Maximum likelihood estimation of mean reverting processes
|
|
|
- Garey Gilmore
- 10 years ago
- Views:
Transcription
1 Maximum likelihood estimation of mean reverting processes José Carlos García Franco Onward, Inc. Abstract Mean reverting processes are frequently used models in real options. For instance, some commodity prices or their logarithms) are frequently believed to revert to some level associated with marginal production costs. Fundamental parameter knowledge, based on economic analysis of the forces at play, is perhaps the most meaningful channel for model calibration. Nevertheless, data based methods are often needed to complement and validate a particular model. The Ornstein-Uhlenbeck mean reverting OUMR) model is a Gaussian model well suited for maximum likelihood ML) methods. Alternative methods include least squares LS) regression of discrete autoregressive versions of the OUMR model and methods of moments MM). Each method has advantages and disadvantages. For instance, LS methods may not always yield a reasonable parameter set see Chapter 3 of Dixit and Pindyck[]) and methods of moments lack the desirable optimality properties of ML or LS estimation. This note develops a maximum-likelihood ML) methodology for parameter estimation of 1-dimensional Ornstein-Uhlenbeck OR) mean reverting processes. Furthermore, our methodology ultimately relies on a one-dimensional search which greatly facilitates estimation and easily accommodtes missing or unevenly spaced time-wise) observations. The simple Ornstein-Uhlenbeck mean reverting OUMR) process given by the stochastic differential equation SDE) d xt) = η x xt)) dt + σ dbt); x) = x 1) for constants x, η and x and where Bt) is standard Brownian motion. In this model the process xt) fluctuates randomly, but tends to revert to some fundamental level x. The behavior of this reversion depends on both the short term standard deviation σ and the speed of reversion parameter η. An example. Figure 1 shows a sample path for 1 months of a mean reverting process starting at a level x) = 1, that tends to revert to a level x = 15, with a speed of reversion η = 4 and a short term standard deviation σ = 5 one third of the level of reversion). The solid line shows the level of reversion. One characteristic that may be evident is that, as opposed to random walks with drift), the process does not exhibit an explosive behavior, but rather tends to fluctuate around the reversion level. Furthermore, it may be shown that the long-term variance of the process has a limit. This behavior is often desirable for the analysis of economic variables that have a fundamental reason to fluctuate around a given level. For example, the price of some commodities or the marginal cost curve for the production of some good. However, fitting or calibration of such models is not easy to come by. While all the parameters may have some intuitive meaning to the analyst, measuring them is quite another story. In the best of cases there is some fundamental knowledge that leads to fixing a parameter, this is hopefully the case for the reversion level x, yet, it is unlikely to have expert knowledge of all parameters and we are forced to rely on data driven 1
2 Onward Inc. Real Options Practice Figure 1: OUMR sample path. estimation methods. Assuming of course that such data is available. We will illustrate a maximum likelihood ML) estimation procedure for finding the parameters of the mean-reverting process. However, in order to do this, we must first determine the distribution of the process xt). The process xt) is a gaussian process which is well suited for maximum likelihood estimation. In the section that follows we will derive the distribution of xt) by solving the SDE 1). 1 The distribution of the OR process The OU mean reverting model described in 1) is a gaussian model in the sense that, given X, the time t value of the process Xt) is normally distributed with E[xt) x ] = x + x x) exp [ η t] and Var[xt) x ] = σ 1 exp[ η t]). η Appendix A explains this based on the solution of the SDE 1). Figure shows a forecast in the form of confidence intervals corresponding to the process we previously used as an example. The fact that long-term variance tends to a constant, is demonstrated by the flatness of the confidence intervals as we forecast farther into the future. We can also see from this forecast that the long-term expected value which is equal to the median in the OU mean reverting model) tends to the level of reversion. Maximum likelihood estimation For t i 1 < t i, the x ti 1 conditional density f i of x ti is given by
3 Onward Inc. Real Options Practice Figure : OUMR confidence interval forecast. f i x ti ; x, η, σ) = π) 1 σ η [ xti x x ti 1 x)e ηti ti 1)) exp 1 e ηti ti 1))) 1 ) ] ). 3) σ η 1 e η t i t i 1) Given n + 1 observations x = {x t,..., x tn } of the process x, the log-likelihood function 1 corresponding to??) is given by Lx; x, η, σ) = n [ ] σ log 1 n log [1 e ηti ti 1)] η η n xti x x ti 1 x) e ηti ti 1)) σ. 4) 1 e ηti ti 1) The maximum likelihood estimates MLE) ˆ x, ˆη and ˆσ maximize the log-likelihood function and can be found by Quasi-Newton optimization methods. Another alternative is to rely on the first order conditions which requires the solution of a non-linear system of equations. Quasi-Newton methods are also applicable in this case. However, optimization or equation solving techniques require considerable computation time. In the sections that follow we will attempt to obtain an analytic alternative for ML estimation, based on the first order conditions. This approach is based on the approach found in Barz [1]. However, we do allow for arbitrarily spaced observations timewise) and avoid some simplifying assumptions made in that work for practical purposes)..1 First order conditions The first order conditions for maximum likelihood estimation require the gradient of the loglikelihood to be equal to zero. In other words, the maximum likelihood estimators ˆ x, ˆη and ˆσ satisfy the first order conditions: 1 With constant terms omitted.
