Mining Text Data: An Introduction
|
|
|
- Godfrey Singleton
- 10 years ago
- Views:
Transcription
1 Bölüm 10. Metin ve WEB Madenciliği Mining Text Data: An Introduction Data Mining / Knowledge Discovery Structured Data Multimedia Free Text Hypertext HomeLoan ( Frank Rizzo bought <a href>frank Rizzo Loanee: Frank Rizzo his home from Lake </a> Bought Lender: MWF View Real Estate in <a hef>this home</a> Agency: Lake View from <a href>lake Amount: $200,000 He paid $200,000 View Real Estate</a> Term: 15 years under a15-year loan In <b>1992</b>. ) Loans($200K,[map],...) from MW Financial. <p>... 1
2 Text Databases and IR Text databases (document databases) Large collections of documents from various sources: news articles, research papers, books, digital libraries, messages, and Web pages, library database, etc. Data stored is usually semi-structured structured Traditional information retrieval techniques become inadequate for the increasingly vast amounts of text data Information retrieval A field developed in parallel with database systems Information is organized into (a large number of) documents Information retrieval problem: locating relevant documents based on user input, such as keywords or example documents Information Retrieval Typical IR systems Online library catalogs Online document management systems Information retrieval vs. database systems Some DB problems are not present in IR, e.g., update, transaction management, complex objects Some IR problems are not addressed well in DBMS, e.g., unstructured documents, approximate search using keywords and relevance 2
3 Basic Measures for Text Retrieval Relevant Relevant & Retrieved Retrieved All Documents Precision: the percentage of retrieved documents that are in fact relevant to the query (i.e., correct responses) { Relevant} { Retrieved} precision { Retrieved } Recall: the percentage of documents that are relevant to the query and were, in fact, retrieved { Relevant} { Retrieved} recall { Relevant} Information Retrieval Techniques Basic Concepts A document can be described by a set of representative keywords called index terms. Different index terms have varying relevance when used to describe document contents. This effect is captured through the assignment of numerical weights to each index term of a document. (e.g.: frequency, tf-idf) DBMS Analogy Index Terms Attributes Weights Attribute Values 3
4 Information Retrieval Techniques Index Terms (Attribute) Selection: Stop list Word stem Terms Documents: Frequency Matrices Information Retrieval Techniques Information Retrieval Models: Boolean Model Vector Model 8 4
5 Boolean Model Consider that index terms are either present or absent in a document As a result, the index term weights are assumed to be all binaries A query is composed of index terms linked by three connectives: not, and, and or e.g.: car and repair, plane or airplane The Boolean model predicts that each document is either relevant or non-relevant based on the match of a document to the query Keyword-Based Retrieval A document is represented by a string, which can be identified by a set of keywords Queries may use expressions of keywords E.g., car and repair shop, tea or coffee, DBMS but not Oracle Queries and retrieval should consider synonyms, e.g., repair and maintenance Major difficulties of the model Synonymy: A keyword T does not appear anywhere in the document, even though the document is closely related to T, T e.g., data mining i Polysemy: The same keyword may mean different things in different contexts, e.g., mining 5
6 Information Retrieval Techniques Information Retrieval Models: Boolean Model Vector Model Similarity-Based Retrieval in Text Data Finds similar documents based on a set of common keywords Answer should be based on the degree of relevance based on the nearness of the keywords, relative frequency of the keywords, etc. Basic techniques Stop list Set of words that are deemed irrelevant, even though they may appear frequently E.g., a, the, of, for, to, with, etc. Stop lists may vary when document set varies 6
7 Similarity-Based Retrieval in Text Data Word stem Several words are small syntactic variants of each other since they share a common word stem E.g., drug, drugs, drugged A term frequency table Each entryfrequent_table(i, j) = # of occurrences of the word t i in document d j Usually, the ratio instead of the absolute number of occurrences is used Similarity metrics: measure the closeness of a document to a query (a set of keywords) Relative term occurrences Cosine distance: v1 v2 sim( v1, v2) v v 1 2 Vector Space Model Represent a doc by a term vector Term: basic concept, e.g., word or phrase Each term defines one dimension N terms define a N-dimensional space Element of vector corresponds to term weight E.g., d = (x 1,,x N ), x i is importance of term i New document is assigned to the most likely category based on vector similarity. il it 7
