis We now compare the results of the block-wise analysis with 2 blocks to the results Section 2.a in which all genes were analyzed in a single block. A simple visual check can be obtained by plotting the single-block dendrogram with the single-block and block-wise module colors underneath the dendrogram: sizegrwindow(12,9) plotdendroandcolors(genetree, cbind(modulecolors, bwmodulecolors), c("single block", "2 blocks"), main = "Single block gene dendrogram and module colors", dendrolabels = FALSE, hang = 0.03, addguide = TRUE, guidehang = 0.05) The resulting plot is shown in Fig. 3. Visual inspection confirms that there is excellent agreement between the single-block and the block-wise module assignment. We now verify that module eigengenes of modules that correspond to one another in the single-block and block-wise approaches are extremely similar. We first calculate the module eigengenes based on the single block and block-wise module colors: singleblockmes = moduleeigengenes(datexpr, modulecolors)$eigengenes; blockwisemes = moduleeigengenes(datexpr, bwmodulecolors)$eigengenes; Next we match the single-block and block-wise eigengenes by name and calculate the correlations of the corresponding eigengenes: single2blockwise = match(names(singleblockmes), names(blockwisemes)) signif(diag(cor(blockwisemes[, single2blockwise], singleblockmes)), 3) The result is > signif(diag(cor(blockwisemes[, single2blockwise], singleblockmes)), 3) MEblack MEblue MEbrown MEcyan MEgreen
6 Single block gene dendrogram and module colors Height Single block 2 blocks Figure 3: Clustering dendrogram of genes obtained in the single-block analysis in Section 2.a, together with module colors determined in the single-block analysis and the module colors determined in the block-wise analysis. There is excellent agreement between the single-block and block-wise network construction and module detection MEgreenyellow MEgrey MEgrey60 MElightcyan MElightgreen MEmagenta MEmidnightblue MEpink MEpurple MEred MEsalmon MEtan MEturquoise MEyellow Each number above represents the correlation of a single-block eigengene with its corresponding block-wise counterpart. The correlations are all very close to 1 (the turquoise eigengene changed orientation), again indicating that the block-wise and single-block analyses lead to very similar results. References [1] B. Zhang and S. Horvath. A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4(1):Article 17, 2005.
Tutorial for the WGCNA package for R: I. Network analysis of liver expression data in female mice
Tutorial for the WGCNA package for R: I. Network analysis of liver expression data in female mice 2.a Automatic network construction and module detection Peter Langfelder and Steve Horvath November 25,
Tutorial for the WGCNA package for R: I. Network analysis of liver expression data in female mice
Tutorial for the WGCNA package for R: I. Network analysis of liver expression data in female mice 2.b Step-by-step network construction and module detection Peter Langfelder and Steve Horvath November
Methods for network visualization and gene enrichment analysis July 17, 2013. Jeremy Miller Scientist I [email protected]
Methods for network visualization and gene enrichment analysis July 17, 2013 Jeremy Miller Scientist I [email protected] Outline Visualizing networks using R Visualizing networks using outside
Statistical Applications in Genetics and Molecular Biology
Statistical Applications in Genetics and Molecular Biology Volume 4, Issue 1 2005 Article 17 A General Framework for Weighted Gene Co-Expression Network Analysis Bin Zhang Steve Horvath Departments of
A General Framework for Weighted Gene Co-expression Network Analysis
Please cite: Statistical Applications in Genetics and Molecular Biology (2005). A General Framework for Weighted Gene Co-expression Network Analysis Bin Zhang and Steve Horvath Departments of Human Genetics
COC131 Data Mining - Clustering
COC131 Data Mining - Clustering Martin D. Sykora [email protected] Tutorial 05, Friday 20th March 2009 1. Fire up Weka (Waikako Environment for Knowledge Analysis) software, launch the explorer window
Clustering. 15-381 Artificial Intelligence Henry Lin. Organizing data into clusters such that there is
Clustering 15-381 Artificial Intelligence Henry Lin Modified from excellent slides of Eamonn Keogh, Ziv Bar-Joseph, and Andrew Moore What is Clustering? Organizing data into clusters such that there is
Hierarchical Clustering Analysis
Hierarchical Clustering Analysis What is Hierarchical Clustering? Hierarchical clustering is used to group similar objects into clusters. In the beginning, each row and/or column is considered a cluster.