4 Onward Inc. Real Options Practice 4 Lx; x, η, σ) x Lx; x, η, σ) η Lx; x, η, σ) σ = ˆ x = ˆη = ˆσ The solution to this non-linear system of equations may be found using a variety of numerical methods. However, in the next section we will illustrate an approach that simplifies the numerical search by exploiting some convenient analytical manipulations of the first order conditions.. A hybrid approach We first turn our attention to the first element of the gradient. We have that Lx; x, η, σ) x = η n x ti x x ti 1 x ) e ηti ti 1) σ 1 + e ηti ti 1) Under the assumption that η and σ are non-zero, the first order conditions imply n x ti x ti 1 e ˆ x ˆηti ti 1) n ) 1 1 e ˆηti ti 1) = fˆη) =. 5) 1 + e ˆηti ti 1) 1 + e ˆηti ti 1) The derivative of the log-likelihood function with respect to σ is Lx; x, η, σ) = n σ σ + η n xti x x ti 1 x) e ηti ti 1)) σ 3, 1 e ηti ti 1) which together with the first order conditions implies ˆσ = gˆ x, ˆη) = ˆη n xti ˆ x x ti 1 ˆ x) e ˆηti ti 1)). 6) n 1 e ˆηti ti 1) Expressions 5) and 6) define functions that relate the maximum likelihood estimates. Specifically we have ˆ x as a function f of ˆη and ˆσ as a function g of ˆη and ˆ x. In order to solve for the maximum likelihood estimates, we could solve the system of non-linear equations given by ˆ x = fˆη), ˆσ = gˆ x, ˆη) and the first order condition Lx; x, η, σ)/ σ ˆσ =. However, the expression for Lx; x, η, σ)/ σ is algebraically complex and would not lead to a closed form solution, requiring a numerical solution. A simpler approach is to substitute the functions ˆ x = fˆη) and ˆσ = gˆ x, ˆη) directly into the likelihood function and maximize with respect to η. So our problem becomes where min η V η) 7) V η) = n [ ] gfη), η) log 1 n log [1 e ηti ti 1)] η η n xti fη) x ti 1 fη)) e ηti ti 1)) gfη), η). 1 e ηti ti 1)
5 Onward Inc. Real Options Practice 5 Parameter η = 1. Number Bias Mean Relative of Mean standard relative bias samples bias deviation bias std. dev % 9.9% % 95.5% % 56.% % 35.5% % 4.1% Parameter x = 16 Number Bias Mean Relative of Mean standard relative bias samples bias deviation bias std. dev % 9.1% % 1.8% % 6.8% % 4.5% % 3.4% Parameter σ = 4 Number Bias Mean Relative of Mean standard relative bias samples bias deviation bias std. dev % 7.% % 4.5% % 3.1% %.% % 1.6% Table 1: An example of MLE performance. It is not hard to show that the solution to the problem 7) yields the maximum likelihood estimator ˆη. Once we have obtained ˆη we can easily find ˆ x = fˆη) and ˆσ = gˆ x, ˆη). The advantage of this approach is that the problem 7) requires a one dimensional search and requires the evaluation of less complex expressions than solving for all three first order conditions. 3 Example Consider a family of weekly observations samples) from an Ornstein-Uhlenbeck mean reverting process with parameters x = 16, η = 1. and σ = 4 starting at X) = 1. It is known 1) that the MLE s converge to the true parameter as the sample size increases and ) that the MLE s are asymptotically normally distributed. However, in practice we do not enjoy the convergence benefits given by the MLE large sample properties. In order to get an idea of how the MLE s behave under different sample sizes, a simulation experiment was conducted where we estimated the mean and variance of the estimation bias. Table 3 summarizes the simulation results. From these results we can begin to appreciate the accuracy of the method as well as the asymptotic behavior of the maximum likelihood estimation. 4 Conclusion In this note we developed a practical solution for the maximum likelihood estimation of an Ornstein- Uhlenbeck mean reverting process. The main advantage of our approach is that by leveraging on some manipulation of the first order conditions, we can reduce ML estimation to a one dimensional optimization problem which can generally be solved in a matter of seconds. The reduction of the problem to one dimension also facilitates the localization of a global maximum for the likelihood function. In addition, it is worth mentioning that the method rivals alternative methods such as regression of a discrete version of the OU mean reverting model or moment matching methods. Finally, we note that the method presented in this note trivially accommodates fundamental knowledge of any of the process parameters by simply substituting the known parameters) into the corresponding equations. For instance, if x is known, we forget about the function ˆ x = fˆη) and simply plug in the known x into the other equations as the MLE ˆ x.
