The!Power!of!Master!Data! in!a!big!data!world!

Size: px
Start display at page:

Download "The!Power!of!Master!Data! in!a!big!data!world!"

Transcription

1 AHubDesignsWhitePaper ThePowerofMasterData inabigdataworld ByDan$Power,Founder&President,HubDesigns andjulie$hunt,editor,hubdesignsmagazine Imagebyhttp://yasiv.com/facebook Sponsoredby

2 1 In$theory,$there s$no$difference$ between$theory$and$practice,$ but$in$practice,$there$is $ Attributed)to)Yogi)Berra$ ExecutiveOverview Aftersubstantialinvestmentsinbigdata,therearecontinuedreportsoffailedprojectsandwasted efforts. Intheory,bigdataanalyticsstillholdsthepromiseofsignificantreturns,forbetterdecisionKmaking, fastergoktokmarketstrategies,andinnovativenewbusinessmodels. Organizationsarelookingforbetterwaystogaininsightsfromtheir data(includingbigdata),andforthemosteffectivewaytousetheir dataasaweaponinanincreasinglycompetitivemarketplace.and$ their$questions$about$how$best$to$achieve$this$value$are$still$largely$ unanswered. Oftenorganizationsfocustoomuchonthetechnical whizbang aspectsofbigdatainsteadofasking:why$are$we$doing$this? Therehastobearealgoal arealbusinessproblemtosolve drivingabigdatainitiative.butfor mostbigdataprojects,thedataalonedoesnotrevealtheanswers.instead,fragmentsofdataare linkedtogether,withoutsufficientcontexttoconnectthemtothebusinessortocustomersand products. So$what s$missing?toframebigdataanalytics,youneedtoidentifythepurposeofthebigdata project,connectionstoexistingdata,andthecontextfortheanalysis.withoutthecontextofcurrent businessrequirementsandoperationalsystems,bigdatacanloseitsfooting andmillionsofdollars. Master$data$establishes$the$context$and$connections$that$are$absent$from$most$big$data$analytics.$ Itcanhelpidentifythepurposeofbigdataprojects,connectthemtoexistingdata,andprovide contextforanalysis.improveddataqualityandotherenhancementstoyourbigdataanalytics initiativecanalsocomefrommasterdatamanagement(mdm)anditscompanion,datagovernance. Large$Retailer$Misfires$with$Unfocused$Big$Data$Analytics$ AwellKknownretailerhasstruggledwithdecliningrevenueinrecentyearsandstumbledthroughconflicting executiveapproaches.oneceowasbroughtintorefreshthebrandandchangehowitsmerchandisewassold. ThisCEOwasknownforcitinghisbigdataanalyticsforcustomerbuyingbehavior.Histakeawaysfromthedata drovehimtocompletelyrevamphowtheretailerwenttomarketandtoabandonprofitableprivatelabelbrands. TheCEOsteeredthecompanyawayfromonlinesellingtopushcustomerstobrickKandKmortarstores.Sales plummetedandtheceowasshownthedoor. ThenextCEOreviewedhispredecessor sbigdataandcameawaywithanentirelydifferentsetof recommendations.thisceoisnowbusyreversingmostofwhatthepriorceosetintomotion. Bigdataalonewon tnecessarilyleadtousableanswersorinsights.bigdataoftenneedstobecombinedwith whatissometimescalled littledata thedatafrominternalenterprisesystems toaddcontextandrelevance towhatbigdataoffers.masterdataisespeciallyimportantforcorrelatingbigdatainformationandtoconnectit tomissioncriticaldataacrosstheenterprise.