They can be obtained in HQJHQH format directly from the home page at: http://www.engene.cnb.uam.es/downloads/kobayashi.dat
HQJHQH70 *XLGHG7RXU This document contains a Guided Tour through the HQJHQH platform and it was created for training purposes with respect to the system options and analysis possibilities. It is not intended
A Demonstration of Hierarchical Clustering
Recitation Supplement: Hierarchical Clustering and Principal Component Analysis in SAS November 18, 2002 The Methods In addition to K-means clustering, SAS provides several other types of unsupervised
Steven M. Ho!and. Department of Geology, University of Georgia, Athens, GA 30602-2501
CLUSTER ANALYSIS Steven M. Ho!and Department of Geology, University of Georgia, Athens, GA 30602-2501 January 2006 Introduction Cluster analysis includes a broad suite of techniques designed to find groups
JustClust User Manual
JustClust User Manual Contents 1. Installing JustClust 2. Running JustClust 3. Basic Usage of JustClust 3.1. Creating a Network 3.2. Clustering a Network 3.3. Applying a Layout 3.4. Saving and Loading
Cluster Analysis using R
Cluster analysis or clustering is the task of assigning a set of objects into groups (called clusters) so that the objects in the same cluster are more similar (in some sense or another) to each other
Tutorial for proteome data analysis using the Perseus software platform
Tutorial for proteome data analysis using the Perseus software platform Laboratory of Mass Spectrometry, LNBio, CNPEM Tutorial version 1.0, January 2014. Note: This tutorial was written based on the information
TIBCO Spotfire Business Author Essentials Quick Reference Guide. Table of contents:
Table of contents: Access Data for Analysis Data file types Format assumptions Data from Excel Information links Add multiple data tables Create & Interpret Visualizations Table Pie Chart Cross Table Treemap
Manage Software Development in LabVIEW with Professional Tools
Manage Software Development in LabVIEW with Professional Tools Introduction For many years, National Instruments LabVIEW software has been known as an easy-to-use development tool for building data acquisition
Comparative Analysis Report:
Comparative Analysis Report: Visualization Tools & Platforms By Annabel Weiner, Erol Basusta, Leah Wilkinson, and Quenton Oakes Table of Contents Executive Summary Introduction Assessment Criteria Publishability
Distances, Clustering, and Classification. Heatmaps
Distances, Clustering, and Classification Heatmaps 1 Distance Clustering organizes things that are close into groups What does it mean for two genes to be close? What does it mean for two samples to be
Enron Network Analysis Tutorial r date()
Enron Network Analysis Tutorial r date() Enron Tutorial We provide this Enron Tutorial as an appendix to the paper in Journal of Statistical Education, Network Analysis with the Enron Email Corpus. The
Visualizing non-hierarchical and hierarchical cluster analyses with clustergrams
Visualizing non-hierarchical and hierarchical cluster analyses with clustergrams Matthias Schonlau RAND 7 Main Street Santa Monica, CA 947 USA Summary In hierarchical cluster analysis dendrogram graphs
Knowledge Discovery and Data Mining
Knowledge Discovery and Data Mining Lecture 15 - ROC, AUC & Lift Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk [email protected] Tom Kelsey ID5059-17-AUC
Scalable Data Analysis in R. Lee E. Edlefsen Chief Scientist UserR! 2011
Scalable Data Analysis in R Lee E. Edlefsen Chief Scientist UserR! 2011 1 Introduction Our ability to collect and store data has rapidly been outpacing our ability to analyze it We need scalable data analysis
Quick Start. Creating a Scoring Application. RStat. Based on a Decision Tree Model
Creating a Scoring Application Based on a Decision Tree Model This Quick Start guides you through creating a credit-scoring application in eight easy steps. Quick Start Century Corp., an electronics retailer,
Step-by-Step Guide to Bi-Parental Linkage Mapping WHITE PAPER
Step-by-Step Guide to Bi-Parental Linkage Mapping WHITE PAPER JMP Genomics Step-by-Step Guide to Bi-Parental Linkage Mapping Introduction JMP Genomics offers several tools for the creation of linkage maps
Tutorial: 3D Pipe Junction Using Hexa Meshing
Tutorial: 3D Pipe Junction Using Hexa Meshing Introduction In this tutorial, you will generate a mesh for a three-dimensional pipe junction. After checking the quality of the first mesh, you will create
UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS
UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS Dwijesh C. Mishra I.A.S.R.I., Library Avenue, New Delhi-110 012 [email protected] What is Learning? "Learning denotes changes in a system that enable