6 Onward Inc. Real Options Practice 6 References [1] Barz, G. 1999) Stochastic Financial Models for Electricity Derivatives, Ph.D. dissertation, Department of Engineering-Economic Systems and Operations Research, Stanford University, Stanford, CA. [] Dixit, A.K. and Pindyck R.S. 1994) Investment Under Uncertainty, Princeton University Press, Princeton, NJ. [3] Greene, William H. 1997) Econometric Analysis, 3rd. Edition, Prentice Hall, Upper Saddle River, NJ. [4] Luenberger, D.G. 1998) Investment Science, Oxford University Press, New York, NY. [5] Øksendal, B. 1995) Stochastic Differential Equations: An Introduction with Applications, 4th ed., Springer-Verlag, New York, NY.
7 Onward Inc. Real Options Practice 7 A Solving the Ornstein-Uhlenbeck SDE Consider a mean reverting Ornstein-Uhlenbeck process which is described by the following stochastic differential equation SDE) d xt) = η x xt)) dt + σ d Bt); x) = x 8) The solution of the OR SDE is standard in the literature. First note that d e ηt xt)) = xt) ηe ηt dt + e ηt dxt), and therefore we have e ηt dxt) = d e ηt xt)) xt) ηe ηt dt. 9) Multiplying both sides of 8) by e ηt, we get e ηt dxt) = e ηt η x xt)) dt + e ηt σ dbt), 1) which together with 9) implies d e ηt xt)) = ηe ηt x dt + e ηt σ dbt). 11) Therefore, we can now solve for 11) as or equivalently e ηt xt) = x + xt) = x e η t + ηe ηs x ds + η e ηt s) x ds + e ηs σ db s, 1) e ηt s) σ db s. 13) The first integral on the right hand side evaluates to x1 e ηt ) and since B[ t is Brownian motion, ) t the second integral is normally distributed with mean zero and variance E e ηt s) σ db s ]. By Ito isometry we have [ ) ] E e ηt s) σ db s = = = σ η e ηt s) σ) ds e ηt s) σ ds 1 e ηt ). Hence, X t is normally distributed with E[X t X ] = x+x x)e ηt and Var[X t X ] = ) σ η 1 e ηt. See Øksendal [5] for details.
Bias in the Estimation of Mean Reversion in Continuous-Time Lévy Processes
Bias in the Estimation of Mean Reversion in Continuous-Time Lévy Processes Yong Bao a, Aman Ullah b, Yun Wang c, and Jun Yu d a Purdue University, IN, USA b University of California, Riverside, CA, USA
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written
The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models
780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon
The Black-Scholes Formula
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the
Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus
Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives
Using simulation to calculate the NPV of a project
Using simulation to calculate the NPV of a project Marius Holtan Onward Inc. 5/31/2002 Monte Carlo simulation is fast becoming the technology of choice for evaluating and analyzing assets, be it pure financial
Computing Near Optimal Strategies for Stochastic Investment Planning Problems
Computing Near Optimal Strategies for Stochastic Investment Planning Problems Milos Hauskrecfat 1, Gopal Pandurangan 1,2 and Eli Upfal 1,2 Computer Science Department, Box 1910 Brown University Providence,
2DI36 Statistics. 2DI36 Part II (Chapter 7 of MR)
2DI36 Statistics 2DI36 Part II (Chapter 7 of MR) What Have we Done so Far? Last time we introduced the concept of a dataset and seen how we can represent it in various ways But, how did this dataset came
Multivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE
ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.
