THE POWER OF MULTI-RAY PHOTOGRAMMETRY - ULTRAMAP 3.0 ULTRAMAP
|
|
|
- Damon Johnston
- 9 years ago
- Views:
Transcription
1 THE POWER OF MULTI-RAY PHOTOGRAMMETRY - ULTRAMAP 3.0 Alexander Wiechert, Michael Gruber, Konrad Karner, Martin Ponticelli, Bernhard Schachinger Vexcel Imaging Austria / Microsoft Photogrammetry Anzengrubergasse 8/4, 8010 Graz / Austria {alwieche, michgrub, kkarner, martinpo, i-bescha}@microsoft.com ABSTRACT Starting 2007 a dense matching algorithm and an automated ortho/true-ortho workflow has been developed by Vexcel Imaging GmbH that has exclusively been used for the automated 3D city model production of Microsoft s Virtual Earth project and is now also in use for the production of the current BING maps platform. This famous automated workflow has now been disclosed and has been implemented into UltraMap 3.0. This makes the workflow now commercially available for all UltraCam users world-wide. The dense-matching algorithm generates very dense surface models from overlapping aerial images by multi-ray photogrammetry, superior to airborne Lidar collection. Based on the results of the dense matcher, an automated workflow generates ortho images and true-ortho images automatically within UltraMap 3.0. The paper shows the new UltraMap 3.0 workflow, the results of the automated dense matching such as point clouds and DSM and the results of the automated ortho and true-ortho workflow. ULTRAMAP In 2010 UltraMap Version1.0 has been announced as the new software for the image processing for the UltraCam camera series. It supports all UltraCam cameras and extends the workflow into a full photogrammetric workflow by a seamless integration of aero triangulation and bundle adjustment functionality into the existing image processing workflow. UltraMap is designed to handle all kind of projects ranging from projects with a few hundred images up to projects with ten thousands of images and it is optimized for UltraCam images. For this, it implements a new, revolutionary technology and concept of image handling, a direct spin off from the latest available Microsoft technology. Outstanding features such as automated distributed processing, automated tie point matching, monolithic stitching and project based color balancing have been implemented since its release. The figure below shows the basic modules and the basic workflow of the current UltraMap software. Figure 1. UltraMap concept and modules.
2 With the upcoming version of UltraMap 3.0 two new modules will be added. These two modules provide revolutionary new features, namely the automated generation of point clouds, DSM, DTM, DSMOrtho and DTM Ortho from a set of overlapping UltraCam images. Results from the basic image processing and the aero triangulation are used by the new modules to generate a point cloud, then a DSM, then a DTM and then two different ortho images, the so called DSMOrtho (images rectified by a DSM) and DTMOrtho (images rectified by the DTM). Figure 2. New UltraMap 3.0 modules. The processing is being kicked-off automatically after the aero triangulation and fully supports the automated distributed processing and the full 16-bit workflow. The new modules support processing on GPU(s) if available in the system. Visual output and QC are smoothly integrated into the existing viewer. DENSE MATCHING and 3D POINT CLOUD A significant change in photogrammetry has been achieved by Multi-Ray Photogrammetry which became possible with the advent of the digital camera such as UltraCam and a fully digital work flow by software systems such as UltraMap. This allowed for significantly increased forward overlap as well as the ability to collect more images but virtually, and without increasing acquisition costs. However, Multi-Ray Photogrammetry in a first step is not a new technology; it is a specific flight pattern with a very high forward overlap (80%, even 90%) and an increased sidelap (up to 60%). The result is a highly redundant dataset that allows automated dense matching to generate high resolution, highly accurate point clouds from the imagery by matching the pixels of the overlapping images automatically. The 3D point cloud generated by the dense matcher of UltraMap has a point density of several hundred points per square meter and thus is much denser than any airborne Lidar scanning point cloud.
3 Figure 3 shows the point cloud generated by UltraMap based on a set of overlapping UltraCam images. The point density is around 300 points per square meter. For better visualization only a quarter of all points are shown. Figure 3. High resolution 3D point cloud generated by the dense matcher module of UltraMap. The achievable height accuracy of the point cloud is better than the GSD, thus a 10cm imagery leads to <10cm height accuracy of the resulting digital surface model. The quality of the automated dense matching process depends significantly on the camera and the structure of the terrain. Geometric stability and radiometric dynamic of the camera have a direct impact on the matching results. DSM AND DTM Once the DSM has been processed out of the images, the DSM and the original image can be combined in a trueortho projection which results on a so called true-ortho image. This is an image with no perspective view as each pixel of the image has been (true-) ortho rectified by a surface model and not by a terrain model like the standard ortho image. True-ortho images have a significant benefit in some applications as they do not have any leaning objects. Figure 4 shows the shaded relief of a DSM which has been generated from the point cloud. Remarkable is the high level of detail and also the very sharp building edges. The white spot at the lower left corner is the church tower shown in detail in figure 3.