Introduction Course in SPSS - Evening 1
ETH Zürich Seminar für Statistik Introduction Course in SPSS - Evening 1 Seminar für Statistik, ETH Zürich All data used during the course can be downloaded from the following ftp server: ftp://stat.ethz.ch/u/sfs/spsskurs/
Analysis report examination with CUBE
Analysis report examination with CUBE Brian Wylie Jülich Supercomputing Centre CUBE Parallel program analysis report exploration tools Libraries for XML report reading & writing Algebra utilities for report
Exercise with Gene Ontology - Cytoscape - BiNGO
Exercise with Gene Ontology - Cytoscape - BiNGO This practical has material extracted from http://www.cbs.dtu.dk/chipcourse/exercises/ex_go/goexercise11.php In this exercise we will analyze microarray
R software tutorial: Random Forest Clustering Applied to Renal Cell Carcinoma Steve Horvath and Tao Shi
R software tutorial: Random Forest Clustering Applied to Renal Cell Carcinoma Steve orvath and Tao Shi Correspondence: [email protected] Department of uman Genetics and Biostatistics University
Big Data Visualization for Genomics. Luca Vezzadini Kairos3D
Big Data Visualization for Genomics Luca Vezzadini Kairos3D Why GenomeCruzer? The amount of data for DNA sequencing is growing Modern hardware produces billions of values per sample Scientists need to
Data processing goes big
Test report: Integration Big Data Edition Data processing goes big Dr. Götz Güttich Integration is a powerful set of tools to access, transform, move and synchronize data. With more than 450 connectors,
Basic Analysis of Microarray Data
Basic Analysis of Microarray Data A User Guide and Tutorial Scott A. Ness, Ph.D. Co-Director, Keck-UNM Genomics Resource and Dept. of Molecular Genetics and Microbiology University of New Mexico HSC Tel.
HP Intelligent Management Center v7.1 Virtualization Monitor Administrator Guide
HP Intelligent Management Center v7.1 Virtualization Monitor Administrator Guide Abstract This guide describes the Virtualization Monitor (vmon), an add-on service module of the HP Intelligent Management
Research of Railway Wagon Flow Forecast System Based on Hadoop-Hazelcast
International Conference on Civil, Transportation and Environment (ICCTE 2016) Research of Railway Wagon Flow Forecast System Based on Hadoop-Hazelcast Xiaodong Zhang1, a, Baotian Dong1, b, Weijia Zhang2,
Tutorial: 2D Pipe Junction Using Hexa Meshing
Tutorial: 2D Pipe Junction Using Hexa Meshing Introduction In this tutorial, you will generate a mesh for a two-dimensional pipe junction, composed of two inlets and one outlet. After generating an initial
FlowMergeCluster Documentation
FlowMergeCluster Documentation Description: Author: Clustering of flow cytometry data using the FlowMerge algorithm. Josef Spidlen, [email protected] Please see the gp-flowcyt-help Google Group (https://groups.google.com/a/broadinstitute.org/forum/#!forum/gpflowcyt-help)
Dynamic Network Analyzer Building a Framework for the Graph-theoretic Analysis of Dynamic Networks
Dynamic Network Analyzer Building a Framework for the Graph-theoretic Analysis of Dynamic Networks Benjamin Schiller and Thorsten Strufe P2P Networks - TU Darmstadt [schiller, strufe][at]cs.tu-darmstadt.de
Performance Analysis and Optimization Tool
Performance Analysis and Optimization Tool Andres S. CHARIF-RUBIAL [email protected] Performance Analysis Team, University of Versailles http://www.maqao.org Introduction Performance Analysis Develop
7 Time series analysis
7 Time series analysis In Chapters 16, 17, 33 36 in Zuur, Ieno and Smith (2007), various time series techniques are discussed. Applying these methods in Brodgar is straightforward, and most choices are
Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/8/2004 Hierarchical
Arena Tutorial 1. Installation STUDENT 2. Overall Features of Arena
Arena Tutorial This Arena tutorial aims to provide a minimum but sufficient guide for a beginner to get started with Arena. For more details, the reader is referred to the Arena user s guide, which can
Exiqon Array Software Manual. Quick guide to data extraction from mircury LNA microrna Arrays
Exiqon Array Software Manual Quick guide to data extraction from mircury LNA microrna Arrays March 2010 Table of contents Introduction Overview...................................................... 3 ImaGene
Didacticiel Études de cas
1 Theme Data Mining with R The rattle package. R (http://www.r project.org/) is one of the most exciting free data mining software projects of these last years. Its popularity is completely justified (see
MultiExperiment Viewer Quickstart Guide
