On the Resilient Overlay Topology Formation in Multi-hop Wireless Networks
|
|
|
- Elizabeth Brooks
- 10 years ago
- Views:
Transcription
1 On the Resilient Overlay Topology Formation in Multi-hop Wireless Networks Fei Xing and Wenye Wang Department of Electrical and Computer Engineering North Carolina State University, Raleigh, NC 27695, USA Abstract. In this paper, we study the problem of how to design overlay topologies in multi-hop wireless networks such that the overlays achieve perfect resilience, in terms of all cooperative nodes included but misbehaving nodes excluded, and preserve the k-connectivity with high probability. To address this problem, we propose a new distributed topology control protocol called PROACtive. By using PROACtive, every node pro-actively selects its cooperative adjacent nodes as neighbors by mutually exchanging neighbor request and reply messages. As a result, the union of all neighbor sets forms a resilient overlay for a given network. Our analysis finds that the PROACtive protocol is light-weighted with the message complexity of only O(m), where m is the number of links in the original network. Our simulation results validate the effectiveness of PROACtive and show that the overlays generated by our protocol preserve the k-connectivity with high probability (> 90%) and low false positive ratio (< 5%). 1 Introduction Multi-hop wireless networks, especially mobile ad hoc networks, are more vulnerable to failures compared with wired networks due to nodal mobility and errorprone wireless channels. In addition, node misbehaviors, such as selfishness by refusing to forward packets of other nodes and maliciousness by launching Denial of Service (DoS) attacks, can also cause failures. For example, two DoS attacks, Jellyfish and Blackhole, were shown in [1] to have the network partitioning effect which degrades the network performance severely. In [2], a stochastic analysis on node isolation problem also shown that misbehaving nodes may damage the connectivity of mobile ad hoc networks substantially. Since misbehaving nodes may not provide connectivity to other adjacent nodes, existing routing protocols cannot cope with the failures caused by misbehaving nodes, which leaves the design of resilient multi-hop wireless networks an open and challenging problem in the presence of misbehaving nodes. To enhance the resilience to misbehaving nodes, some efforts were made by using different approaches. Two techniques called watchdog and pathrater were proposed in [3] to identify misbehaving nodes and avoid them in routes. A creditbased system called Sprite was proposed in [4] to stimulate cooperation among I.F. Akyildiz et al. (Eds.): NETWORKING 2007, LNCS 4479, pp. 1 12, c IFIP International Federation for Information Processing 2007
2 2 F. Xing and W. Wang selfish nodes. In [5], a secure ad hoc routing protocol called Ariadne was presented to prevent attacks from tampering routing control messages by using symmetric cryptographic primitives. Multi-path routing scheme in [6] introduced redundancy to avoid single path failure caused by node failures or node misbehaviors. Nevertheless, the previous schemes are passive to misbehaving nodes since even a misbehaving node can be detected, it is very difficult to prevent it from being selected as intermediate relays for all paths. In this paper, we study the problem of how to design overlay topologies in multi-hop wireless networks such that the overlays achieve perfect resilience, in terms of all cooperative nodes included but misbehaving nodes excluded, and preserve the k-connectivity with high probability (w.h.p.). Through the formation of resilient overlays, routing and data transferring can be performed upon cooperative platforms. Our contributions are mainly on two aspects. 1. A new distributed and localized protocol called PROACtive is proposed to generate a resilient overlay for a given network. By using PROACtive, every node pro-actively selects only cooperative adjacent nodes as its neighbors, which results in the exclusion of misbehaving nodes from the overlay. 2. The PROACtive protocol is shown to be light-weighted with the message complexity of only O(m), where m is the number of links in the original network, and the overlays preserve k-connectivity w.h.p. (> 90%) and low false positive ratio (< 5%). Note that our objective distinguishes itself from the existing topology control works [7,8,9], which usually focused on minimizing the energy consumption as well as keeping networks connected. For example, in [7], the K-Neigh protocol, based on distance estimation, was proposed to preserve the connectivity of static multihop networks, with efficient power consumption, by selecting K closest neighbors for each node. Nevertheless, our approach differs from the existing resilience-enhancing works in that we employ the topology control technique in the PROACtive protocol to connect cooperative nodes dynamically by mutual neighbor selections. The remainder of this paper is organized as follows. In Section 2, we formulate the problem. In Section 3, we describe the details of the PROACtive protocol. In Section 4, we validate our approach by simulations, followed by conclusions in Section 5. 2 Problem Statement In this section, we describe the system model and formulate the perfect resilient overlay generation (PROG) problem. 2.1 System and Threat Model In this paper, we denote multi-hop wireless networks by M(N ), where N is the set of nodes. All nodes are assumed to be distributed independently and
3 On the Resilient Overlay Topology Formation 3 uniformly on a two-dimensional plane, and they use omni-directional antennas with the same transmission radius r. For a pair of node u and v, they are called adjacent if the distance between them, denoted by d(u, v), is no greater than r. When d(u, v) > r, u and v may communicate via multiple intermediate hops. It is known that the geometric random graph (GRG) [10], denoted by G(N,r), is a graph in which N vertices are independently and uniformly distributed in a metric space with edges existing between any pair of vertices u and v if and only if d(u, v) r. Thus, we use the GRG to model the underlying topologies of multi-hop wireless networks. In order to identify the type of misbehaviors our work has targeted, we loosely classify the different types of misbehaviors in a multi-hop wireless network below, though the classification is not intended to be comprehensive. (I) Nodes participate in routing but not in data forwarding, like Jellyfish and Blackhole; (II) Nodes do not cooperate in forwarding control or data packets for others, like selfish nodes; (III) Compromised nodes, though appearing to be legitimate, malfunction maliciously; (IV) Malicious attacker nodes generate DoS traffic or signals, impersonate legitimate nodes, or tamper with routing messages. Our research focuses on misbehavior (I); while our approach can also be applicable to address misbehavior (II) and (III). Our approach, however, does not address misbehavior (IV), which requires suitable authentication and privacy mechanisms. Further, colluding attacks are out of the scope of this work. 2.2 Problem Formulation The objective of this work is to enhance the resilience of multi-hop wireless networks against node misbehaviors. As mentioned in Section 1, misbehaving nodes may undermine network connectivity and network performance. Here we take an example to look at the effect of misbehaving nodes on path reliability. For apathwithh relay hops, let the probability of any relay node being failed (due to node mobility or energy depletion) be P f, then the path reliability, denoted by R P, can be presented by R P =(1 P f ) h. While, if any relay node may also misbehave to disrupt communications, the representation of R P becomes R P =(1 P f P m ) h,wherep m is the probability of any node misbehaving. Then we can easily show that R P can be significantly decreased by the route disruption effect resulting from misbehaving relays, and the negative impact is more exaggerative when the number of hops h increases. Therefore, it has been an important issue in the design of resilient networks to exclude misbehaving nodes. For a multi-hop wireless network in the presence of misbehaving nodes, we call a connected subnet consisting its all and only cooperative nodes as a perfect resilient overlay (PRO). If the routing and data transfer operations are conducted only on the induced PRO, then the communication between cooperative nodes is guaranteed to be resilient to misbehaving nodes. Here we formulate our problem as the perfect resilient overlay generation (PROG) problem, as follows:
4 4 F. Xing and W. Wang Definition 1. PROG Problem: Given a connected multi-hop wireless network M and a connectivity requirement k, generate a perfect resilient overlay M such that M is k-connected with high probability. To solve the PROG problem, we propose a distributed and localized protocol called PROACtive, by which every node can pro-actively select cooperative adjacent nodes as its neighbors, which will be described in detail right next. 3 PROACtive Protocol Design In this section, we propose the PROACtive protocol as the solution to the PROG problem. 3.1 Basic Idea In the PROACtive protocol, each node is assumed to be able to know whether its adjacent nodes forward packets for other nodes. For example, if wireless cards operate in promiscuous mode, a node can use the Watchdog method [3] to tell if its next-hop node drops packets instead of forwarding. By this way, a node u should quantitatively measure the cooperativity (borrowed from Biochemistry) of its adjacent nodes, which indicates the likelihood that a node performs normal network operations. Based on the obtained cooperativities, a node u can select neighbors by sending the soliciting messages called Neighbor Request (Ngbr-Rqst) to its adjacent nodes with high cooperativities. Once receiving an acknowledge message called Neighbor Reply (Ngbr-Rqst) from one of its adjacent nodes, say node v, thenu knows that v has agreed to accept u as v s neighbor, so u can add v into its neighbor set. By this mutual neighbor selection process, a cooperative node can have a cooperative neighborhood easily; while a misbehaving node can hardly have any neighbors. As a result, the union of cooperative neighbor sets generates a perfect resilient overlay which excludes misbehaving nodes. To satisfy the constraint of the k-connectivity, we refer to some results shown in a few recent literatures, which reveal the probabilistic relations between the connectivity κ(g) and the minimum degree δ(g) of the graph G. Itwasproved in [10] (Theorem 1.1) that if N is sufficiently large, the GRG G(N,r), obtained by adding links between nodes in the order of increasing length, becomes k-connectedatthe instantwhenitachievesaminimumdegreeofk, w.h.p.. In [11] (Theorem 3 ), it was shown that for a GRG G(N,r) Pr(κ(G) =k) Pr(δ(G) k) (1) holds if N 1 and Pr(δ(G) k) 1. The result was further verified by extensive simulations in [11], [12], and [13]. Moreover, it was shown in [2] that to achieve the k-connectivity in a multi-hop wireless network where misbehaving nodes present, a necessary condition is that each node should have at least k cooperative neighbors. This result implies that for a network M, ifletθ(m) denote the minimum number of cooperative neighbors of M, then Pr(κ(M) =k) Pr(θ(M) k) (2)
5 On the Resilient Overlay Topology Formation 5 holds for the sufficiently large system size N. Therefore, in our protocol, each (cooperative) node should maintain at least k cooperative neighbors such that the k-connectivity is achievable in the overlay w.h.p.. In the next section, we describe the details of our approach. 3.2 PROACtive Protocol Details As described briefly in Section 3.1, the essential idea of the PROACtive protocol is to build up cooperative neighbor sets, which is done by the mutual neighbor selections via Ngbr-Rqst and Ngbr-Rply message exchanges. In this section, we provide the detailed procedures of building up cooperative neighbor sets. For clarity of the description, we denote the adjacent nodes and cooperative neighbors of a node u by Adj(u) andngbr(u), respectively, and denote the cooperativity of a node u by c(u). We will first discuss the procedure of querying potential neighbors as follows. Once a node u knows the cooperativities of its adjacent nodes, u selects a node v of the highest cooperativity from set Adj(u) as a potential neighbor, if v is not in set Ngbr(u). Then u sends a Ngbr-Rqst message to v, indicating that u intends to add v to its neighbor set. If u receives a Ngbr-Rply message from v within a timeout, then u can add v into set Ngbr(u); otherwise, u queries another adjacent node of the next highest cooperativity. Node u will continue the inquiries until k Ngbr-Rply messages from different adjacent nodes are received, which guarantees u with at least k neighbors. This procedure is summarized by Algorithm 1 as follows. Algorithm 1. Procedure of querying potential neighbors Input: k, nodeu, andadj(u) 1: Initiate Ngbr(u) :=, create a temporary set Temp(u) :=, create a counter numrplyrcvd := 0 2: v Adj(u), Measure c(v) 3: while (numrplyrcvd < k AND T emp(u) Adj(u)) do 4: Select v if c(v) = max{c(w) : w Adj(u) Temp(u)} 5: Send Ngbr-Rqst to v 6: Temp(u) :=Temp(u)+v 7: if (Receive Ngbr-Rply from v) then 8: Ngbr(u) :=Ngbr(u)+v 9: numrplyrcvd := numrplyrcvd : end if 11: end while Next we discuss how a node processes the incoming neighbor requests. In our approach, each node, say u, can calculate its own threshold, based on the information available from its local environment, to decide if it should accept a querying node as its neighbor. We call this threshold as the neighbor cooperativity threshold and denote a node u s threshold by c (u). For a node u, sinceu can
6 6 F. Xing and W. Wang measure the behaviors of its adjacent nodes quantitatively, u s threshold can be defined as the average cooperativity of its adjacent nodes, i.e., c (u) = 1 d v Adj(u) c(v), for d = Adj(u). (3) Hence, when u receives a Ngbr-Rqst message from one of its adjacent nodes v, itcomparesc(v) to its threshold c (u). If c(v) c (u), u replies v with a Ngbr-Rply message and adds v into u s neighbor set; Otherwise, u discards this neighbor request and replies nothing. Algorithm 2 summaries the procedure of processing neighbor requests. Algorithm 2. Procedure of processing neighbor requests Input: node u, andadj(u) 1: v Adj(u), Measure c(v) 2: Calculate c (u) byequation (3) 3: if (Receive Ngbr-Rqst from v Adj(u)) then 4: if (c(v) c (u) AND v/ Ngbr(u)) then 5: Send Ngbr-Rply to v 6: Ngbr(u) :=Ngbr(u)+v 7: else 8: Discard Ngbr-Rqst 9: end if 10: end if By this mutual neighbor selection, a node with high cooperativity, in contrast to the nodes with low cooperativities, may receive multiple requests and immediate replies from adjacent nodes. Consequently, a resilient overlay topology can be constructed from the neighbor sets. We use Algorithm 3 to summarize the perfect resilient overlay generation. Algorithm 3. Generate a perfect resilient overlay M Input: k, and a multi-hop wireless network M 1: Let N be the node set of M, N := 2: for each u M do 3: Build up Ngbr(u) by using Algorithms (1) and (2) 4: N := N Ngbr(u) 5: end for 6: return M induced from N 3.3 Cooperativity Measurement Scheme To measure the cooperativity of a generic node, we investigate the characteristics of misbehaving nodes on the network layer. A selfish node, for selfish reasons such as saving energy, usually refuses to forward data packets for other nodes.