4 Figure 4. DSM generated from the point cloud by the UltraMap dense matcher module The next step after the DSM generation is the processing of a DTM. The DTM will be processed out of the DSM using a Winston-Salem algorithm developed by Microsoft which utilizes computer vision based classification for the terrain filtering. Figure 5 shows the DSM (left) and the filtered DTM (right). Figure 5. High-resolution DSM (left) and DTM (right) processed using automated dense matching with UltraCam images and UltraMap processing software.
5 DSMORTHO AND DTMORTHO An additional new UltraMap 3.0 module then combines the image data and the DSM or DTM and generates automatically either a DSMOrtho or a DTMOrtho image including automated seamline generation. Figure 6 shows a DSMOrtho image, figure 7 a DTMOrtho image. Figure 6. High resolution DSMOrtho, generated automatically by UltraMap. Remarkable are the very sharp edges of the buildings and the high level of details of the roof structures with literally no artifacts of the DSMOrtho. The reason is the outstanding quality of the underlying DSM thanks to the high point density of the point cloud. Figure 7. High resolution DTMOrtho, generated automatically by UltraMap.
6 The DTMOrtho is the traditional ortho image, processed by rectifying the images with a terrain model. The seam lines have been generated automatically by using information from the image content and also from the height field. CHANGE IN THE INDUSTRY We expect a significant change in the industry with the release of UltraMap 3.0. The software enables UltraCam users to generate 3D data in addition to the images by a highly automated workflow. This makes additional airborne Lidar scanning obsolete for many applications. Further strong are the significantly higher collection efficiency of the UltraCam compared to any airborne Lidar scanner and the much higher point density. The strip width of the UltraCam is around three times bigger compared to a Lidar system and the point density is around 30 times higher. As the 3D data is generated from the images, the data sets are consistent which is not the case if a Lidar system is flown in addition to a photo flight. Dense matching is especially strong for DSM related applications and provides superior efficiency and quality here. Vegetation penetration is not possible, high resolution terrain models in forests for example would still require a Lidar flight. Today s application landscape could be visualized like shown in figure 8: Figure 8. Today s application landscape, differentiated between airborne Lidar and photogrammetry. With the release of UltraMap 3.0 we expect that many applications will be served better by photogrammetry. That will lead to a change as shown in figure figure 9:
7 Figure 9. Future application landscape. Applications such as Urban Mapping, Mining, National Mapping are much better served by photogrammetry in the future. Forest applications might still require the use of both technologies; the terrain model could be flown every several years by an airborne Lidar sensor system whilst the annual flights to map the canopy for the change detection are server better by photogrammetry. REFERENCES Gruber, M. & Wiechert, A., 2009: New digital aerial cameras by Vexcel Imaging / Microsoft, Proceedings of the Remote Sensing and Photogrammetry Society (RSPSoc) Annual Conference 2009, , Leicester, UK. Leberl, F. et al., 2003: The UltraCam Large Format Aerial Digital Camera System, Proceedings of the American Society For Photogrammetry & Remote Sensing, 5-9 May, 2003, Anchorage, Alaska.
ULTRACAMXP, THE NEW DIGITAL AERIAL CAMERA SYSTEM BY VEXCEL IMAGING / MICROSOFT INTRODUCTION
ULTRACAMXP, THE NEW DIGITAL AERIAL CAMERA SYSTEM BY VEXCEL IMAGING / MICROSOFT Michael Gruber, Alexander Wiechert Vexcel Imaging / Microsoft Photogrammetry Anzengrubergasse 8, A-8010 Graz, Austria {michgrub,
How To Make An Orthophoto
ISSUE 2 SEPTEMBER 2014 TSA Endorsed by: CLIENT GUIDE TO DIGITAL ORTHO- PHOTOGRAPHY The Survey Association s Client Guides are primarily aimed at other professionals such as engineers, architects, planners
Digital Image Increase
Exploiting redundancy for reliable aerial computer vision 1 Digital Image Increase 2 Images Worldwide 3 Terrestrial Image Acquisition 4 Aerial Photogrammetry 5 New Sensor Platforms Towards Fully Automatic
From Pixel to Info-Cloud News at Leica Geosystems JACIE Denver, 31 March 2011 Ruedi Wagner Hexagon Geosystems, Geospatial Solutions Division.