3 HowCanMasterDataHelpYouGetMorefromBigData? Bigdataiscalledbigsimplybecauseitcomprisessomanydifferentkindsofdata.Generally,bigdata referstodatasourcesthataretoolarge(highvolume),toounstructuredormultikstructured(high variability),oraccumulatestoofast(highvelocity)tobeprocessedbytraditionalmethodsand technologies. Bigdatasourcesinclude: UnstructuredormultiKstructureddatawithhighlyvariableformatsandsemantics:logfiles, ekmail,socialmediacontent. MachineKgenerateddata:sensors,GPSlocations,medicaldevices,anddigitalnetworks, includingthe InternetofThings wheremillionsofwikfikenableddevicescreateafloodof newdata. Extremelylargedatasets:scalingfromhundredsofterabytesuptopetabytes(andgrowing). Today,organizationsareparticularlyinterestedinbigdatafromsocialnetworks:Twitter,LinkedIn, andfacebookareofspecialinterest.butsocialdatacomeswithmanydifficulties informationcan bemined,butforittohavemeaningandvalue,sentimentandcontextmustbederivedaswell. Valuableinsightforconsumerbehavior,productandshoppingpreferences,andnetworksof relationshipscanbegleanedfrombigdatafromsocialmedia. Bigdatasourcescanrevealvital,gameKchanginginformationthatmanyorganizationswouldloveto useintelligently.and,bigdatahelpsdeliversignificantinsightsforeveryaspectofthebusiness.what hampersmanyorganizationswhenworkingwithbigdataisfiguringouthowtotaketheright approachthatproducesreliableandusableresults. Everyenterpriseneedstofullyunderstandbigdata whatitmeanstothem,whatitmightbeableto dofortheirbusiness evenifthefinaldecisionisthatbigdatadoesn tyethavearoleinachieving thegoalsandobjectivesofthecompany. BigDataRealityChecks Conversationsaroundbigdataarefinallyshiftingfrom"Whatisbigdata?"to"WhatcanIdowithbig data?"andtoday,realusecasesarebeingdiscussedanddemonstratedinseveralindustries: Financial$Services:$advancedanalyticsthatbothprocessbigdataandcombineitwithmaster datagivefinancialservicescompaniestheabilitytobetteranticipatemarketconditionsand customerpreferences. Multichannel$and$digital$marketing:$thecombinationofmasterdataandbigdataanalytics takesmarketersfrombuildingprogramsandcampaignsbasedsolelyonintuitionandpast experiencetoincludingcontinuousanalyticsthatbringrealktimeinsights todeliverthe rightprogramattherighttimetotherightcustomers. Dynamic$delivery$logistics:$correlatingbigdatamashKupswithmasterdataforcustomers andproductsaddsimportantcontextforweightingthevalueofsavingmoneyonfuel consumption,betterservingthecustomerswhohavefreightonthetruck,andproperly deliveringthefreightbeingshipped. 2

4 Fraud$detection$in$insurance$claims:$thehighpriceoffraudandtheincreasingavailabilityof costkeffectivetechnologysolutionsforbigdataispushingmanyinsurerstakeadvantageof bigdatainsights,guidedbymasterdata. Toachievethebestresults,manybigdataanalyticsprocessesneedtoincludethecoredataofthe enterprisetoprovidecontextandtoensuretheaccuracyofresults.mdmprovideswhat smissing frombigdatasourcesbyprovidingtheconnectiontomissioncriticaldataacrosstheenterpriseand tothebusinessprocessesthatshouldbeconsumingtheresultsofbigdataanalytics. UsingMasterDatatoBetterFocusBigData Bigdatabyitselfcanbevagueandfragmented.Andtheanalyticsmaynotyieldmuch accurateintelligence. Youshouldfirstdeterminewhatbusinessproblemyouwanttosolveorwhichquestionsyou wouldliketoanswer.thenidentifytheothertypesofdataneededtopullbigdatainto focus,particularlyregardingcustomers,productsandchannels. Combiningbigdatawithmasterdata,aswellasotherdatasources,greatlyextendsthe value,accuracyandusefulnessofbigdataanalytics.mdmprovidesbusinesskcriticalidentity andentityresolutionforbigdatasources. Datagovernancepoliciesandpracticesarekeyenablersofbigdata.MDMhelpsyoufigure outhowmuchyoucan stretch standardsfordataqualityandaccuracywhenworkingwith bigdatasourcesforparticularprojectsandthenmeasuringtheimpactondataintegrityand businessprocesses.mdmprovidesafailksafeforcorrelating lesserquality bigdatato masterdata. MDMDeliversMoreTrustworthyData MDMcontributesasolidfoundationforgeneratingtrusteddataandmoreefficientbusiness processes.ittouchesalmosteveryimportantactivityinanorganization.mdmcollectsdataonthings likecustomersandproducts normallyinsilosthroughouttheenterprise andbringsitalltogether incentralizedhubsofhighqualitydata. MDMestablishestheprocessesthatensuretheaccuracy,qualityandusabilityofthemasterdata.An organizationcangofromfragmentedviewsoftheenterprisetoabigpictureor singleview,to supportinsightsthatleadtobetterdecisions. Overall,howwellanenterprisemanagesitsmasterdataisareflectionofhowwellitoperatesand succeeds,andhowquicklyitcanrespondtochangeandopportunities. MDMisalsoakeyfactorforconnectingbigdatatotheworldofaccuracy,relevanceandvalue.Ifyou don thavemdminyourorganization,thenstartbuildingastrongmdmprogram.ifyoualreadyhave MDMinplace,thentaketimetoassesstheeffectivenessofyourcurrentprogramandmakeany necessaryimprovementsorexpansions. 3