8 VS Model: Illustration Starbucks C 2 Category 2 Category 3 C 3 new doc Java Microsoft C 1 Category 1 What VS Model Does Not Specify How to select terms to capture basic concepts Word stopping e.g. a, the, always, along Word stemming e.g. computer, computing, computerize => compute How to assign weights Not all words are equally important: Some are more indicative than others eg e.g. algebra vs. science How to measure the similarity 8
9 How to Assign Weights Two-fold heuristics based on frequency TF (Term frequency) More frequent within a document more relevant to semantics IDF (Inverse document frequency) Less frequent among documents more discriminative e.g. algebra vs. science TF Weighting Weighting: More frequent => more relevant to topic e.g. query vs. commercial Raw TF= f(t,d): how many times term t appears in doc d Normalization: Document length varies => relative frequency preferred e.g., g, Maximum frequency normalization 9
10 IDF Weighting Ideas: Less frequent among documents more discriminative Formula: n total number of docs k # docs with term t appearing (the DF document frequency) TF-IDF Weighting TF-IDF weighting : weight(t, d) = TF(t, d) * IDF(t) Frequent within doc high tf high weight Selective among docs high idf high weight VS model Each selected term represents one dimension Each doc is represented by a feature vector Its t-term coordinate of document d is the TF-IDF weight This is more reasonable Just for illustration Many complex and more effective weighting variants exist in practice 10
11 How to Measure Similarity? Given two document Similarity definition dot product normalized dot product (or cosine) Illustrative Example doc1 doc2 text mining search engine text travel text map travel Sim(newdoc,doc1)=4.8* *4.5 Sim(newdoc,doc2)=2.4*2.4 Sim(newdoc,doc3)=0 Newdoc: text mining To whom is newdoc more similar? TF*IDF doc3 government president congress text mining travel map search engine govern president congress IDF(faked) doc1 2(4.8) 1(4.5) 1(2.1) 1(5.4) doc2 1(2.4 ) 2 (5.6) 1(3.3) doc3 1 (2.2) 1(3.2) 1(4.3) newdoc 1(2.4) 1(4.5) 11
12 WEB Mining Huge Complex Dynamic Only a small portion is relevant to a user Layout Structure Compared to plain text, a web page is a 2D presentation Rich visual effects created by different term types, formats, separators, blank areas, colors, pictures, etc Different parts of a page are not equally important Title: CNN.com International H1: IAEA: Iran had secret nuke agenda H3: EXPLOSIONS ROCK BAGHDAD TEXT BODY (with position and font type): The International Atomic Energy Agency has concluded that Iran has secretly produced small amounts of nuclear materials including low enriched uranium and plutonium that could be used to develop nuclear weapons according to a confidential report obtained by CNN Hyperlink: URL: Anchor Text: AI oaeda Image: URL: Alt & Caption: Iran nuclear Anchor Text: CNN Homepage News 12
13 Web Page Block Better Information Unit Web Page Blocks Importance = Low Importance = Med Importance = High Motivation for VIPS (VIsion-based Page Segmentation) Problems of treating a web page as an atomic unit Web page usually contains not only pure content Noise: navigation, decoration, interaction, Multiple topics Different parts of a page are not equally important Web page has internal structure Two-dimension logical structure & Visual layout presentation > Free text document < Structured document Layout the 3 rd dimension of Web page 1 st dimension: content 2 nd dimension: hyperlink 13
14 Is DOM a Good Representation of Page Structure? Page segmentation using DOM Extract structural tags such as P, TABLE, UL, TITLE, H1~H6, etc DOM is more related content display, does not necessarily reflect semantic structure How about XML? A long way to go to replace the HTML 27 VIPS Algorithm Motivation: In many cases, topics can be distinguished with visual clues. Such as position, distance, font, color, etc. Goal: Extract the semantic structure of a web page based on its visual presentation. Procedure: Top-down partition the web page based on the separators Result A tree structure, each node in the tree corresponds to a block in the page. Each node will be assigned a value (Degree of Coherence) to indicate how coherent of the content in the block based on visual perception. Each block will be assigned an importance value Hierarchy or flat 14