From Pixel to Info-Cloud News at Leica Geosystems JACIE Denver, 31 March 2011 Ruedi Wagner Hexagon Geosystems, Geospatial Solutions Division What else can I do with my sensor/data? Earth to Image Image
Files Used in this Tutorial
Generate Point Clouds Tutorial This tutorial shows how to generate point clouds from IKONOS satellite stereo imagery. You will view the point clouds in the ENVI LiDAR Viewer. The estimated time to complete
3-D Object recognition from point clouds
3-D Object recognition from point clouds Dr. Bingcai Zhang, Engineering Fellow William Smith, Principal Engineer Dr. Stewart Walker, Director BAE Systems Geospatial exploitation Products 10920 Technology
LIDAR and Digital Elevation Data
LIDAR and Digital Elevation Data Light Detection and Ranging (LIDAR) is being used by the North Carolina Floodplain Mapping Program to generate digital elevation data. These highly accurate topographic
High Resolution Digital Surface Models and Orthoimages for Telecom Network Planning
Renouard, Lehmann 241 High Resolution Digital Surface Models and Orthoimages for Telecom Network Planning LAURENT RENOUARD, S ophia Antipolis FRANK LEHMANN, Berlin ABSTRACT DLR of Germany and ISTAR of
MULTIPURPOSE USE OF ORTHOPHOTO MAPS FORMING BASIS TO DIGITAL CADASTRE DATA AND THE VISION OF THE GENERAL DIRECTORATE OF LAND REGISTRY AND CADASTRE
MULTIPURPOSE USE OF ORTHOPHOTO MAPS FORMING BASIS TO DIGITAL CADASTRE DATA AND THE VISION OF THE GENERAL DIRECTORATE OF LAND REGISTRY AND CADASTRE E.ÖZER, H.TUNA, F.Ç.ACAR, B.ERKEK, S.BAKICI General Directorate
Photogrammetric Point Clouds
Photogrammetric Point Clouds Origins of digital point clouds: Basics have been around since the 1980s. Images had to be referenced to one another. The user had to specify either where the camera was in
High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets
0 High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets January 15, 2014 Martin Rais 1 High Resolution Terrain & Clutter Datasets: Why Lidar? There are myriad methods, techniques
3D MODELING OF LARGE AND COMPLEX SITE USING MULTI-SENSOR INTEGRATION AND MULTI-RESOLUTION DATA
3D MODELING OF LARGE AND COMPLEX SITE USING MULTI-SENSOR INTEGRATION AND MULTI-RESOLUTION DATA G. Guidi 1, F. Remondino 2, 3, M. Russo 1, F. Menna 4, A. Rizzi 3 1 Dept.INDACO, Politecnico of Milano, Italy
Opportunities for the generation of high resolution digital elevation models based on small format aerial photography
Opportunities for the generation of high resolution digital elevation models based on small format aerial photography Boudewijn van Leeuwen 1, József Szatmári 1, Zalán Tobak 1, Csaba Németh 1, Gábor Hauberger
3D Point Cloud Analytics for Updating 3D City Models
3D Point Cloud Analytics for Updating 3D City Models Rico Richter 25 th May 2015 INSPIRE - Geospatial World Forum 2015 Background Hasso Plattner Institute (HPI): Computer Graphics Systems group of Prof.
Advanced Image Management using the Mosaic Dataset
Esri International User Conference San Diego, California Technical Workshops July 25, 2012 Advanced Image Management using the Mosaic Dataset Vinay Viswambharan, Mike Muller Agenda ArcGIS Image Management
The following was presented at DMT 14 (June 1-4, 2014, Newark, DE).