STA 4273H: Statistical Machine Learning
STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! [email protected]! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct
INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition)
INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) Abstract Indirect inference is a simulation-based method for estimating the parameters of economic models. Its
Master of Mathematical Finance: Course Descriptions
Master of Mathematical Finance: Course Descriptions CS 522 Data Mining Computer Science This course provides continued exploration of data mining algorithms. More sophisticated algorithms such as support
Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld.
Logistic Regression Vibhav Gogate The University of Texas at Dallas Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Generative vs. Discriminative Classifiers Want to Learn: h:x Y X features
Notes on Black-Scholes Option Pricing Formula
. Notes on Black-Scholes Option Pricing Formula by De-Xing Guan March 2006 These notes are a brief introduction to the Black-Scholes formula, which prices the European call options. The essential reading
EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL
EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL Exit Time problems and Escape from a Potential Well Escape From a Potential Well There are many systems in physics, chemistry and biology that exist
第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model
1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
The Black-Scholes-Merton Approach to Pricing Options
he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining
ANALYZING INVESTMENT RETURN OF ASSET PORTFOLIOS WITH MULTIVARIATE ORNSTEIN-UHLENBECK PROCESSES
ANALYZING INVESTMENT RETURN OF ASSET PORTFOLIOS WITH MULTIVARIATE ORNSTEIN-UHLENBECK PROCESSES by Xiaofeng Qian Doctor of Philosophy, Boston University, 27 Bachelor of Science, Peking University, 2 a Project
LOGNORMAL MODEL FOR STOCK PRICES
LOGNORMAL MODEL FOR STOCK PRICES MICHAEL J. SHARPE MATHEMATICS DEPARTMENT, UCSD 1. INTRODUCTION What follows is a simple but important model that will be the basis for a later study of stock prices as
Affine-structure models and the pricing of energy commodity derivatives
Affine-structure models and the pricing of energy commodity derivatives Nikos K Nomikos [email protected] Cass Business School, City University London Joint work with: Ioannis Kyriakou, Panos Pouliasis
Time Series and Forecasting
Chapter 22 Page 1 Time Series and Forecasting A time series is a sequence of observations of a random variable. Hence, it is a stochastic process. Examples include the monthly demand for a product, the
4. Simple regression. QBUS6840 Predictive Analytics. https://www.otexts.org/fpp/4
4. Simple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/4 Outline The simple linear model Least squares estimation Forecasting with regression Non-linear functional forms Regression
Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.
LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing
When to Refinance Mortgage Loans in a Stochastic Interest Rate Environment
When to Refinance Mortgage Loans in a Stochastic Interest Rate Environment Siwei Gan, Jin Zheng, Xiaoxia Feng, and Dejun Xie Abstract Refinancing refers to the replacement of an existing debt obligation
A Regime-Switching Model for Electricity Spot Prices. Gero Schindlmayr EnBW Trading GmbH [email protected]
A Regime-Switching Model for Electricity Spot Prices Gero Schindlmayr EnBW Trading GmbH [email protected] May 31, 25 A Regime-Switching Model for Electricity Spot Prices Abstract Electricity markets
Monte Carlo Estimation of Project Volatility for Real Options Analysis
Monte Carlo Estimation of Project Volatility for Real Options Analysis Pedro Manuel Cortesão Godinho Grupo de Estudos Monetários e Financeiros (GEMF) ABSTRACT Volatility is a fundamental parameter for
The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy
BMI Paper The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy Faculty of Sciences VU University Amsterdam De Boelelaan 1081 1081 HV Amsterdam Netherlands Author: R.D.R.