MultiExperiment Viewer Quickstart Guide Table of Contents: I. Preface - 2 II. Installing MeV - 2 III. Opening a Data Set - 2 IV. Filtering - 6 V. Clustering a. HCL - 8 b. K-means - 11 VI. Modules a. T-test
Big Data Analytics - Accelerated. stream-horizon.com
Big Data Analytics - Accelerated stream-horizon.com StreamHorizon & Big Data Integrates into your Data Processing Pipeline Seamlessly integrates at any point of your your data processing pipeline Implements
Package bigrf. February 19, 2015
Version 0.1-11 Date 2014-05-16 Package bigrf February 19, 2015 Title Big Random Forests: Classification and Regression Forests for Large Data Sets Maintainer Aloysius Lim OS_type
DB2 Connect for NT and the Microsoft Windows NT Load Balancing Service
DB2 Connect for NT and the Microsoft Windows NT Load Balancing Service Achieving Scalability and High Availability Abstract DB2 Connect Enterprise Edition for Windows NT provides fast and robust connectivity
DHL Data Mining Project. Customer Segmentation with Clustering
DHL Data Mining Project Customer Segmentation with Clustering Timothy TAN Chee Yong Aditya Hridaya MISRA Jeffery JI Jun Yao 3/30/2010 DHL Data Mining Project Table of Contents Introduction to DHL and the
An Order-Invariant Time Series Distance Measure [Position on Recent Developments in Time Series Analysis]
An Order-Invariant Time Series Distance Measure [Position on Recent Developments in Time Series Analysis] Stephan Spiegel and Sahin Albayrak DAI-Lab, Technische Universität Berlin, Ernst-Reuter-Platz 7,
SA-9600 Surface Area Software Manual
SA-9600 Surface Area Software Manual Version 4.0 Introduction The operation and data Presentation of the SA-9600 Surface Area analyzer is performed using a Microsoft Windows based software package. The
Using MATLAB to Measure the Diameter of an Object within an Image
Using MATLAB to Measure the Diameter of an Object within an Image Keywords: MATLAB, Diameter, Image, Measure, Image Processing Toolbox Author: Matthew Wesolowski Date: November 14 th 2014 Executive Summary
Visualization of Phylogenetic Trees and Metadata
Visualization of Phylogenetic Trees and Metadata November 27, 2015 Sample to Insight CLC bio, a QIAGEN Company Silkeborgvej 2 Prismet 8000 Aarhus C Denmark Telephone: +45 70 22 32 44 www.clcbio.com [email protected]
Creating Custom Crystal Reports Tutorial
Creating Custom Crystal Reports Tutorial 020812 2012 Blackbaud, Inc. This publication, or any part thereof, may not be reproduced or transmitted in any form or by any means, electronic, or mechanical,
IT Infrastructure Management
IT Infrastructure Management Server-Database Monitoring An Overview XIPHOS TECHNOLOGY SOLUTIONS PVT LIMITED 32/3L, GARIAHAT ROAD (SOUTH) KOLKATA 700 078, WEST BENGAL, INDIA WWW.XIPHOSTEC.COM Xiphos Technology
TSPrint - Usage Guide. Usage Guide. TerminalWorks TSPrint Usage Guide. [email protected]
Usage Guide TerminalWorks TSPrint Usage Guide Page 1 Contents TSPrint license system... 4 Software requirements... 5 Installation... 6 TSPrint client installation... 6 TSPrint server installation... 10
Cluster Analysis. Aims and Objectives. What is Cluster Analysis? How Does Cluster Analysis Work? Postgraduate Statistics: Cluster Analysis
Aims and Objectives By the end of this seminar you should: Cluster Analysis Have a working knowledge of the ways in which similarity between cases can be quantified (e.g. single linkage, complete linkage
How to Use Motion Detection in ACTi Cameras
ACTi Knowledge Base Category: Installation & Configuration Note Sub-category: Application Model: All Firmware: N/A Software: N/A Author: Ando.Meritee Published: 2010/11/19 Reviewed: 2011/03/02 How to Use
Tutorial Segmentation and Classification
MARKETING ENGINEERING FOR EXCEL TUTORIAL VERSION 1.0.8 Tutorial Segmentation and Classification Marketing Engineering for Excel is a Microsoft Excel add-in. The software runs from within Microsoft Excel
Distributed Dynamic Load Balancing for Iterative-Stencil Applications
Distributed Dynamic Load Balancing for Iterative-Stencil Applications G. Dethier 1, P. Marchot 2 and P.A. de Marneffe 1 1 EECS Department, University of Liege, Belgium 2 Chemical Engineering Department,
MATLAB & Git Versioning: The Very Basics
1 MATLAB & Git Versioning: The Very Basics basic guide for using git (command line) in the development of MATLAB code (windows) The information for this small guide was taken from the following websites:
Table of Contents. Online backup Manager User s Guide
Table of Contents Backup / Restore VMware Virtual Machines... Error! Bookmark not defined. Backup virtual machines running on VMware ESXi / ESX Server with VDDK / non VDDK... 2 Requirements and recommendations...