DMT 2014 The following was presented at DMT 14 (June 1-4, 2014, Newark, DE). The contents are provisional and will be superseded by a paper in the DMT 14 Proceedings. See also presentations and Proceedings
Geometric Property of Large Format Digital Camera DMC II 140
PFG 2011 / 2, 071 079 Stuttgart, March 2011 Article Geometric Property of Large Format Digital Camera DMC II 140 Karsten Jacobsen, Hannover Keywords: Digital camera, geometry, large format CCD, systematic
Point Clouds: Big Data, Simple Solutions. Mike Lane
Point Clouds: Big Data, Simple Solutions Mike Lane Light Detection and Ranging Point Cloud is the Third Type of Data Vector Point Measurements and Contours Sparse, highly irregularly spaced X,Y,Z values
Current status of image matching for Earth observation
Current status of image matching for Earth observation Christian Heipke IPI - Institute for Photogrammetry and GeoInformation Leibniz Universität Hannover Secretary General, ISPRS Content Introduction
COMPARISON OF AERIAL IMAGES, SATELLITE IMAGES AND LASER SCANNING DSM IN A 3D CITY MODELS PRODUCTION FRAMEWORK
COMPARISON OF AERIAL IMAGES, SATELLITE IMAGES AND LASER SCANNING DSM IN A 3D CITY MODELS PRODUCTION FRAMEWORK G. Maillet, D. Flamanc Institut Géographique National, Laboratoire MATIS, Saint-Mandé, France
3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension
3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension R.Queen Suraajini, Department of Civil Engineering, College of Engineering Guindy, Anna University, India, [email protected]
3D City Modelling of Istanbul Historic Peninsula by Combination of Aerial Images and Terrestrial Laser Scanning Data
4th EARSel Workshop on Remote Sensing for Developing Countries/GISDECO 8, Istanbul, Turkey, June 4-7, 2008 3D City Modelling of Istanbul Historic Peninsula by Combination of Aerial Images and Terrestrial
The X100. Safe and fully automatic. Fast and with survey accuracy. revolutionary mapping. create your own orthophotos and DSMs
The X100 revolutionary mapping Safe and fully automatic create your own orthophotos and DSMs Fast and with survey accuracy operates even in harsh weather conditions (up to 65 km/h wind & light rain) Image
Managing Lidar (and other point cloud) Data. Lindsay Weitz Cody Benkelman
(and other point cloud) Data Lindsay Weitz Cody Benkelman Presentation Context What is lidar, and how does it work? Not this presentation! What can you do with lidar in ArcGIS? What does Esri recommend
MetropoGIS: A City Modeling System DI Dr. Konrad KARNER, DI Andreas KLAUS, DI Joachim BAUER, DI Christopher ZACH
MetropoGIS: A City Modeling System DI Dr. Konrad KARNER, DI Andreas KLAUS, DI Joachim BAUER, DI Christopher ZACH VRVis Research Center for Virtual Reality and Visualization, Virtual Habitat, Inffeldgasse
ADVANTAGES AND DISADVANTAGES OF THE HOUGH TRANSFORMATION IN THE FRAME OF AUTOMATED BUILDING EXTRACTION
ADVANTAGES AND DISADVANTAGES OF THE HOUGH TRANSFORMATION IN THE FRAME OF AUTOMATED BUILDING EXTRACTION G. Vozikis a,*, J.Jansa b a GEOMET Ltd., Faneromenis 4 & Agamemnonos 11, GR - 15561 Holargos, GREECE
Introduction to Imagery and Raster Data in ArcGIS
Esri International User Conference San Diego, California Technical Workshops July 25, 2012 Introduction to Imagery and Raster Data in ArcGIS Simon Woo slides Cody Benkelman - demos Overview of Presentation
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and
Information Contents of High Resolution Satellite Images
Information Contents of High Resolution Satellite Images H. Topan, G. Büyüksalih Zonguldak Karelmas University K. Jacobsen University of Hannover, Germany Keywords: satellite images, mapping, resolution,
INTEGRATED GEOPHYSICAL AND REMOTE SENSING STUDIES ON GROTTA GIGANTE SHOW CAVE (TRIESTE ITALY) P. Paganini, A. Pavan, F. Coren, A.
INTEGRATED GEOPHYSICAL AND REMOTE SENSING STUDIES ON GROTTA GIGANTE SHOW CAVE (TRIESTE ITALY) P. Paganini, A. Pavan, F. Coren, A. Fabbricatore Aerial lidar survey - strumentation Piper Seneca II - PA34
An integrated approach to production utilising the Intergraph DMC and TerraShare
'Photogrammetric Week 05' Dieter Fritsch, Ed. Wichmann Verlag, Heidelberg 2005. Tabor, Marshall 173 An integrated approach to production utilising the Intergraph DMC and TerraShare MARK TABOR, PAUL MARSHALL,
VCS REDD Methodology Module. Methods for monitoring forest cover changes in REDD project activities
1 VCS REDD Methodology Module Methods for monitoring forest cover changes in REDD project activities Version 1.0 May 2009 I. SCOPE, APPLICABILITY, DATA REQUIREMENT AND OUTPUT PARAMETERS Scope This module
TerraColor White Paper
TerraColor White Paper TerraColor is a simulated true color digital earth imagery product developed by Earthstar Geographics LLC. This product was built from imagery captured by the US Landsat 7 (ETM+)
RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY
RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY M. Erdogan, H.H. Maras, A. Yilmaz, Ö.T. Özerbil General Command of Mapping 06100 Dikimevi, Ankara, TURKEY - (mustafa.erdogan;