7 On the Resilient Overlay Topology Formation 7 A malicious node can do anything such as dropping partial data packets at a random or periodic manner, or pretending to be adjacent to a node actually far-away from it, thus trapping all packets destinated to that node afterwards. Thus, dropping transient packets is one of the most common characteristic of most misbehaviors, especially the Type-I misbehavior mentioned in Section 2.1. This observation implies that for a node u, we can use u s packet drop ratio, denoted by q drp,tomeasureu s cooperativity c(u). Let n fwd (u) andn drp (u) denote the numbers of packets should be forwarded and dropped, then we have, c(v) =1 q drp (v) =1 n drp n fwd. (4) We use an example in Fig. 1(a) to illustrate this method. In Fig. 1(a), every time node u asks node w to forward a packet to v, u increases a counter n fwd (w) by 1. If u cannot overhear w s forwarding after a timeout (e.g., round-trip delay), u increases another counter n drp (w) by 1. Moreover, when one of u s adjacent nodes, x, requires w to forward packets to v, u can record w s behavior as well. Based on the measurements from both own experience and indirect observation, u can calculate w s cooperativity c(w) by(4). x v u w u w v ACK x (a) (b) Fig. 1. Measuring cooperativity (a) by promiscuous mode (b) by ACKs 01 Notice that in our PROACtive protocol, the cooperativity measurement scheme is not limited to the technique that employs promiscuous mode only; it can also use other techniques such as close-loop feedbacks. For example, in Fig. 1(b), when u sendsadatapackettow, it can piggyback an ACK request. Based on whether u can receive an ACK from one of w s downstream nodes, say x, u may tell if w has forwarded the packet successfully. 3.4 Features of PROACtive Protocol In this section, we discuss some unique features of our approach. First, the individual threshold defined in (3) allows each node to reach a trade-off between system resilience and individual connectivity, compared to a global threshold. This is due to the fact that a node surrounded by nodes with relatively low cooperativities can hardly find enough neighbors although a relatively high global threshold can achieve a resilient overlay of only cooperative nodes. On the contrary, by using the individual threshold, for a node u with adjacent nodes of relatively low cooperativities, its neighbor cooperativity threshold can decrease accordingly. Thus u may still have enough neighbors. Nevertheless, a global threshold can be also applicable for our protocol and more flexible decision policies in neighbor can be designed by combining the global threshold and individual thresholds.
8 8 F. Xing and W. Wang Second, regarding the issue of neighbor set updating, our PROACtive protocol is able to deal with the dynamic topology changes due to node mobility. For instance, a mobile node can refresh its neighbor set when it detects a disconnection with its neighbor(s). If the topology is highly dynamic (e.g., mobility is high), then mobile nodes can keep the records of its neighbors to avoid frequent neighbor set updates. Further, the PROACtive protocol is able to deal with the dynamic changes of node behaviors as well due to the flexibility provided by our threshold design. For instance, the updating overhead can be also reduced by deleting a neighbor only if its cooperativity is below the minimum requirement for a specific application. Third, our approach does not involve new security vulnerabilities and can avoid the false accusation problem. For instance, the cooperativity information measured by one node are not shared with others in our protocol, and the neighbor selection is only dependent on each node s own knowledge to its neighborhood. By this way, one node s cooperativity cannot be falsely rated to a low or high value by several other (might be malicious) nodes, which prevents any node from the false accusation. No information sharing also helps to avoid the complexity of deciding the actual cooperativity of one node when multiple different measurements are received. Nevertheless, the integrity of Ngbr-Rqst and Ngbr-Rply messages can be protected by traditional cryptographic techniques. Finally, the PROACtive protocol is completely distributed and localized, which makes our approach more feasible to be implemented in a real scenario. Additionally, our protocol can be run locally, in an on-demand manner, whenever a mobile node detects a significant cooperativity change among its neighborhood. Further, our protocol is light-weighted in terms of the overhead of message exchanges. For example, given a wireless multi-hop network, in the worst case, every node should send either a Ngbr-Rqst or Ngbr-Rply message to each of its adjacent nodes in order to build up a neighbor set. This implies that to generate a resilient overlay, the total number of messages needed is no more than the number of links, denoted by m, in the original network. Therefore, the message complexity of our protocol is only O(m). Until now, the PROG problem, how to generate a perfect resilient overlay, has been solved by applying the PROACtive algorithm on given networks. We will evaluate the effectiveness of our solution by simulations in the next section. 4 Simulation Evaluations To evaluate our PROACtive protocol, we performed a considerable body of experiments by using NS2 v2.28 and MATLAB v7sp3 tools. In our simulations, nodes are distributed randomly and uniformly in an area. Distinct node pairs randomly establish constant bit rate (CBR) connections, with packet size of 512 bytes and rate of 5 packets/sec, such that nodes can measure their adjacent nodes coopertivities by the method described in Section 3.3. The AODV routing protocol is used. The connectivity requirement k is 3 for all simulations.