Pricing and calibration in local volatility models via fast quantization
Pricing and calibration in local volatility models via fast quantization Parma, 29 th January 2015. Joint work with Giorgia Callegaro and Martino Grasselli Quantization: a brief history Birth: back to
Simulating Stochastic Differential Equations
Monte Carlo Simulation: IEOR E473 Fall 24 c 24 by Martin Haugh Simulating Stochastic Differential Equations 1 Brief Review of Stochastic Calculus and Itô s Lemma Let S t be the time t price of a particular
i=1 In practice, the natural logarithm of the likelihood function, called the log-likelihood function and denoted by
Statistics 580 Maximum Likelihood Estimation Introduction Let y (y 1, y 2,..., y n be a vector of iid, random variables from one of a family of distributions on R n and indexed by a p-dimensional parameter
LOGISTIC REGRESSION. Nitin R Patel. where the dependent variable, y, is binary (for convenience we often code these values as
LOGISTIC REGRESSION Nitin R Patel Logistic regression extends the ideas of multiple linear regression to the situation where the dependent variable, y, is binary (for convenience we often code these values
CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York
BME I5100: Biomedical Signal Processing Linear Discrimination Lucas C. Parra Biomedical Engineering Department CCNY 1 Schedule Week 1: Introduction Linear, stationary, normal - the stuff biology is not
The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series.
Cointegration The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series. Economic theory, however, often implies equilibrium
Multiple Linear Regression in Data Mining
Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple
1 Short Introduction to Time Series
ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The
Nonparametric adaptive age replacement with a one-cycle criterion
Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: [email protected]
Online Appendix. Supplemental Material for Insider Trading, Stochastic Liquidity and. Equilibrium Prices. by Pierre Collin-Dufresne and Vyacheslav Fos
Online Appendix Supplemental Material for Insider Trading, Stochastic Liquidity and Equilibrium Prices by Pierre Collin-Dufresne and Vyacheslav Fos 1. Deterministic growth rate of noise trader volatility
PROBABILITY AND STATISTICS. Ma 527. 1. To teach a knowledge of combinatorial reasoning.
PROBABILITY AND STATISTICS Ma 527 Course Description Prefaced by a study of the foundations of probability and statistics, this course is an extension of the elements of probability and statistics introduced
Linear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
Math 526: Brownian Motion Notes
Math 526: Brownian Motion Notes Definition. Mike Ludkovski, 27, all rights reserved. A stochastic process (X t ) is called Brownian motion if:. The map t X t (ω) is continuous for every ω. 2. (X t X t
Chapter 6: Point Estimation. Fall 2011. - Probability & Statistics
STAT355 Chapter 6: Point Estimation Fall 2011 Chapter Fall 2011 6: Point1 Estimat / 18 Chap 6 - Point Estimation 1 6.1 Some general Concepts of Point Estimation Point Estimate Unbiasedness Principle of
Enhancing the SNR of the Fiber Optic Rotation Sensor using the LMS Algorithm
1 Enhancing the SNR of the Fiber Optic Rotation Sensor using the LMS Algorithm Hani Mehrpouyan, Student Member, IEEE, Department of Electrical and Computer Engineering Queen s University, Kingston, Ontario,
Is a Brownian motion skew?
Is a Brownian motion skew? Ernesto Mordecki Sesión en honor a Mario Wschebor Universidad de la República, Montevideo, Uruguay XI CLAPEM - November 2009 - Venezuela 1 1 Joint work with Antoine Lejay and
How To Price Garch
2011 3rd International Conference on Information and Financial Engineering IPEDR vol.12 (2011) (2011) IACSIT Press, Singapore A Study on Heston-Nandi GARCH Option Pricing Model Suk Joon Byun KAIST Business
AP Physics 1 and 2 Lab Investigations
AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks
I. Basic concepts: Buoyancy and Elasticity II. Estimating Tax Elasticity III. From Mechanical Projection to Forecast
Elements of Revenue Forecasting II: the Elasticity Approach and Projections of Revenue Components Fiscal Analysis and Forecasting Workshop Bangkok, Thailand June 16 27, 2014 Joshua Greene Consultant IMF-TAOLAM
How To Understand The Theory Of Probability
Graduate Programs in Statistics Course Titles STAT 100 CALCULUS AND MATR IX ALGEBRA FOR STATISTICS. Differential and integral calculus; infinite series; matrix algebra STAT 195 INTRODUCTION TO MATHEMATICAL
Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification
Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification Presented by Work done with Roland Bürgi and Roger Iles New Views on Extreme Events: Coupled Networks, Dragon