15 VIPS Algorithm The VIPS algorithm makes full use of page layout feature: It first extracts all the suitable blocks from the html DOM tree, then it tries to find the separators between these extracted blocks. Separators denote the horizontal or vertical lines in a web page that visually cross with no blocks. Based on these separators, the semantic structure for the web page is constructed. VIPS algorithm employs a top-down approach, which is very effective. VIPS: An Example A hierarchical structure of layout block A Degree of Coherence (DOC) is defined for each block Show the intra coherence of the block DoC of child block must be no less than its parent s The Permitted Degree of Coherence (PDOC) can be pre-defined to achieve different granularities for the content structure The segmentation will stop only when all the blocks DoC is no less than PDoC The smaller the PDoC, the coarser the content structure would be 15
16 Example of Web Page Segmentation ( DOM Structure ) ( VIPS Structure ) Can be applied on web image retrieval Surrounding text extraction 16
Clustering Technique in Data Mining for Text Documents
Clustering Technique in Data Mining for Text Documents Ms.J.Sathya Priya Assistant Professor Dept Of Information Technology. Velammal Engineering College. Chennai. Ms.S.Priyadharshini Assistant Professor
Medical Information-Retrieval Systems. Dong Peng Medical Informatics Group
Medical Information-Retrieval Systems Dong Peng Medical Informatics Group Outline Evolution of medical Information-Retrieval (IR). The information retrieval process. The trend of medical information retrieval
TF-IDF. David Kauchak cs160 Fall 2009 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture6-tfidf.ppt
TF-IDF David Kauchak cs160 Fall 2009 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture6-tfidf.ppt Administrative Homework 3 available soon Assignment 2 available soon Popular media article
Research and Implementation of View Block Partition Method for Theme-oriented Webpage
, pp.247-256 http://dx.doi.org/10.14257/ijhit.2015.8.2.23 Research and Implementation of View Block Partition Method for Theme-oriented Webpage Lv Fang, Huang Junheng, Wei Yuliang and Wang Bailing * Harbin
Blog Post Extraction Using Title Finding
Blog Post Extraction Using Title Finding Linhai Song 1, 2, Xueqi Cheng 1, Yan Guo 1, Bo Wu 1, 2, Yu Wang 1, 2 1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 2 Graduate School
Introduction to IR Systems: Supporting Boolean Text Search. Information Retrieval. IR vs. DBMS. Chapter 27, Part A
Introduction to IR Systems: Supporting Boolean Text Search Chapter 27, Part A Database Management Systems, R. Ramakrishnan 1 Information Retrieval A research field traditionally separate from Databases
Introduction to Information Retrieval http://informationretrieval.org
Introduction to Information Retrieval http://informationretrieval.org IIR 6&7: Vector Space Model Hinrich Schütze Institute for Natural Language Processing, University of Stuttgart 2011-08-29 Schütze:
Search and Information Retrieval
Search and Information Retrieval Search on the Web 1 is a daily activity for many people throughout the world Search and communication are most popular uses of the computer Applications involving search
W. Heath Rushing Adsurgo LLC. Harness the Power of Text Analytics: Unstructured Data Analysis for Healthcare. Session H-1 JTCC: October 23, 2015
W. Heath Rushing Adsurgo LLC Harness the Power of Text Analytics: Unstructured Data Analysis for Healthcare Session H-1 JTCC: October 23, 2015 Outline Demonstration: Recent article on cnn.com Introduction
1 o Semestre 2007/2008
Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008 Outline 1 2 3 4 5 Outline 1 2 3 4 5 Exploiting Text How is text exploited? Two main directions Extraction Extraction
Web Document Clustering
Web Document Clustering Lab Project based on the MDL clustering suite http://www.cs.ccsu.edu/~markov/mdlclustering/ Zdravko Markov Computer Science Department Central Connecticut State University New Britain,
dm106 TEXT MINING FOR CUSTOMER RELATIONSHIP MANAGEMENT: AN APPROACH BASED ON LATENT SEMANTIC ANALYSIS AND FUZZY CLUSTERING
dm106 TEXT MINING FOR CUSTOMER RELATIONSHIP MANAGEMENT: AN APPROACH BASED ON LATENT SEMANTIC ANALYSIS AND FUZZY CLUSTERING ABSTRACT In most CRM (Customer Relationship Management) systems, information on
Recommender Systems: Content-based, Knowledge-based, Hybrid. Radek Pelánek
Recommender Systems: Content-based, Knowledge-based, Hybrid Radek Pelánek 2015 Today lecture, basic principles: content-based knowledge-based hybrid, choice of approach,... critiquing, explanations,...