Digital image processing
746A27 Remote Sensing and GIS Lecture 4 Digital image processing Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Digital Image Processing Most of the common
REGISTRATION OF LASER SCANNING POINT CLOUDS AND AERIAL IMAGES USING EITHER ARTIFICIAL OR NATURAL TIE FEATURES
REGISTRATION OF LASER SCANNING POINT CLOUDS AND AERIAL IMAGES USING EITHER ARTIFICIAL OR NATURAL TIE FEATURES P. Rönnholm a, *, H. Haggrén a a Aalto University School of Engineering, Department of Real
USE OF VERY HIGH-RESOLUTION AIRBORNE IMAGES TO ANALYSE 3D CANOPY ARCHITECTURE OF A VINEYARD
USE OF VERY HIGH-RESOLUTION AIRBORNE IMAGES TO ANALYSE 3D CANOPY ARCHITECTURE OF A VINEYARD S. Burgos a, *, M. Mota a, D. Noll a, B. Cannelle b a University for Viticulture and Oenology Changins, 1260
AirborneHydroMapping. New possibilities in bathymetric and topographic survey
AirborneHydroMapping New possibilities in bathymetric and topographic survey AIRBORNE HYDROMAPPING (2008 2011) Layout needs from water engineering side: - Shallow water applications - High point density
FOREST PARAMETER ESTIMATION BY LIDAR DATA PROCESSING
P.-F. Mursa Forest parameter estimation by LIDAR data processing FOREST PARAMETER ESTIMATION BY LIDAR DATA PROCESSING Paula-Florina MURSA, Master Student Military Technical Academy, [email protected]
HEXAGON GEOSPATIAL BENELUX 2015. Hexagon Geospatial Benelux 2015
HEXAGON GEOSPATIAL BENELUX 2015 IMAGINE for UAV Irmgard Runkel GEOSYSTEMS GmbH, Germany Are drones a new market*? > 50 % * http://dronelife.com/2015/08/28/the-latest-drone-numbers-from-cb-insights-future-of-frontier-tech-report/
Topographic Change Detection Using CloudCompare Version 1.0
Topographic Change Detection Using CloudCompare Version 1.0 Emily Kleber, Arizona State University Edwin Nissen, Colorado School of Mines J Ramón Arrowsmith, Arizona State University Introduction CloudCompare
PERFORMANCE TEST ON UAV-BASED PHOTOGRAMMETRIC DATA COLLECTION
PERFORMANCE TEST ON UAV-BASED PHOTOGRAMMETRIC DATA COLLECTION Norbert Haala a, *, Michael Cramer a, Florian Weimer b, Martin Trittler b a Institute for Photogrammetry, University of Stuttgart [firstname.lastname]@ifp.uni-stuttgart.de
Applications of Advanced Laser Scanning Technology in Geology
Applications of Advanced Laser Scanning Technology in Geology A. Fowler, Riegl USA, Orlando, United States of America J. I. France, Riegl USA, Orlando, United States of America M. Truong, Riegl USA, Orlando,
Lidar 101: Intro to Lidar. Jason Stoker USGS EROS / SAIC
Lidar 101: Intro to Lidar Jason Stoker USGS EROS / SAIC Lidar Light Detection and Ranging Laser altimetry ALTM (Airborne laser terrain mapping) Airborne laser scanning Lidar Laser IMU (INS) GPS Scanning
ERDAS IMAGINE The world s most widely-used remote sensing software package
ERDAS IMAGINE The world s most widely-used remote sensing software package ERDAS IMAGINE Geographic imaging professionals need to process vast amounts of geospatial data every day often relying on software
METHODOLOGY FOR LANDSLIDE SUSCEPTIBILITY AND HAZARD MAPPING USING GIS AND SDI
The 8th International Conference on Geo-information for Disaster Management Intelligent Systems for Crisis Management METHODOLOGY FOR LANDSLIDE SUSCEPTIBILITY AND HAZARD MAPPING USING GIS AND SDI T. Fernández
Pima Regional Remote Sensing Program
Pima Regional Remote Sensing Program Activity Orthophoto GIS Mapping and Analysis Implementing Agency Pima Association of Governments (Tucson, Arizona area Metropolitan Planning Organization) Summary Through
VISIONMAP A3 - SUPER WIDE ANGLE MAPPING SYSTEM BASIC PRINCIPLES AND WORKFLOW
VISIONMAP A3 - SUPER WIDE ANGLE MAPPING SYSTEM BASIC PRINCIPLES AND WORKFLOW Michael Pechatnikov, Erez Shor, Yuri Raizman VisionMap Ltd., www.visionmap.com 13 Mozes St., Tel-Aviv, 67442, Israel [email protected],
ZEISS T-SCAN Automated / COMET Automated 3D Digitizing - Laserscanning / Fringe Projection Automated solutions for efficient 3D data capture
ZEISS T-SCAN Automated / COMET Automated 3D Digitizing - Laserscanning / Fringe Projection Automated solutions for efficient 3D data capture ZEISS 3D Digitizing Automated solutions for efficient 3D data
Using Optech LMS to Calibrate Survey Data Without Ground Control Points
Challenge An Optech client conducted an airborne lidar survey over a sparsely developed river valley. The data processors were finding that the data acquired in this survey was particularly difficult to
AUTOMATIC CLASSIFICATION OF LIDAR POINT CLOUDS IN A RAILWAY ENVIRONMENT
AUTOMATIC CLASSIFICATION OF LIDAR POINT CLOUDS IN A RAILWAY ENVIRONMENT MOSTAFA ARASTOUNIA March, 2012 SUPERVISORS: Dr. Ir. S.J. Oude Elberink Dr. K. Khoshelham AUTOMATIC CLASSIFICATION OF LIDAR POINT
LiDAR for vegetation applications
LiDAR for vegetation applications UoL MSc Remote Sensing Dr Lewis [email protected] Introduction Introduction to LiDAR RS for vegetation Review instruments and observational concepts Discuss applications
Smart Point Clouds in Virtual Globes a New Paradigm in 3D City Modelling?