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical
3 Results. σdx. df =[µ 1 2 σ 2 ]dt+ σdx. Integration both sides will form
Appl. Math. Inf. Sci. 8, No. 1, 107-112 (2014) 107 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/080112 Forecasting Share Prices of Small Size Companies
Forecasting in supply chains
1 Forecasting in supply chains Role of demand forecasting Effective transportation system or supply chain design is predicated on the availability of accurate inputs to the modeling process. One of the
Review of Basic Options Concepts and Terminology
Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some
Pricing complex options using a simple Monte Carlo Simulation
A subsidiary of Sumitomo Mitsui Banking Corporation Pricing complex options using a simple Monte Carlo Simulation Peter Fink Among the different numerical procedures for valuing options, the Monte Carlo
How To Price A Call Option
Now by Itô s formula But Mu f and u g in Ū. Hence τ θ u(x) =E( Mu(X) ds + u(x(τ θ))) 0 τ θ u(x) E( f(x) ds + g(x(τ θ))) = J x (θ). 0 But since u(x) =J x (θ ), we consequently have u(x) =J x (θ ) = min
A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses. Michael R. Powers[ 1 ] Temple University and Tsinghua University
A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses Michael R. Powers[ ] Temple University and Tsinghua University Thomas Y. Powers Yale University [June 2009] Abstract We propose a
Real Estate Investments with Stochastic Cash Flows
Real Estate Investments with Stochastic Cash Flows Riaz Hussain Kania School of Management University of Scranton Scranton, PA 18510 [email protected] 570-941-7497 April 2006 JEL classification: G12
Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13
Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The Black-Scholes-Merton Random Walk Assumption
On the Existence of a Unique Optimal Threshold Value for the Early Exercise of Call Options
On the Existence of a Unique Optimal Threshold Value for the Early Exercise of Call Options Patrick Jaillet Ehud I. Ronn Stathis Tompaidis July 2003 Abstract In the case of early exercise of an American-style
Effects of electricity price volatility and covariance on the firm s investment decisions and long-run demand for electricity
Effects of electricity price volatility and covariance on the firm s investment decisions and long-run demand for electricity C. Brandon ([email protected]) Carnegie Mellon University, Pittsburgh,
The Variability of P-Values. Summary
The Variability of P-Values Dennis D. Boos Department of Statistics North Carolina State University Raleigh, NC 27695-8203 [email protected] August 15, 2009 NC State Statistics Departement Tech Report
Machine Learning in Statistical Arbitrage
Machine Learning in Statistical Arbitrage Xing Fu, Avinash Patra December 11, 2009 Abstract We apply machine learning methods to obtain an index arbitrage strategy. In particular, we employ linear regression
1 Maximum likelihood estimation
COS 424: Interacting with Data Lecturer: David Blei Lecture #4 Scribes: Wei Ho, Michael Ye February 14, 2008 1 Maximum likelihood estimation 1.1 MLE of a Bernoulli random variable (coin flips) Given N
Missing Data: Part 1 What to Do? Carol B. Thompson Johns Hopkins Biostatistics Center SON Brown Bag 3/20/13
Missing Data: Part 1 What to Do? Carol B. Thompson Johns Hopkins Biostatistics Center SON Brown Bag 3/20/13 Overview Missingness and impact on statistical analysis Missing data assumptions/mechanisms Conventional
1 Teaching notes on GMM 1.
Bent E. Sørensen January 23, 2007 1 Teaching notes on GMM 1. Generalized Method of Moment (GMM) estimation is one of two developments in econometrics in the 80ies that revolutionized empirical work in
Volatility at Karachi Stock Exchange
The Pakistan Development Review 34 : 4 Part II (Winter 1995) pp. 651 657 Volatility at Karachi Stock Exchange ASLAM FARID and JAVED ASHRAF INTRODUCTION Frequent crashes of the stock market reported during
Java Modules for Time Series Analysis
Java Modules for Time Series Analysis Agenda Clustering Non-normal distributions Multifactor modeling Implied ratings Time series prediction 1. Clustering + Cluster 1 Synthetic Clustering + Time series
16 : Demand Forecasting
16 : Demand Forecasting 1 Session Outline Demand Forecasting Subjective methods can be used only when past data is not available. When past data is available, it is advisable that firms should use statistical
From the help desk: Bootstrapped standard errors
The Stata Journal (2003) 3, Number 1, pp. 71 80 From the help desk: Bootstrapped standard errors Weihua Guan Stata Corporation Abstract. Bootstrapping is a nonparametric approach for evaluating the distribution
A Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting Model