Introduction. A. Bellaachia Page: 1
Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.
Search Taxonomy. Web Search. Search Engine Optimization. Information Retrieval
Information Retrieval INFO 4300 / CS 4300! Retrieval models Older models» Boolean retrieval» Vector Space model Probabilistic Models» BM25» Language models Web search» Learning to Rank Search Taxonomy!
A LANGUAGE INDEPENDENT WEB DATA EXTRACTION USING VISION BASED PAGE SEGMENTATION ALGORITHM
A LANGUAGE INDEPENDENT WEB DATA EXTRACTION USING VISION BASED PAGE SEGMENTATION ALGORITHM 1 P YesuRaju, 2 P KiranSree 1 PG Student, 2 Professorr, Department of Computer Science, B.V.C.E.College, Odalarevu,
Homework 2. Page 154: Exercise 8.10. Page 145: Exercise 8.3 Page 150: Exercise 8.9
Homework 2 Page 110: Exercise 6.10; Exercise 6.12 Page 116: Exercise 6.15; Exercise 6.17 Page 121: Exercise 6.19 Page 122: Exercise 6.20; Exercise 6.23; Exercise 6.24 Page 131: Exercise 7.3; Exercise 7.5;
An Information Retrieval using weighted Index Terms in Natural Language document collections
Internet and Information Technology in Modern Organizations: Challenges & Answers 635 An Information Retrieval using weighted Index Terms in Natural Language document collections Ahmed A. A. Radwan, Minia
Linear Algebra Methods for Data Mining
Linear Algebra Methods for Data Mining Saara Hyvönen, [email protected] Spring 2007 Text mining & Information Retrieval Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki
SPATIAL DATA CLASSIFICATION AND DATA MINING
, pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal
Why is Internal Audit so Hard?