9 On the Resilient Overlay Topology Formation 9 (a) (b) (c) Fig. 2. The topologies of the underlying network and overlays generated: (a) no topology control, (b) applied with PROACtive, (c) K-Neigh with K =9(PhaseI) We show how the PROACtive protocol generates overlays first, then show the effectiveness of our protocol with regard to the k-connectivity preservation and the false positive (negative) rate. 4.1 Topology Generated by PROACtive Protocol In this simulation, 500 nodes are distributed on a 1500 m 1500 m area at random with the same transmission radius of 150 m. Among 500 nodes, 150 misbehaving nodes drop packets to be forwarded or report false routes. Fig. 2(a) illustrates the network without applying any topology control, in which a pair of nodes are connected by a link as long as their distance is no larger than 150 m. Fig.2(b) shows the network structure after applying our PROACtive protocol, in which cooperative and misbehaving nodes are represented by solid and hollow dots, respectively. From the figure, we can see that the overlay topology generated by PROACtive excludes most of misbehaving nodes, while containing almost all cooperative nodes. Though some links are removed in the overlay due to the mutual neighbor selection, the generated overlay is still connected. To highlight the feature of our protocol, the topology generated by the K-Neigh protocol (Phase 1 only, with K =9)[7]isshowninFig.2(c),wherewecanseethatall misbehaving nodes are included in the topology. This is because the neighbor selection in K-Neigh is only based on the distance between nodes, that is each node selects K nearest adjacent nodes as its neighbors. 4.2 Preservation of k-connectivity One of the major tasks in our simulations is to verify that the k-connectivity should be preserved, w.h.p., for the overlays generated by PROACtive, when the original network is k-connected. To test whether the network is k-connected, we use breadth first search (BFS) to compute how many disjoint paths connecting two distinct nodes. In this simulation, the nodes are placed uniformly at random in a bounded region of 2000 m 2000 m. The transmission radius is set to 100 m. The number of nodes N ranges from 500 to 5000 with an interval of 100,
10 10 F. Xing and W. Wang Probability of k connectivity, k= The original M, Pm= Overlay M, Pm=0.1 The original M, Pm=0.3 Overlay M, Pm= System size N 0.4 Analysis for M, N= Simulation for M, N=3000 Analysis for M, N=4000 Simualtion for M, N= Ratio of misbehaving nodes in original net (Pm) (a) (b) Fig. 3. The k-connectivity probabilities of the overlays generated, compared to those of the original networks: (a) against N, (b)against P M Probability of k connectivity, k= False positive and negative ratios FPR, Pm=0.1 FNR, Pm=0.1 FPR, Pm=0.3 FNR, Pm=0.3 FPR, Pm=0.5 FNR, Pm=0.5 False negative ratios FNR, N=1000 FNR, N=2000 FNR, N=3000 FNR, N= System size N Ratio of misbehaving nodes in original net (P M ) (a) (b) Fig. 4. The false positive and negative ratios produced by PROACtive (a) against N, (b) against P M (FNR only) which makes the network placements representative for both sparse and dense networks. For every value of N, a certain number of nodes are misbehaving, whose ratio to the total, denoted by P M, is ranging from about 1% up to 90% with a interval of 10%. The simulation results are shown in Fig. 3(a) and 3(b). For clarity, only the results for 2000 <N<4000 are shown, and we omit the part for P M > 0.7 by the similar reason. From the two figures, we can see that the overlays generated preserve the k-connectivity with probability greater than 90%, when the original network is k-connected. 4.3 False Positive and Negative Ratio As we described in Section 3.4, though the individual threshold helps nodes to reach a trade-off between system resilience and individual connectivity, it is possible that a cooperative node u cannot build up its neighbor set if c(u) < c (v) v Adj(u). In this case, we say u is a false positive. On the contrary, a misbehaving node u may have the chance to be added to another node v s neighbor set if v cannot have enough neighbors without adding u. In this case, we say u is a false negative. Since the perfect resilient overlay (PRO) is an overlay
11 On the Resilient Overlay Topology Formation 11 that contains all and only cooperative nodes of the original network, we can use two metrics, false positive rate (FPR) and false negative rate (FNR), toevaluate the effectiveness of the PROACtive protocol in generating PROs. If let N C and N M denote the number of cooperative and misbehaving nodes in the original network, then the FPR and FNR can be calculated by FPR = NC m/n C and FNR = NM c /N M, respectively, with NC m and N M c denoting the number of false positives and false negatives. Our simulation results are reported in Fig. 4(a) and 4(b). In Fig. 4(a), the FPRs are very low (< 5%) for all networks of different system size N as well as different P M ; however, the FNRs are more significant for small N than for large N. This indicates that relatively more misbehaving nodes are added into the overlay to keep it connected when the network is sparse. Another observation is that the FNRs increase significantly when P M increases, which is further illustrated in Fig. 4(b), where the FNR for N = 4000 raises even up to 50% when P M =0.9. This is due to the fact that more false negatives are produced to keep enough neighbors for every node when many misbehaving nodes present. These observations show that the PROACtive protocol is more conservative in satisfying the k-connectivity constraint. 