Smart Point Clouds in Virtual Globes a New Paradigm in 3D City Modelling? GeoViz 2009, Hamburg, 3-5 March, 2009 Stephan Nebiker, Martin Christen and Susanne Bleisch Vision and Goals New Application Areas
Results of digital aerial triangulation using different software packages
ABSTRACT Results of digital aerial triangulation using different software packages Thomas Kersten Swissphoto Vermessung AG Dorfstr. 53, CH - 8105 Regensdorf-Watt, Switzerland Phone +41 1 871 22 22, Fax
Digital Orthophoto Production In the Desktop Environment 1
Digital Orthophoto Production In the Desktop Environment 1 By Dr. Roy A. Welch and Thomas R. Jordan Digital orthophotos are proving suitable for a variety of mapping, GIS and environmental monitoring tasks.
How To Fuse A Point Cloud With A Laser And Image Data From A Pointcloud
REAL TIME 3D FUSION OF IMAGERY AND MOBILE LIDAR Paul Mrstik, Vice President Technology Kresimir Kusevic, R&D Engineer Terrapoint Inc. 140-1 Antares Dr. Ottawa, Ontario K2E 8C4 Canada [email protected]
SEMANTIC LABELLING OF URBAN POINT CLOUD DATA
SEMANTIC LABELLING OF URBAN POINT CLOUD DATA A.M.Ramiya a, Rama Rao Nidamanuri a, R Krishnan a Dept. of Earth and Space Science, Indian Institute of Space Science and Technology, Thiruvananthapuram,Kerala
DATA INTEGRATION FROM DIFFERENT SOURCES TO CREATE 3D VIRTUAL MODEL
DATA INTEGRATION FROM DIFFERENT SOURCES TO CREATE 3D VIRTUAL MODEL A. Erving, P. Rönnholm, and M. Nuikka Institute of Photogrammetry and Remote Sensing, Department of Surveying, Helsinki University of
New Features in TerraPhoto. Arttu Soininen Software developer Terrasolid Ltd
New Features in TerraPhoto Arttu Soininen Software developer Terrasolid Ltd Tie Status for Images View / Fields menu command for selecting visible fields in Tie points window Each image has a tie status
STATE OF NEVADA Department of Administration Division of Human Resource Management CLASS SPECIFICATION
STATE OF NEVADA Department of Administration Division of Human Resource Management CLASS SPECIFICATION TITLE PHOTOGRAMMETRIST/CARTOGRAPHER V 39 6.102 PHOTOGRAMMETRIST/CARTOGRAPHER II 33 6.110 PHOTOGRAMMETRIST/CARTOGRAPHER
The Chillon Project: Aerial / Terrestrial and Indoor Integration
The Chillon Project: Aerial / Terrestrial and Indoor Integration How can one map a whole castle efficiently in full 3D? Is it possible to have a 3D model containing both the inside and outside? The Chillon
From Ideas to Innovation
From Ideas to Innovation Selected Applications from the CRC Research Lab in Advanced Geomatics Image Processing Dr. Yun Zhang Canada Research Chair Laboratory in Advanced Geomatics Image Processing (CRC-AGIP
Leica Photogrammetry Suite Project Manager
Leica Photogrammetry Suite Project Manager Copyright 2006 Leica Geosystems Geospatial Imaging, LLC All rights reserved. Printed in the United States of America. The information contained in this document
The YellowScan system: A test on the oppida of Nages/Roque de Viou (Languedoc, France) Tristan Allouis, PhD Research and Development, L'Avion Jaune
The YellowScan system: A test on the oppida of Nages/Roque de Viou (Languedoc, France) Tristan Allouis, PhD Research and Development, L'Avion Jaune L'Avion Jaune : Earth observation data provider UAVs
Vorstellung eines photogrammetrischen Kamerasystems für UAVs mit hochgenauer GNSS/INS Information für standardisierte Verarbeitungsverfahren
Vorstellung eines photogrammetrischen Kamerasystems für UAVs mit hochgenauer GNSS/INS Information für standardisierte Verarbeitungsverfahren T. Kraft a, M. Geßner a, H. Meißner a, H. J. Przybilla b, M.