Why is Internal Audit so Hard? 2 2014 Why is Internal Audit so Hard? 3 2014 Why is Internal Audit so Hard? Waste Abuse Fraud 4 2014 Waves of Change 1 st Wave Personal Computers Electronic Spreadsheets
Web Mining. Margherita Berardi LACAM. Dipartimento di Informatica Università degli Studi di Bari [email protected]
Web Mining Margherita Berardi LACAM Dipartimento di Informatica Università degli Studi di Bari [email protected] Bari, 24 Aprile 2003 Overview Introduction Knowledge discovery from text (Web Content
Introduction to Information Retrieval http://informationretrieval.org
Introduction to Information Retrieval http://informationretrieval.org IIR 7: Scores in a Complete Search System Hinrich Schütze Center for Information and Language Processing, University of Munich 2014-05-07
Text Mining in JMP with R Andrew T. Karl, Senior Management Consultant, Adsurgo LLC Heath Rushing, Principal Consultant and Co-Founder, Adsurgo LLC
Text Mining in JMP with R Andrew T. Karl, Senior Management Consultant, Adsurgo LLC Heath Rushing, Principal Consultant and Co-Founder, Adsurgo LLC 1. Introduction A popular rule of thumb suggests that
Advas A Python Search Engine Module
Advas A Python Search Engine Module Dipl.-Inf. Frank Hofmann Potsdam 11. Oktober 2007 Dipl.-Inf. Frank Hofmann (Potsdam) Advas A Python Search Engine Module 11. Oktober 2007 1 / 15 Contents 1 Project Overview
So today we shall continue our discussion on the search engines and web crawlers. (Refer Slide Time: 01:02)
Internet Technology Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No #39 Search Engines and Web Crawler :: Part 2 So today we
SEARCH ENGINE WITH PARALLEL PROCESSING AND INCREMENTAL K-MEANS FOR FAST SEARCH AND RETRIEVAL
SEARCH ENGINE WITH PARALLEL PROCESSING AND INCREMENTAL K-MEANS FOR FAST SEARCH AND RETRIEVAL Krishna Kiran Kattamuri 1 and Rupa Chiramdasu 2 Department of Computer Science Engineering, VVIT, Guntur, India
uclust - A NEW ALGORITHM FOR CLUSTERING UNSTRUCTURED DATA
uclust - A NEW ALGORITHM FOR CLUSTERING UNSTRUCTURED DATA D. Venkatavara Prasad, Sathya Madhusudanan and Suresh Jaganathan Department of Computer Science and Engineering, SSN College of Engineering, Chennai,
Latent Semantic Indexing with Selective Query Expansion Abstract Introduction
Latent Semantic Indexing with Selective Query Expansion Andy Garron April Kontostathis Department of Mathematics and Computer Science Ursinus College Collegeville PA 19426 Abstract This article describes
Information Visualization of Attributed Relational Data
Information Visualization of Attributed Relational Data Mao Lin Huang Department of Computer Systems Faculty of Information Technology University of Technology, Sydney PO Box 123 Broadway, NSW 2007 Australia
Self Organizing Maps for Visualization of Categories
Self Organizing Maps for Visualization of Categories Julian Szymański 1 and Włodzisław Duch 2,3 1 Department of Computer Systems Architecture, Gdańsk University of Technology, Poland, [email protected]
How To Improve Performance In A Database
Some issues on Conceptual Modeling and NoSQL/Big Data Tok Wang Ling National University of Singapore 1 Database Models File system - field, record, fixed length record Hierarchical Model (IMS) - fixed
Interactive Recovery of Requirements Traceability Links Using User Feedback and Configuration Management Logs
Interactive Recovery of Requirements Traceability Links Using User Feedback and Configuration Management Logs Ryosuke Tsuchiya 1, Hironori Washizaki 1, Yoshiaki Fukazawa 1, Keishi Oshima 2, and Ryota Mibe
Eng. Mohammed Abdualal
Islamic University of Gaza Faculty of Engineering Computer Engineering Department Information Storage and Retrieval (ECOM 5124) IR HW 5+6 Scoring, term weighting and the vector space model Exercise 6.2
Finding Advertising Keywords on Web Pages. Contextual Ads 101
Finding Advertising Keywords on Web Pages Scott Wen-tau Yih Joshua Goodman Microsoft Research Vitor R. Carvalho Carnegie Mellon University Contextual Ads 101 Publisher s website Digital Camera Review The
Investigating Clinical Care Pathways Correlated with Outcomes
Investigating Clinical Care Pathways Correlated with Outcomes Geetika T. Lakshmanan, Szabolcs Rozsnyai, Fei Wang IBM T. J. Watson Research Center, NY, USA August 2013 Outline Care Pathways Typical Challenges
The Open Source Knowledge Discovery and Document Analysis Platform
Enabling Agile Intelligence through Open Analytics The Open Source Knowledge Discovery and Document Analysis Platform 17/10/2012 1 Agenda Introduction and Agenda Problem Definition Knowledge Discovery
Technologies & Applications
Chapter 10 Emerging Database Technologies & Applications Truong Quynh Chi [email protected] Spring - 2013 Contents 1 Distributed Databases & Client-Server Architectures 2 Spatial and Temporal Database
Technical Report. The KNIME Text Processing Feature:
Technical Report The KNIME Text Processing Feature: An Introduction Dr. Killian Thiel Dr. Michael Berthold [email protected] [email protected] Copyright 2012 by KNIME.com AG
Social Media Mining. Data Mining Essentials
Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers
CSE 233. Database System Overview
CSE 233 Database System Overview 1 Data Management An evolving, expanding field: Classical stand-alone databases (Oracle, DB2, SQL Server) Computer science is becoming data-centric: web knowledge harvesting,
Clustering & Visualization
Chapter 5 Clustering & Visualization Clustering in high-dimensional databases is an important problem and there are a number of different clustering paradigms which are applicable to high-dimensional data.