5 Conclusion and Future Work In this paper, we proposed a distributed and localized protocol, PROACtive, to generate perfect resilient overlays which contain all and only cooperative nodes of the original wireless multi-hop networks. The PROACtive protocol has a light-weighted message complexity, O(m), and the overlays generated achieve k-connectivity with high probability and low false positive ratio. The main advantage of applying our PROACtive protocol is that the resilient overlays generated essentially provide cooperative platforms for multi-hop routing and data transmission when misbehaving nodes are present. Based on the resilient overlays, new routing strategies and data aggregation schemes can be designed, which will be our next works. Further, more advanced cooperativity measurement schemes are also needed to be explored. References 1. Aad, I., Hubaux, J.P., Knightly, E.W.: Denial of Service Resilience in Ad Hoc Networks. In: Proc. of ACM MobiCom 04. (2004) Xing, F., Wang, W.: Modeling and Analysis of Connectivity in Mobile Ad Hoc Networks with Misbehaving Nodes. In: Proc. of IEEE conference on communication (ICC) 06. (2006) Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating Routing Misbehavior in Mobile Ad hoc Networks. In: Proc. of ACM MobiCom 00. (2000) Zhong, S., Chen, J., Yang, Y.R.: Sprite: A Simple, Cheat-Proof, Credit-based System for Mobile Ad-Hoc Networks. In: Proc. of IEEE INFOCOM 03. (Mar. 2003)
12 12 F. Xing and W. Wang 5. Hu, Y., Perrig, A., Johnson, D.B.: Ariadne: A Secure OnDemand Routing Protocol for Ad Hoc Networks. In: Proc. of ACM MobiCom 02, Atlanta, USA (Sep. 2002) 6. Ganesan, D., Govindan, R., Shenker, S., Estrin, D.: Highly-Resilient, Energy- Efficient Multipath Routing in Wireless Sensor Networks. Mobile Computing and Communications Review (MC2R) 5(4) (2001) Blough, D.M., Leoncini, M.: The K-Neigh Protocol for Symmetric Topology Control in Ad Hoc Networks. In: Proc. of ACM MobiHoc 03, ACM Press (2003) Shen, C.C., Srisathapornphat, C., Liu, R., Huang, Z., Jaikaeo, C., Lloyd, E.L.: CLTC: A Cluster-Based Topology Control Framework for Ad Hoc Networks. IEEE Transactions on Mobile Computing 3(1) (2004) Cardei, M., Wu, J., Yang, S.: Topology Control in Ad Hoc Wireless Networks Using Cooperative Communication. IEEE Transactions on Mobile Computing 5(6) (Jun. 2006) Penrose, M.D.: On k-connectivity for a Geometric Random Graph. Random Struct. Algorithms 15(2) (1999) Bettstetter, C.: On the Minimum Node Degree and Connectivity of a Wireless Multihop Network. In: Proc. of ACM MobiHoc 02, ACM Press (Jun. 2002) Li, X.Y., Wan, P.J., Wang, Y., Yi, C.W.: Fault Tolerant Deployment and Topology Control in Wireless Networks. In: Proc. of ACM MobiHoc 03. (Jan. 2003) Bettstetter, C.: On the Connectivity of Ad Hoc Networks. The Computer Journal, Special Issue on Mobile and Pervasive Computing 47(4) (2004)
CHAPTER 1 INTRODUCTION
21 CHAPTER 1 INTRODUCTION 1.1 PREAMBLE Wireless ad-hoc network is an autonomous system of wireless nodes connected by wireless links. Wireless ad-hoc network provides a communication over the shared wireless
Study of Different Types of Attacks on Multicast in Mobile Ad Hoc Networks
Study of Different Types of Attacks on Multicast in Mobile Ad Hoc Networks Hoang Lan Nguyen and Uyen Trang Nguyen Department of Computer Science and Engineering, York University 47 Keele Street, Toronto,
Vulnerabilities of Intrusion Detection Systems in Mobile Ad-hoc Networks - The routing problem
Vulnerabilities of Intrusion Detection Systems in Mobile Ad-hoc Networks - The routing problem Ernesto Jiménez Caballero Helsinki University of Technology [email protected] Abstract intrusion detection
Security Scheme for Distributed DoS in Mobile Ad Hoc Networks
Security Scheme for Distributed DoS in Mobile Ad Hoc Networks Sugata Sanyal 1, Ajith Abraham 2, Dhaval Gada 3, Rajat Gogri 3, Punit Rathod 3, Zalak Dedhia 3 and Nirali Mody 3 1 School of Technology and
Security in Ad Hoc Network
Security in Ad Hoc Network Bingwen He Joakim Hägglund Qing Gu Abstract Security in wireless network is becoming more and more important while the using of mobile equipments such as cellular phones or laptops
A Dynamic Reputation Management System for Mobile Ad Hoc Networks
A Dynamic Reputation Management System for Mobile Ad Hoc Networks Eric Chiejina School of Computer Science University of Hertfordshire Hatfield, UK [email protected] Hannan Xiao School of Computer
Security for Ad Hoc Networks. Hang Zhao
Security for Ad Hoc Networks Hang Zhao 1 Ad Hoc Networks Ad hoc -- a Latin phrase which means "for this [purpose]". An autonomous system of mobile hosts connected by wireless links, often called Mobile
SECURE DATA TRANSMISSION USING INDISCRIMINATE DATA PATHS FOR STAGNANT DESTINATION IN MANET
SECURE DATA TRANSMISSION USING INDISCRIMINATE DATA PATHS FOR STAGNANT DESTINATION IN MANET MR. ARVIND P. PANDE 1, PROF. UTTAM A. PATIL 2, PROF. B.S PATIL 3 Dept. Of Electronics Textile and Engineering
EFS: Enhanced FACES Protocol for Secure Routing In MANET
EFS: Enhanced FACES Protocol for Secure Routing In MANET Geethu Bastian Department of Information Technology Rajagiri School of Engineering & Technology, Rajagiri Valley P O Kochi-39, India [email protected]
Babel: Using a Common Bridge Node to Deliver Multiple Keys in Wireless Sensor Networks
Babel: Using a Common Bridge Node to Deliver Multiple Keys in Wireless Sensor Networks Jing Deng Department of Computer Science University of New Orleans New Orleans, LA 7048, USA [email protected] Yunghsiang
DESIGN AND DEVELOPMENT OF LOAD SHARING MULTIPATH ROUTING PROTCOL FOR MOBILE AD HOC NETWORKS
DESIGN AND DEVELOPMENT OF LOAD SHARING MULTIPATH ROUTING PROTCOL FOR MOBILE AD HOC NETWORKS K.V. Narayanaswamy 1, C.H. Subbarao 2 1 Professor, Head Division of TLL, MSRUAS, Bangalore, INDIA, 2 Associate
Modified AODV protocol for prevention of Denial of service attacks in wireless Ad hoc networks
Modified AODV protocol for prevention of Denial of service attacks in wireless Ad hoc networks B. MALARKODI, B. VENKATARAMANI AND X.T. PRADEEP Department of Electronics and Communication Engineering National
III. Our Proposal ASOP ROUTING ALGORITHM. A.Position Management
Secured On-Demand Position Based Private Routing Protocol for Ad-Hoc Networks Ramya.R, Shobana.K, Thangam.V.S [email protected], k [email protected],[email protected] Department of Computer Science,
Intelligent Agents for Routing on Mobile Ad-Hoc Networks