Close Support Service Desk v 3.00. Upgrade Guide
Close Support Service Desk v 3.00 Upgrade Guide I Close Support Service Desk v 3 Upgrade Manual Table of Contents Part I Upgrading from version 2.95 2 1 Prerequisites... 2 2 Potential version... conflicts
Adobe Dreamweaver CC 14 Tutorial
Adobe Dreamweaver CC 14 Tutorial GETTING STARTED This tutorial focuses on the basic steps involved in creating an attractive, functional website. In using this tutorial you will learn to design a site
Introductory to Advanced Training Course Five Day Course Information and Agenda October, 2015
Introductory to Advanced Training Course Five Day Course Information and Agenda October, 2015 Agronomix Software, Inc. Winnipeg, MB, Canada www.agronomix.com Who Should Attend? This course is designed
Figure 1. An embedded chart on a worksheet.
8. Excel Charts and Analysis ToolPak Charts, also known as graphs, have been an integral part of spreadsheets since the early days of Lotus 1-2-3. Charting features have improved significantly over the
Hands-On Data Science with R Dealing with Big Data. [email protected]. 27th November 2014 DRAFT
Hands-On Data Science with R Dealing with Big Data [email protected] 27th November 2014 Visit http://handsondatascience.com/ for more Chapters. In this module we explore how to load larger datasets
Sage ERP MAS 90 Sage ERP MAS 200 Sage ERP MAS 200 SQL. Installation and System Administrator's Guide 4MASIN450-08
Sage ERP MAS 90 Sage ERP MAS 200 Sage ERP MAS 200 SQL Installation and System Administrator's Guide 4MASIN450-08 2011 Sage Software, Inc. All rights reserved. Sage, the Sage logos and the Sage product
Introduction 1-1 Installing FAS 500 Asset Accounting the First Time 2-1 Installing FAS 500 Asset Accounting: Upgrading from a Prior Version 3-1
Contents 1. Introduction 1-1 Supported Operating Environments................ 1-1 System Requirements............................. 1-2 Security Requirements........................ 1-3 Installing Server
Introduction to SPSS 16.0
Introduction to SPSS 16.0 Edited by Emily Blumenthal Center for Social Science Computation and Research 110 Savery Hall University of Washington Seattle, WA 98195 USA (206) 543-8110 November 2010 http://julius.csscr.washington.edu/pdf/spss.pdf
VisIt Visualization Tool
The Center for Astrophysical Thermonuclear Flashes VisIt Visualization Tool Randy Hudson [email protected] Argonne National Laboratory Flash Center, University of Chicago An Advanced Simulation and Computing
Access Control and Audit Trail Software
Varian, Inc. 2700 Mitchell Drive Walnut Creek, CA 94598-1675/USA Access Control and Audit Trail Software Operation Manual Varian, Inc. 2002 03-914941-00:3 Table of Contents Introduction... 1 Access Control
AWS Schema Conversion Tool. User Guide Version 1.0
AWS Schema Conversion Tool User Guide AWS Schema Conversion Tool: User Guide Copyright 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may
DMP V2.0.1 Installation and Upgrade Reference
DMP V2.0.1 Installation and Upgrade Reference Page 1 of 40 Table of Contents Overview... 3 Compatibility Issues with Previous DMP Versions... 3 DMP V2.0.1 Installation... 3 Sybase CD... 3 Installed Components...