Visualizing an Auto-Generated Topic Map
Visualizing an Auto-Generated Topic Map Nadine Amende 1, Stefan Groschupf 2 1 University Halle-Wittenberg, information manegement technology [email protected] 2 media style labs Halle Germany [email protected]
Integrated Library Systems (ILS) Glossary
Integrated Library Systems (ILS) Glossary Acquisitions Selecting, ordering and receiving new materials and maintaining accurate records. Authority files Lists of preferred headings in a library catalogue,
Finding Advertising Keywords on Web Pages
Finding Advertising Keywords on Web Pages Wen-tau Yih Microsoft Research 1 Microsoft Way Redmond, WA 98052 [email protected] Joshua Goodman Microsoft Research 1 Microsoft Way Redmond, WA 98052 [email protected]
Clustering. Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016
Clustering Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016 1 Supervised learning vs. unsupervised learning Supervised learning: discover patterns in the data that relate data attributes with
Search Result Optimization using Annotators
Search Result Optimization using Annotators Vishal A. Kamble 1, Amit B. Chougule 2 1 Department of Computer Science and Engineering, D Y Patil College of engineering, Kolhapur, Maharashtra, India 2 Professor,
Information Retrieval Elasticsearch
Information Retrieval Elasticsearch IR Information retrieval (IR) is the activity of obtaining information resources relevant to an information need from a collection of information resources. Searches
Optimization of Internet Search based on Noun Phrases and Clustering Techniques
Optimization of Internet Search based on Noun Phrases and Clustering Techniques R. Subhashini Research Scholar, Sathyabama University, Chennai-119, India V. Jawahar Senthil Kumar Assistant Professor, Anna
Search engine ranking
Proceedings of the 7 th International Conference on Applied Informatics Eger, Hungary, January 28 31, 2007. Vol. 2. pp. 417 422. Search engine ranking Mária Princz Faculty of Technical Engineering, University
Big Data: Rethinking Text Visualization
Big Data: Rethinking Text Visualization Dr. Anton Heijs [email protected] Treparel April 8, 2013 Abstract In this white paper we discuss text visualization approaches and how these are important
Slide 7. Jashapara, Knowledge Management: An Integrated Approach, 2 nd Edition, Pearson Education Limited 2011. 7 Nisan 14 Pazartesi
WELCOME! WELCOME! Chapter 7 WELCOME! Chapter 7 WELCOME! Chapter 7 KNOWLEDGE MANAGEMENT TOOLS: WELCOME! Chapter 7 KNOWLEDGE MANAGEMENT TOOLS: Component Technologies LEARNING OBJECTIVES LEARNING OBJECTIVES
Motivation. Korpus-Abfrage: Werkzeuge und Sprachen. Overview. Languages of Corpus Query. SARA Query Possibilities 1
Korpus-Abfrage: Werkzeuge und Sprachen Gastreferat zur Vorlesung Korpuslinguistik mit und für Computerlinguistik Charlotte Merz 3. Dezember 2002 Motivation Lizentiatsarbeit: A Corpus Query Tool for Automatically
A Workbench for Prototyping XML Data Exchange (extended abstract)
A Workbench for Prototyping XML Data Exchange (extended abstract) Renzo Orsini and Augusto Celentano Università Ca Foscari di Venezia, Dipartimento di Informatica via Torino 155, 30172 Mestre (VE), Italy
Search Engines. Stephen Shaw <[email protected]> 18th of February, 2014. Netsoc