Intelligent Agents for Routing on Mobile Ad-Hoc Networks Y. Zhou Dalhousie University [email protected] A. N. Zincir-Heywood Dalhousie University [email protected] Abstract This paper introduces a new agent-based
Robust Routing in Wireless Ad Hoc Networks
Robust Routing in Wireless Ad Hoc Networks Seungjoon Lee, Bohyung Han, Minho Shin {slee, bhhan, mhshin}@cs.umd.edu Computer Science Department University of Maryland College Park, MD 2742 USA Abstract
Preventing Resource Exhaustion Attacks in Ad Hoc Networks
Preventing Resource Exhaustion Attacks in Ad Hoc Networks Masao Tanabe and Masaki Aida NTT Information Sharing Platform Laboratories, NTT Corporation, 3-9-11, Midori-cho, Musashino-shi, Tokyo 180-8585
Ariadne A Secure On-Demand Routing Protocol for Ad-Hoc Networks
Ariadne A Secure On-Demand Routing Protocol for Ad-Hoc Networks Authors: Yih-Chun Hu, Adrian Perrig, David B Johnson Presenter: Sameer Korrapati Date: 4/21/2003 Overview of presentation Introduction :
Routing Protocols Security in Ah Hoc Networks
Routing Protocols Security in Ah Hoc Networks Ebrahim Mohammed Louis Dargin Oakland University School of Computer Science and Engineering CSE 681 Information Security [email protected] [email protected]
Adaptive Multiple Metrics Routing Protocols for Heterogeneous Multi-Hop Wireless Networks
Adaptive Multiple Metrics Routing Protocols for Heterogeneous Multi-Hop Wireless Networks Lijuan Cao Kashif Sharif Yu Wang Teresa Dahlberg Department of Computer Science, University of North Carolina at
COMPARATIVE ANALYSIS OF ON -DEMAND MOBILE AD-HOC NETWORK
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 2 Issue 5 May, 2013 Page No. 1680-1684 COMPARATIVE ANALYSIS OF ON -DEMAND MOBILE AD-HOC NETWORK ABSTRACT: Mr.Upendra
A NOVEL OVERLAY IDS FOR WIRELESS SENSOR NETWORKS
A NOVEL OVERLAY IDS FOR WIRELESS SENSOR NETWORKS Sumanta Saha, Md. Safiqul Islam, Md. Sakhawat Hossen School of Information and Communication Technology The Royal Institute of Technology (KTH) Stockholm,
Cluster-based Multi-path Routing Algorithm for Multi-hop Wireless Network
International Journal of Future Generation Communication and Networking 67 Cluster-based Multi-path Routing Algorithm for Multi-hop Wireless Network Jie Zhang, Choong Kyo Jeong, Goo Yeon Lee, Hwa Jong
Comparison of Various Passive Distributed Denial of Service Attack in Mobile Adhoc Networks
Comparison of Various Passive Distributed Denial of Service in Mobile Adhoc Networks YOGESH CHABA #, YUDHVIR SINGH, PRABHA RANI Department of Computer Science & Engineering GJ University of Science & Technology,
Security and Privacy Issues in Wireless Ad Hoc, Mesh, and Sensor Networks
Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 4 (2014), pp. 381-388 Research India Publications http://www.ripublication.com/aeee.htm Security and Privacy Issues in Wireless
SIMULATION STUDY OF BLACKHOLE ATTACK IN THE MOBILE AD HOC NETWORKS
Journal of Engineering Science and Technology Vol. 4, No. 2 (2009) 243-250 School of Engineering, Taylor s University College SIMULATION STUDY OF BLACKHOLE ATTACK IN THE MOBILE AD HOC NETWORKS SHEENU SHARMA
Ashok Kumar Gonela MTech Department of CSE Miracle Educational Group Of Institutions Bhogapuram.
Protection of Vulnerable Virtual machines from being compromised as zombies during DDoS attacks using a multi-phase distributed vulnerability detection & counter-attack framework Ashok Kumar Gonela MTech
Secured Data Transmissions In Manet Using Neighbor Position Verfication Protocol
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 3 Issue3 March, 2014 Page No. 5067-5071 Secured Data Transmissions In Manet Using Neighbor Position Verfication
Performance Analysis of Observation Based Cooperation Enforcement in Ad Hoc Networks
www.ijcsi.org 79 Performance Analysis of Observation Based Cooperation Enforcement in Ad Hoc Networks Abeer Ghandar 1, Eman Shabaan 2 and Zaky Fayed 3 1 Computer Systems Department, Faculty of Computer
Denial of Service Attacks at the MAC Layer in Wireless Ad Hoc Networks
Denial of Service Attacks at the MAC Layer in Wireless Ad Hoc Networks Vikram Gupta +, Srikanth Krishnamurthy, and Michalis Faloutsos Abstract Department of Computer Science and Engineering, UC Riverside,
CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING
CHAPTER 6 CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING 6.1 INTRODUCTION The technical challenges in WMNs are load balancing, optimal routing, fairness, network auto-configuration and mobility
HLA BASED PUBLIC AUDITING ARCHITECTURE TO FIND MALICIOUS NODE IN AD HOC NETWORK - A REVIEW
HLA BASED PUBLIC AUDITING ARCHITECTURE TO FIND MALICIOUS NODE IN AD HOC NETWORK - A REVIEW Aejaz Ahmed 1, H C Sateesh Kumar 2 1 M.Tech student, Department of Telecommunication Engineering, DSCE, [email protected]
Energy Efficient Load Balancing among Heterogeneous Nodes of Wireless Sensor Network
Energy Efficient Load Balancing among Heterogeneous Nodes of Wireless Sensor Network Chandrakant N Bangalore, India [email protected] Abstract Energy efficient load balancing in a Wireless Sensor
Preventing DDOS attack in Mobile Ad-hoc Network using a Secure Intrusion Detection System
Preventing DDOS attack in Mobile Ad-hoc Network using a Secure Intrusion Detection System Shams Fathima M.Tech,Department of Computer Science Kakatiya Institute of Technology & Science, Warangal,India
CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS
137 CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS 8.1 CONCLUSION In this thesis, efficient schemes have been designed and analyzed to control congestion and distribute the load in the routing process of
Technology Longowal, Punjab, India
An Intrusion Detection System Against Multiple Blackhole Attacks In Ad-Hoc Networks Using Wireless Antnet Sunny Chanday 1, Rajeev Kumar 2, Dilip Kumar 3 1 M.Tech student, Department of Computer Science
Optimization of AODV routing protocol in mobile ad-hoc network by introducing features of the protocol LBAR
Optimization of AODV routing protocol in mobile ad-hoc network by introducing features of the protocol LBAR GUIDOUM AMINA University of SIDI BEL ABBES Department of Electronics Communication Networks,