The premier software for extracting information from geospatial imagery.
Imagery Becomes Knowledge ENVI The premier software for extracting information from geospatial imagery. ENVI Imagery Becomes Knowledge Geospatial imagery is used more and more across industries because
High Resolution 3D Earth Observation Data Analysis for Safeguards Activities
High Resolution 3D Earth Observation Data Analysis for Safeguards Activities Pablo d'angelo a1, Cristian Rossi a, Christian Minet a, Michael Eineder a, Michael Flory b, Irmgard Niemeyer c a German Aerospace
LiDAR remote sensing to individual tree processing: A comparison between high and low pulse density in Florida, United States of America
LiDAR remote sensing to individual tree processing: A comparison between high and low pulse density in Florida, United States of America Carlos Alberto Silva 1 Andrew Hudak 2 Robert Liebermann 2 Kevin
Big data, big deal? Presented by: David Stanley, CTO PCI Geomatics
Big data, big deal? Presented by: David Stanley, CTO PCI Geomatics A quick word about me Ah, the early 1980s Aha! Moments in my Career First personal computer (Pet 2001, 1978) First windowing OS (SUN,
Digital Classification and Mapping of Urban Tree Cover: City of Minneapolis
Digital Classification and Mapping of Urban Tree Cover: City of Minneapolis FINAL REPORT April 12, 2011 Marvin Bauer, Donald Kilberg, Molly Martin and Zecharya Tagar Remote Sensing and Geospatial Analysis
AERIAL PHOTOGRAPHS. For a map of this information, in paper or digital format, contact the Tompkins County Planning Department.
AERIAL PHOTOGRAPHS What are Aerial Photographs? Aerial photographs are images of the land taken from an airplane and printed on 9 x9 photographic paper. Why are Aerial Photographs Important? Aerial photographs
Analysis of Landsat ETM+ Image Enhancement for Lithological Classification Improvement in Eagle Plain Area, Northern Yukon
Analysis of Landsat ETM+ Image Enhancement for Lithological Classification Improvement in Eagle Plain Area, Northern Yukon Shihua Zhao, Department of Geology, University of Calgary, [email protected],
<Insert Picture Here> Data Management Innovations for Massive Point Cloud, DEM, and 3D Vector Databases
Data Management Innovations for Massive Point Cloud, DEM, and 3D Vector Databases Xavier Lopez, Director, Product Management 3D Data Management Technology Drivers: Challenges & Benefits
MAPPING MINNEAPOLIS URBAN TREE CANOPY. Why is Tree Canopy Important? Project Background. Mapping Minneapolis Urban Tree Canopy.
MAPPING MINNEAPOLIS URBAN TREE CANOPY Why is Tree Canopy Important? Trees are an important component of urban environments. In addition to their aesthetic value, trees have significant economic and environmental
The RapidEye optical satellite family for high resolution imagery
'Photogrammetric Week 01' D. Fritsch & R. Spiller, Eds. Wichmann Verlag, Heidelberg 2001. Scherer, Krischke 139 The RapidEye optical satellite family for high resolution imagery STEFAN SCHERER and MANFRED
the Cloud Dean McCormick Regional Sales Manager Geospatial MEA Region
Powering Big Data: From Creation to the Cloud Dean McCormick Regional Sales Manager Geospatial MEA Region The only constant is change, continuing change, inevitable change, that is the dominant factor
Optical Digitizing by ATOS for Press Parts and Tools
Optical Digitizing by ATOS for Press Parts and Tools Konstantin Galanulis, Carsten Reich, Jan Thesing, Detlef Winter GOM Gesellschaft für Optische Messtechnik mbh, Mittelweg 7, 38106 Braunschweig, Germany
Image Analysis CHAPTER 16 16.1 ANALYSIS PROCEDURES
CHAPTER 16 Image Analysis 16.1 ANALYSIS PROCEDURES Studies for various disciplines require different technical approaches, but there is a generalized pattern for geology, soils, range, wetlands, archeology,
Image Digitization Using PHODIS SC/SCAI