Search Engines Stephen Shaw Netsoc 18th of February, 2014 Me M.Sc. Artificial Intelligence, University of Edinburgh Would recommend B.A. (Mod.) Computer Science, Linguistics, French,
A Semantic Portal for the International Affairs Sector
A Semantic Portal for the International Affairs Sector Contreras, Benjamins, Blazquez, Losada, Salle, Sevilla, Navaro, Casillas, Mompo, Paton, Corcho (isoco) www.esperonto.net MCYT, PROFIT Tena, Martos
Topic Maps Visualization
Topic Maps Visualization Bénédicte Le Grand, Laboratoire d'informatique de Paris 6 Introduction Topic maps provide a bridge between the domains of knowledge representation and information management. Topics
CSE 132A. Database Systems Principles
CSE 132A Database Systems Principles Prof. Victor Vianu 1 Data Management An evolving, expanding field: Classical stand-alone databases (Oracle, DB2, SQL Server) Computer science is becoming data-centric:
Exam in course TDT4215 Web Intelligence - Solutions and guidelines -
English Student no:... Page 1 of 12 Contact during the exam: Geir Solskinnsbakk Phone: 94218 Exam in course TDT4215 Web Intelligence - Solutions and guidelines - Friday May 21, 2010 Time: 0900-1300 Allowed
PSG College of Technology, Coimbatore-641 004 Department of Computer & Information Sciences BSc (CT) G1 & G2 Sixth Semester PROJECT DETAILS.
PSG College of Technology, Coimbatore-641 004 Department of Computer & Information Sciences BSc (CT) G1 & G2 Sixth Semester PROJECT DETAILS Project Project Title Area of Abstract No Specialization 1. Software
Microsoft Services Exceed your business with Microsoft SharePoint Server 2010
Microsoft Services Exceed your business with Microsoft SharePoint Server 2010 Business Intelligence Suite Alexandre Mendeiros, SQL Server Premier Field Engineer January 2012 Agenda Microsoft Business Intelligence
Web Design Specialist
UKWDA Training: CIW Web Design Series Web Design Specialist Course Description CIW Web Design Specialist is for those who want to develop the skills to specialise in website design and builds upon existing
isecure: Integrating Learning Resources for Information Security Research and Education The isecure team
isecure: Integrating Learning Resources for Information Security Research and Education The isecure team 1 isecure NSF-funded collaborative project (2012-2015) Faculty NJIT Vincent Oria Jim Geller Reza
Secure semantic based search over cloud
Volume: 2, Issue: 5, 162-167 May 2015 www.allsubjectjournal.com e-issn: 2349-4182 p-issn: 2349-5979 Impact Factor: 3.762 Sarulatha.M PG Scholar, Dept of CSE Sri Krishna College of Technology Coimbatore,
Data Warehousing and OLAP Technology for Knowledge Discovery
542 Data Warehousing and OLAP Technology for Knowledge Discovery Aparajita Suman Abstract Since time immemorial, libraries have been generating services using the knowledge stored in various repositories
Flattening Enterprise Knowledge
Flattening Enterprise Knowledge Do you Control Your Content or Does Your Content Control You? 1 Executive Summary: Enterprise Content Management (ECM) is a common buzz term and every IT manager knows it
Web Content Mining and NLP. Bing Liu Department of Computer Science University of Illinois at Chicago [email protected] http://www.cs.uic.