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK AN OVERVIEW OF MOBILE ADHOC NETWORK: INTRUSION DETECTION, TYPES OF ATTACKS AND
[email protected] [email protected]
S. Sumathy 1 and B.Upendra Kumar 2 1 School of Computing Sciences, VIT University, Vellore-632 014, Tamilnadu, India [email protected] 2 School of Computing Sciences, VIT University, Vellore-632 014,
International Journal of Advanced Research in Computer Science and Software Engineering
Volume 3, Issue 1, January 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Analysis of
A Utility Based Incentive Scheme for P2P File Sharing in Mobile Ad Hoc Networks
A Utility Based Incentive Scheme for P2P File Sharing in Mobile Ad Hoc Networks Afzal Mawji and Hossam Hassanein Telecommunications Research Lab, School of Computing Queen s University Kingston, Ontario,
QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES
QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES SWATHI NANDURI * ZAHOOR-UL-HUQ * Master of Technology, Associate Professor, G. Pulla Reddy Engineering College, G. Pulla Reddy Engineering
How To Write A Transport Layer Protocol For Wireless Networks
Chapter 9: Transport Layer and Security Protocols for Ad Hoc Wireless Networks Introduction Issues Design Goals Classifications TCP Over Ad Hoc Wireless Networks Other Transport Layer Protocols Security
Mobile Security Wireless Mesh Network Security. Sascha Alexander Jopen
Mobile Security Wireless Mesh Network Security Sascha Alexander Jopen Overview Introduction Wireless Ad-hoc Networks Wireless Mesh Networks Security in Wireless Networks Attacks on Wireless Mesh Networks
Load-balancing Approach for AOMDV in Ad-hoc Networks R. Vinod Kumar, Dr.R.S.D.Wahida Banu
Load-balancing Approach for AOMDV in Ad-hoc Networks R. Vinod Kumar, Dr.R.S.D.Wahida Banu AP/ECE HOD/ECE Sona College of Technology, GCE, Salem. Salem. ABSTRACT Routing protocol is a challenging issue
Analysis of Minimum-Energy Path-Preserving Graphs for Ad-hoc Wireless Networks
Analysis of Minimum-Energy Path-Preserving Graphs for Ad-hoc Wireless Networks Mahmuda Ahmed, Mehrab Shariar, Shobnom Zerin and Ashikur Rahman Department of Computer Science and Engineering Bangladesh
AN EFFICIENT STRATEGY OF AGGREGATE SECURE DATA TRANSMISSION
INTERNATIONAL JOURNAL OF REVIEWS ON RECENT ELECTRONICS AND COMPUTER SCIENCE AN EFFICIENT STRATEGY OF AGGREGATE SECURE DATA TRANSMISSION K.Anusha 1, K.Sudha 2 1 M.Tech Student, Dept of CSE, Aurora's Technological
Securing MANET Using Diffie Hellman Digital Signature Scheme
Securing MANET Using Diffie Hellman Digital Signature Scheme Karamvir Singh 1, Harmanjot Singh 2 1 Research Scholar, ECE Department, Punjabi University, Patiala, Punjab, India 1 [email protected] 2
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, [email protected]
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, [email protected] 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols
Wireless Sensor Network: Improving the Network Energy Consumption
Wireless Sensor Network: Improving the Network Energy Consumption Ingrid Teixeira, José Ferreira de Rezende and Aloysio de Castro P. Pedroza Abstract-- In a remote sensor application it is desirable that
An Efficient QoS Routing Protocol for Mobile Ad-Hoc Networks *
An Efficient QoS Routing Protocol for Mobile Ad-Hoc Networks * Inwhee Joe College of Information and Communications Hanyang University Seoul, Korea iwj oeshanyang.ac.kr Abstract. To satisfy the user requirements
Thwarting Selective Insider Jamming Attacks in Wireless Network by Delaying Real Time Packet Classification
Thwarting Selective Insider Jamming Attacks in Wireless Network by Delaying Real Time Packet Classification LEKSHMI.M.R Department of Computer Science and Engineering, KCG College of Technology Chennai,
How To Balance Network Load In A Wireless Sensor Network
Balancing Network Traffic Load in Geographic Hash Table (GHT) R. Asha, V.Manju, Meka Sindhu & T. Subha Department of Information Technology, Sri Sai Ram Engineering College, Chennai. E-mail : [email protected],
A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks
A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks T.Chandrasekhar 1, J.S.Chakravarthi 2, K.Sravya 3 Professor, Dept. of Electronics and Communication Engg., GIET Engg.
Entropy-Based Collaborative Detection of DDoS Attacks on Community Networks
Entropy-Based Collaborative Detection of DDoS Attacks on Community Networks Krishnamoorthy.D 1, Dr.S.Thirunirai Senthil, Ph.D 2 1 PG student of M.Tech Computer Science and Engineering, PRIST University,
Vampire Attack Detecting and Preventing in Wireless Sensor Network
International Journal of Emerging Engineering Research and Technology Volume 2, Issue 4, July 2014, PP 306-310 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Vampire Attack Detecting and Preventing in
International Journal of Recent Trends in Electrical & Electronics Engg., Feb. 2014. IJRTE ISSN: 2231-6612
Spoofing Attack Detection and Localization of Multiple Adversaries in Wireless Networks S. Bhava Dharani, P. Kumar Department of Computer Science and Engineering, Nandha College of Technology, Erode, Tamilnadu,
A Workload-Based Adaptive Load-Balancing Technique for Mobile Ad Hoc Networks
A Workload-Based Adaptive Load-Balancing Technique for Mobile Ad Hoc Networks Young J. Lee and George F. Riley School of Electrical & Computer Engineering Georgia Institute of Technology, Atlanta, GA 30332
A Routing Metric for Load-Balancing in Wireless Mesh Networks
A Routing Metric for Load-Balancing in Wireless Mesh Networks Liang Ma and Mieso K. Denko Department of Computing and Information Science University of Guelph, Guelph, Ontario, Canada, N1G 2W1 email: {lma02;mdenko}@uoguelph.ca
Prediction of DDoS Attack Scheme
Chapter 5 Prediction of DDoS Attack Scheme Distributed denial of service attack can be launched by malicious nodes participating in the attack, exploit the lack of entry point in a wireless network, and