Chapter ML:XI (continued)
Chapter ML:XI (continued) XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained
A Color Placement Support System for Visualization Designs Based on Subjective Color Balance
A Color Placement Support System for Visualization Designs Based on Subjective Color Balance Eric Cooper and Katsuari Kamei College of Information Science and Engineering Ritsumeikan University Abstract:
Designing forms for auto field detection in Adobe Acrobat
Adobe Acrobat 9 Technical White Paper Designing forms for auto field detection in Adobe Acrobat Create electronic forms more easily by using the right elements in your authoring program to take advantage
System Overview and Terms
GETTING STARTED NI Condition Monitoring Systems and NI InsightCM Server Version 2.0 This document contains step-by-step instructions for the setup tasks you must complete to connect an NI Condition Monitoring
Neural Networks Lesson 5 - Cluster Analysis
Neural Networks Lesson 5 - Cluster Analysis Prof. Michele Scarpiniti INFOCOM Dpt. - Sapienza University of Rome http://ispac.ing.uniroma1.it/scarpiniti/index.htm [email protected] Rome, 29
CA Nimsoft Monitor. Probe Guide for Active Directory Response. ad_response v1.6 series
CA Nimsoft Monitor Probe Guide for Active Directory Response ad_response v1.6 series Legal Notices This online help system (the "System") is for your informational purposes only and is subject to change
Practical Differential Gene Expression. Introduction
Practical Differential Gene Expression Introduction In this tutorial you will learn how to use R packages for analysis of differential expression. The dataset we use are the gene-summarized count data
not possible or was possible at a high cost for collecting the data.
Data Mining and Knowledge Discovery Generating knowledge from data Knowledge Discovery Data Mining White Paper Organizations collect a vast amount of data in the process of carrying out their day-to-day
Voronoi Treemaps in D3
Voronoi Treemaps in D3 Peter Henry University of Washington [email protected] Paul Vines University of Washington [email protected] ABSTRACT Voronoi treemaps are an alternative to traditional rectangular
Analytics on Big Data
Analytics on Big Data Riccardo Torlone Università Roma Tre Credits: Mohamed Eltabakh (WPI) Analytics The discovery and communication of meaningful patterns in data (Wikipedia) It relies on data analysis
Chapter 6: The Information Function 129. CHAPTER 7 Test Calibration
Chapter 6: The Information Function 129 CHAPTER 7 Test Calibration 130 Chapter 7: Test Calibration CHAPTER 7 Test Calibration For didactic purposes, all of the preceding chapters have assumed that the
Designing and Embodiment of Software that Creates Middle Ware for Resource Management in Embedded System
, pp.97-108 http://dx.doi.org/10.14257/ijseia.2014.8.6.08 Designing and Embodiment of Software that Creates Middle Ware for Resource Management in Embedded System Suk Hwan Moon and Cheol sick Lee Department
Hadoop SNS. renren.com. Saturday, December 3, 11
Hadoop SNS renren.com Saturday, December 3, 11 2.2 190 40 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December
FAWN - a Fast Array of Wimpy Nodes
University of Warsaw January 12, 2011 Outline Introduction 1 Introduction 2 3 4 5 Key issues Introduction Growing CPU vs. I/O gap Contemporary systems must serve millions of users Electricity consumed
Information Retrieval and Web Search Engines
Information Retrieval and Web Search Engines Lecture 7: Document Clustering December 10 th, 2013 Wolf-Tilo Balke and Kinda El Maarry Institut für Informationssysteme Technische Universität Braunschweig
Lab 0: Preparing your laptop for the course OS X
Lab 0: Preparing your laptop for the course OS X Four pieces of software are needed to complete this course: 1. VMD Views and analyses molecular models. 2. NAMD Performs molecular dynamics simulations.
Deploying System Center 2012 R2 Configuration Manager
Deploying System Center 2012 R2 Configuration Manager This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.
Sage 100 ERP. Installation and System Administrator s Guide
Sage 100 ERP Installation and System Administrator s Guide This is a publication of Sage Software, Inc. Version 2014 Copyright 2013 Sage Software, Inc. All rights reserved. Sage, the Sage logos, and the
Directions for using SPSS
Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...
Improved metrics collection and correlation for the CERN cloud storage test framework
Improved metrics collection and correlation for the CERN cloud storage test framework September 2013 Author: Carolina Lindqvist Supervisors: Maitane Zotes Seppo Heikkila CERN openlab Summer Student Report
Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System?
Management Challenge Managing Hardware Assets What computer processing and storage capability does our organization need to handle its information and business transactions? What arrangement of computers
PURPOSE OF GRAPHS YOU ARE ABOUT TO BUILD. To explore for a relationship between the categories of two discrete variables
3 Stacked Bar Graph PURPOSE OF GRAPHS YOU ARE ABOUT TO BUILD To explore for a relationship between the categories of two discrete variables 3.1 Introduction to the Stacked Bar Graph «As with the simple