Web Content Mining and NLP Bing Liu Department of Computer Science University of Illinois at Chicago [email protected] http://www.cs.uic.edu/~liub Introduction The Web is perhaps the single largest and distributed
T HE I NFORMATION A RCHITECTURE G LOSSARY
T HE I NFORMATION A RCHITECTURE G LOSSARY B Y K AT H AGEDORN, ARGUS A SSOCIATES M ARCH 2000 I NTRODUCTION This glossary is intended to foster development of a shared vocabulary within the new and rapidly
ProteinQuest user guide
ProteinQuest user guide 1. Introduction... 3 1.1 With ProteinQuest you can... 3 1.2 ProteinQuest basic version 4 1.3 ProteinQuest extended version... 5 2. ProteinQuest dictionaries... 6 3. Directions for
Client Overview. Engagement Situation. Key Requirements
Client Overview Our client is one of the leading providers of business intelligence systems for customers especially in BFSI space that needs intensive data analysis of huge amounts of data for their decision
Clustering Connectionist and Statistical Language Processing
Clustering Connectionist and Statistical Language Processing Frank Keller [email protected] Computerlinguistik Universität des Saarlandes Clustering p.1/21 Overview clustering vs. classification supervised
A FUZZY BASED APPROACH TO TEXT MINING AND DOCUMENT CLUSTERING
A FUZZY BASED APPROACH TO TEXT MINING AND DOCUMENT CLUSTERING Sumit Goswami 1 and Mayank Singh Shishodia 2 1 Indian Institute of Technology-Kharagpur, Kharagpur, India [email protected] 2 School of Computer
Hierarchical Data Visualization
Hierarchical Data Visualization 1 Hierarchical Data Hierarchical data emphasize the subordinate or membership relations between data items. Organizational Chart Classifications / Taxonomies (Species and
Distributed Computing and Big Data: Hadoop and MapReduce
Distributed Computing and Big Data: Hadoop and MapReduce Bill Keenan, Director Terry Heinze, Architect Thomson Reuters Research & Development Agenda R&D Overview Hadoop and MapReduce Overview Use Case:
Outline. CIW Web Design Specialist. Course Content
CIW Web Design Specialist Description The Web Design Specialist course (formerly titled Design Methodology and Technology) teaches you how to design and publish Web sites. General topics include Web Site
MyOra 3.0. User Guide. SQL Tool for Oracle. Jayam Systems, LLC
MyOra 3.0 SQL Tool for Oracle User Guide Jayam Systems, LLC Contents Features... 4 Connecting to the Database... 5 Login... 5 Login History... 6 Connection Indicator... 6 Closing the Connection... 7 SQL
Inner Classification of Clusters for Online News
Inner Classification of Clusters for Online News Harmandeep Kaur 1, Sheenam Malhotra 2 1 (Computer Science and Engineering Department, Shri Guru Granth Sahib World University Fatehgarh Sahib) 2 (Assistant
Chapter 3 Data Warehouse - technological growth
Chapter 3 Data Warehouse - technological growth Computing began with data storage in conventional file systems. In that era the data volume was too small and easy to be manageable. With the increasing
Data Mining & Knowledge Discovery: Personalization and Profiling Technologies
Data Mining & Knowledge Discovery: Personalization and Profiling Technologies 1 Predictive Modeling and Knowledge Discovery via Data Mining v A black box that makes predictions about the future based on
Large-Scale Data Sets Clustering Based on MapReduce and Hadoop
Journal of Computational Information Systems 7: 16 (2011) 5956-5963 Available at http://www.jofcis.com Large-Scale Data Sets Clustering Based on MapReduce and Hadoop Ping ZHOU, Jingsheng LEI, Wenjun YE
Building Data Cubes and Mining Them. Jelena Jovanovic Email: [email protected]
Building Data Cubes and Mining Them Jelena Jovanovic Email: [email protected] KDD Process KDD is an overall process of discovering useful knowledge from data. Data mining is a particular step in the
Machine Learning using MapReduce
Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous
Visualization Techniques in Data Mining
Tecniche di Apprendimento Automatico per Applicazioni di Data Mining Visualization Techniques in Data Mining Prof. Pier Luca Lanzi Laurea in Ingegneria Informatica Politecnico di Milano Polo di Milano