Review of Prevention techniques for Denial of Service Attacks in Wireless Sensor Network
Review of Prevention techniques for Denial of Service s in Wireless Sensor Network Manojkumar L Mahajan MTech. student, Acropolis Technical Campus, Indore (MP), India Dushyant Verma Assistant Professor,
other. A B AP wired network
1 Routing and Channel Assignment in Multi-Channel Multi-Hop Wireless Networks with Single-NIC Devices Jungmin So + Nitin H. Vaidya Department of Computer Science +, Department of Electrical and Computer
Wireless Sensor Networks Chapter 14: Security in WSNs
Wireless Sensor Networks Chapter 14: Security in WSNs António Grilo Courtesy: see reading list Goals of this chapter To give an understanding of the security vulnerabilities of Wireless Sensor Networks
Protecting Privacy Secure Mechanism for Data Reporting In Wireless Sensor Networks
ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference
Securing Ad Hoc Wireless Networks Against Data Injection Attacks Using Firewalls
Securing Ad Hoc Wireless Networks Against Data Injection Attacks Using Firewalls Jun Cheol Park and Sneha Kumar Kasera School of Computing, University of Utah Email: {jcpark, kasera}@cs.utah.edu Abstract
Robust Security Solution to Countermeasure of Malicious Nodes for the Security of MANET
Robust Security Solution to Countermeasure of Malicious Nodes for the Security of MANET Kritika Sharma M.tech(CSE) Doon Valley Insttitute of Enggineering & Technology, Karnal Parikshit Singla Assistant
Detecting Multiple Selfish Attack Nodes Using Replica Allocation in Cognitive Radio Ad-Hoc Networks
Detecting Multiple Selfish Attack Nodes Using Replica Allocation in Cognitive Radio Ad-Hoc Networks Kiruthiga S PG student, Coimbatore Institute of Engineering and Technology Anna University, Chennai,
Secure Data Transmission in Wireless Sensor Network Using Randomized Dispersive Routing Algorithm
Secure Data Transmission in Wireless Sensor Network Using Randomized Dispersive Routing Algorithm Pallavi Motharkar 1, Dr.P.R.Deshmukh 2 and Prof.G.S.Thakare 3 1 M.E. (Computer Engineering), 2,3 Department
Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc
(International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan [email protected]
Consecutive Geographic Multicasting Protocol in Large-Scale Wireless Sensor Networks
21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications Consecutive Geographic Multicasting Protocol in Large-Scale Wireless Sensor Networks Jeongcheol Lee, Euisin
OPTIMIZED SENSOR NODES BY FAULT NODE RECOVERY ALGORITHM
OPTIMIZED SENSOR NODES BY FAULT NODE RECOVERY ALGORITHM S. Sofia 1, M.Varghese 2 1 Student, Department of CSE, IJCET 2 Professor, Department of CSE, IJCET Abstract This paper proposes fault node recovery
Security and Scalability of MANET Routing Protocols in Homogeneous & Heterogeneous Networks
Security and Scalability of MANET Routing Protocols in Homogeneous & Heterogeneous Networks T.V.P. Sundararajan 1, Karthik 2, A. Shanmugam 3 1. Assistant Professor, Bannari Amman Institute Of Technology,
Securing Ad hoc Routing Protocols
Securing Ad hoc Routing Protocols Frank Kargl Stefan Schlott Andreas Klenk Alfred Geiss Michael Weber Department of Media Informatics, University of Ulm, Germany Email: [email protected]
Security Threats in Mobile Ad Hoc Networks
Security Threats in Mobile Ad Hoc Networks Hande Bakiler, Aysel Şafak Department of Electrical & Electronics Engineering Baskent University Ankara, Turkey [email protected], [email protected]
SECURE ROUTING PROTOCOL IN SENSOR NETWORK FOR VAMPIRE ATTACK
IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 3, Mar 2014, 45-50 Impact Journals SECURE ROUTING PROTOCOL IN
PERFORMANCE ANALYSIS OF AD-HOC ON DEMAND DISTANCE VECTOR FOR MOBILE AD- HOC NETWORK
http:// PERFORMANCE ANALYSIS OF AD-HOC ON DEMAND DISTANCE VECTOR FOR MOBILE AD- HOC NETWORK Anjali Sahni 1, Ajay Kumar Yadav 2 1, 2 Department of Electronics and Communication Engineering, Mewar Institute,
Selfish MAC Layer Misbehavior in Wireless Networks
1 Selfish MAC Layer Misbehavior in Wireless Networks Pradeep Kyasanur + and Nitin H. Vaidya This research was supported in part by UIUC Campus Research Board. This research was published in part at International
Signature based Intrusion Detection for Wireless Ad-Hoc Networks: A Comparative study of various routing protocols
Signature based Intrusion Detection for Wireless Ad-Hoc Networks: A Comparative study of various routing protocols Farooq Anjum Applied Research Telcordia. Tech Inc. Morristown NJ 796 [email protected]
LIST OF FIGURES. Figure No. Caption Page No.
LIST OF FIGURES Figure No. Caption Page No. Figure 1.1 A Cellular Network.. 2 Figure 1.2 A Mobile Ad hoc Network... 2 Figure 1.3 Classifications of Threats. 10 Figure 1.4 Classification of Different QoS
DAG based In-Network Aggregation for Sensor Network Monitoring
DAG based In-Network Aggregation for Sensor Network Monitoring Shinji Motegi, Kiyohito Yoshihara and Hiroki Horiuchi KDDI R&D Laboratories Inc. {motegi, yosshy, hr-horiuchi}@kddilabs.jp Abstract Wireless
Student, Haryana Engineering College, Haryana, India 2 H.O.D (CSE), Haryana Engineering College, Haryana, India
Volume 5, Issue 6, June 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A New Protocol
SECURITY ASPECTS IN MOBILE AD HOC NETWORK (MANETS)
SECURITY ASPECTS IN MOBILE AD HOC NETWORK (MANETS) Neha Maurya, ASM S IBMR ABSTRACT: Mobile Ad hoc networks (MANETs) are a new paradigm of wireless network, offering unrestricted mobility without any underlying
Dynamic Source Routing in Ad Hoc Wireless Networks
Dynamic Source Routing in Ad Hoc Wireless Networks David B. Johnson David A. Maltz Computer Science Department Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213-3891 [email protected] Abstract
A Cooperative Security Scheme for Optimized Link State Routing in Mobile Ad-hoc Networks
A Cooperative Security Scheme for Optimized Link State Routing in Mobile Ad-hoc Networks João P. Vilela and João Barros Departament of Computer Science and Laboratory of Artificial Intelligence and Computer