Applied Mathematical Sciences, vol 8, 14, no 143, 715-7135 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/11988/ams144644 A Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting
EC824. Financial Economics and Asset Pricing 2013/14
EC824 Financial Economics and Asset Pricing 2013/14 SCHOOL OF ECONOMICS EC824 Financial Economics and Asset Pricing Staff Module convenor Office Keynes B1.02 Dr Katsuyuki Shibayama Email [email protected]
Sections 2.11 and 5.8
Sections 211 and 58 Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1/25 Gesell data Let X be the age in in months a child speaks his/her first word and
ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE. School of Mathematical Sciences
! ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE School of Mathematical Sciences New Revised COURSE: COS-MATH-252 Probability and Statistics II 1.0 Course designations and approvals:
Black-Scholes Option Pricing Model
Black-Scholes Option Pricing Model Nathan Coelen June 6, 22 1 Introduction Finance is one of the most rapidly changing and fastest growing areas in the corporate business world. Because of this rapid change,
Pricing of an Exotic Forward Contract
Pricing of an Exotic Forward Contract Jirô Akahori, Yuji Hishida and Maho Nishida Dept. of Mathematical Sciences, Ritsumeikan University 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan E-mail: {akahori,
Accurately and Efficiently Measuring Individual Account Credit Risk On Existing Portfolios
Accurately and Efficiently Measuring Individual Account Credit Risk On Existing Portfolios By: Michael Banasiak & By: Daniel Tantum, Ph.D. What Are Statistical Based Behavior Scoring Models And How Are
Stock Price Dynamics, Dividends and Option Prices with Volatility Feedback
Stock Price Dynamics, Dividends and Option Prices with Volatility Feedback Juho Kanniainen Tampere University of Technology New Thinking in Finance 12 Feb. 2014, London Based on J. Kanniainen and R. Piche,
A Basic Introduction to Missing Data
John Fox Sociology 740 Winter 2014 Outline Why Missing Data Arise Why Missing Data Arise Global or unit non-response. In a survey, certain respondents may be unreachable or may refuse to participate. Item
The Black-Scholes pricing formulas
The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock
Figure 1 - Unsteady-State Heat Conduction in a One-dimensional Slab
The Numerical Method of Lines for Partial Differential Equations by Michael B. Cutlip, University of Connecticut and Mordechai Shacham, Ben-Gurion University of the Negev The method of lines is a general
PRICING OF GAS SWING OPTIONS. Andrea Pokorná. UNIVERZITA KARLOVA V PRAZE Fakulta sociálních věd Institut ekonomických studií
9 PRICING OF GAS SWING OPTIONS Andrea Pokorná UNIVERZITA KARLOVA V PRAZE Fakulta sociálních věd Institut ekonomických studií 1 Introduction Contracts for the purchase and sale of natural gas providing
NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
1 IEOR 4700: Introduction to stochastic integration
Copyright c 7 by Karl Sigman 1 IEOR 47: Introduction to stochastic integration 1.1 Riemann-Stieltjes integration Recall from calculus how the Riemann integral b a h(t)dt is defined for a continuous function
Generation Asset Valuation with Operational Constraints A Trinomial Tree Approach
Generation Asset Valuation with Operational Constraints A Trinomial Tree Approach Andrew L. Liu ICF International September 17, 2008 1 Outline Power Plants Optionality -- Intrinsic vs. Extrinsic Values
Practice problems for Homework 11 - Point Estimation
Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:
Optimization of technical trading strategies and the profitability in security markets
Economics Letters 59 (1998) 249 254 Optimization of technical trading strategies and the profitability in security markets Ramazan Gençay 1, * University of Windsor, Department of Economics, 401 Sunset,
Lecture 6 Black-Scholes PDE
Lecture 6 Black-Scholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the risk-neutral measure Q by If the contingent
Equity-Based Insurance Guarantees Conference November 1-2, 2010. New York, NY. Operational Risks
Equity-Based Insurance Guarantees Conference November -, 00 New York, NY Operational Risks Peter Phillips Operational Risk Associated with Running a VA Hedging Program Annuity Solutions Group Aon Benfield
Estimating Volatility
Estimating Volatility Daniel Abrams Managing Partner FAS123 Solutions, LLC Copyright 2005 FAS123 Solutions, LLC Definition of Volatility Historical Volatility as a Forecast of the Future Definition of
A SNOWBALL CURRENCY OPTION
J. KSIAM Vol.15, No.1, 31 41, 011 A SNOWBALL CURRENCY OPTION GYOOCHEOL SHIM 1 1 GRADUATE DEPARTMENT OF FINANCIAL ENGINEERING, AJOU UNIVERSITY, SOUTH KOREA E-mail address: [email protected] ABSTRACT. I introduce