'Photogrammetric Week '97' D. Fritsch D. Hobbie, Eds., Wichmann Verlag, Heidelberg, 1997. Vogelsang 25 Image Digitization Using PHODIS SC/SCAI ULRICH VOGELSANG, Oberkochen ABSTRACT With PHODIS SC Carl
Resolution Enhancement of Photogrammetric Digital Images
DICTA2002: Digital Image Computing Techniques and Applications, 21--22 January 2002, Melbourne, Australia 1 Resolution Enhancement of Photogrammetric Digital Images John G. FRYER and Gabriele SCARMANA
3D Building Roof Extraction From LiDAR Data
3D Building Roof Extraction From LiDAR Data Amit A. Kokje Susan Jones NSG- NZ Outline LiDAR: Basics LiDAR Feature Extraction (Features and Limitations) LiDAR Roof extraction (Workflow, parameters, results)
Digital Photogrammetric System. Version 6.0.2 USER MANUAL. Block adjustment
Digital Photogrammetric System Version 6.0.2 USER MANUAL Table of Contents 1. Purpose of the document... 4 2. General information... 4 3. The toolbar... 5 4. Adjustment batch mode... 6 5. Objects displaying
The EuroSDR Performance Test for Digital Aerial Camera Systems
Institut für Photogrammetrie Digital Airborne Camera Performance The DGPF test Overview and results Michael Cramer Photogrammetric Week 2009 Stuttgart September 8, 2009 Institut für Photogrammetrie The
AUTOMATED MODELING OF THE GREAT BUDDHA STATUE IN BAMIYAN, AFGHANISTAN
AUTOMATED MODELING OF THE GREAT BUDDHA STATUE IN BAMIYAN, AFGHANISTAN A.Gruen, F.Remondino, L.Zhang Institute of Geodesy and Photogrammetry ETH Zurich, Switzerland e-mail: @geod.baug.ethz.ch
In Flight ALS Point Cloud Georeferencing using RTK GPS Receiver
Integration of Geodetic Sensors In Flight ALS Point Cloud Georeferencing using RTK GPS Receiver Yannick Stebler, Philipp Schär, Jan Skaloud, Bertrand Merminod E mail: [email protected] Web: http://topo.epfl.ch
LiDAR Point Cloud Processing with
LiDAR Research Group, Uni Innsbruck LiDAR Point Cloud Processing with SAGA Volker Wichmann Wichmann, V.; Conrad, O.; Jochem, A.: GIS. In: Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie
High speed 3D capture for Configuration Management DOE SBIR Phase II Paul Banks [email protected]
High speed 3D capture for Configuration Management DOE SBIR Phase II Paul Banks [email protected] Advanced Methods for Manufacturing Workshop September 29, 2015 1 TetraVue does high resolution 3D
AN INTEGRATED WORKFLOW FOR LIDAR / OPTICAL DATA MAPPING FOR SECURITY APPLICATIONS
AN INTEGRATED WORKFLOW FOR LIDAR / OPTICAL DATA MAPPING FOR SECURITY APPLICATIONS Dirk Tiede, Thomas Blaschke Z_GIS; Centre for GeoInformatics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg,
OBLIQUE AERIAL PHOTOGRAPHY TOOL FOR BUILDING INSPECTION AND DAMAGE ASSESSMENT
OBLIQUE AERIAL PHOTOGRAPHY TOOL FOR BUILDING INSPECTION AND DAMAGE ASSESSMENT A. Murtiyoso 1, F. Remondino 2, E. Rupnik 2, F. Nex 2, P. Grussenmeyer 1 1 INSA Strasbourg / ICube Laboratory, France Email:
Digitization of Old Maps Using Deskan Express 5.0
Dražen Tutić *, Miljenko Lapaine ** Digitization of Old Maps Using Deskan Express 5.0 Keywords: digitization; scanner; scanning; old maps; Deskan Express 5.0. Summary The Faculty of Geodesy, University
3D GIS: It s a Brave New World
3D GIS: It s a Brave New World Reida ELWANNAS, United Arab Emirates Key words: 3D Models, CityGML, GIS SUMMARY For the past several decades we have been enjoying the power of GIS. The introduction of 2.5D
Map World Forum Hyderabad, India Introduction: High and very high resolution space images: GIS Development
Very high resolution satellite images - competition to aerial images Dr. Karsten Jacobsen Leibniz University Hannover, Germany [email protected] Introduction: Very high resolution images taken
Evaluation of surface runoff conditions. scanner in an intensive apple orchard
Evaluation of surface runoff conditions by high resolution terrestrial laser scanner in an intensive apple orchard János Tamás 1, Péter Riczu 1, Attila Nagy 1, Éva Lehoczky 2 1 Faculty of Agricultural