5 Dependingonthepurposeofyourbigdataanalytics,ifmasterdatacanplayasignificantrolein makingtheanalyticsmoremeaningful,makesureyouhavehealthyprocessesestablishedforthe trusteddatawithinyourenterprise.thisiswhatyouneedtogivebigdatarealdirectionanddeliver realvaluetoyourcompany. Insteadofworkingwithbigdataasa bigboxofoutkofkcontroldata,correlateelementsofbigdata toyourmasterdata,linkingittothingslikeproductinformationandcustomerdata.thiswillallow youtodoimportantsentimentandbrandanalysisbasedonthesocialmediapostingsyourcustomers aremakingaboutyourproducts. ThePowerofContextinKnowingYourCustomer Thebeneficialmarriageofmasterdataandbigdataresultsinanenhanced360Kdegreeviewofthe customer,whereexistingcustomerviewsareamplifiedbyincorporatingexternalbigdatasources. Behavioralinformationcomesfrombigdatasourceslikesocialmediaandotherdigitalsites,asdo preferencesandrelationships.acontinuous,realklifeunderstandingofindividualcustomersemerges: theirshoppingandbuyinghabits,opinions(positiveandnegative)aboutbrandsandproducts, preferredchannels,andintelligenceontheirbuyingjourneys. Butthisenhanced360Kdegreecustomerviewdoesnotworkwithoutmasterdataconnectingbigdata totherightcustomer,productorothercorporateinformation. MDMhasanaturalrelationshiptothebusinessdomainexpertsinyourcompanywhoprovide invaluablefinektuningbycorroboratingorquestioninganalyticsresults.yourinternalexpertsprovide furthercontextforbigdatainitiativesbydrawingonrealworldexperienceandtheabilitytosee connectionsandquestionsthathavebeenmissedbybigdataanalytics. YourCustomersWantYoutoRespectTheirPrivacy Whilemuchcanbegainedfromtappingintothepowerofbigdataanalytics,yourcustomershave legitimateconcernsabouttheprivacyandsecurityoftheinformationyouarecollectingfrombigdata sources.mdmhelpsyoukeepthetrustofyourcustomersbyapplyingthemasterdatapoliciesfor security,preferencesandprivacytothebigdatathatyoucollectandanalyze. Take$a$look$at$big$data$and$MDM$in$action:$ 4$different$use$cases$where$MDM$helps$big$data$ROCK$ for$clear$business$advantage.$ 4

6 5 Retailersandothertechnology companieshavealreadymadehuge stridesinthisarea[bigdata analytics],butthedoorsarenow openforfinancialservicescompanies toimprovecustomersegmentation, productdevelopment,andcustomer service. Source:,Bank,Systems,&,Technology, Financial'Services' 'Improving'the'customer'experience'with' intelligent'customer'service' Socialmediasitesareprolificgeneratorsofbigdata andthiskindofbigdataholdsgreat potentialfortellingfinancialservicescompaniesmoreabouttheircustomers.vastamounts ofdataareavailabletoprovideinsightintocustomerbehavior,companyinteractions,and preferencesfordifferentproductsandservices.differentanalyticscanbeperformedto providerealktimeupdatestocustomerintelligence,improvingcustomerserviceandcall centereffectiveness. Consistent andpositive CustomerExperiences MostfinancialservicesfirmshaveFacebookpageswherethey promotetheirofferingsandprovideachannelforcustomer commentsandquestions.acustomerpostsquestionsaboutthe statusofhermortgagerefinanceapplicationandcurrentrates. Afteracoupleofdaysnoonegetsbacktoher,soshecalls CustomerService,whichhastoaskforhercustomerinformation andthepurposeofthecall.noneoftheinformationdisplayedin thatprocessindicatesaninquiryonfacebook.whenthecustomer askswhathappened,customerservicedoesn tknow.thefinancial servicescompanynowhasanunderserved,unhappycustomerdue toabrokenmultichannelexperience. MDMExpandstheCustomerBigPicture IfcompaniesdecidetosetupshoponsocialsiteslikeFacebook,theymustcontinuously monitoractivity,respondtovisitors,andfeeddatafromthesiteintointernalprocessesto updatealltherightsystems,includingcustomerservice. WhenthecustomerpostsherFacebookinquiry,CustomerServicecanrespondinthat channel,givingthecustomerthenextstepstotake.customerservicewillhavethe interactioninformationandwillalsohaveaccesstothefullcustomerprofilefromthemaster datahub.thecustomerservicerepcanalsocorrelateproductmasterdatatodetermineif thereareanyissueswiththeparticularmortgageproductthatthecustomerreferencedin herinquiry.abettermortgageproductmaybeavailable.mostimportantly,thecustomeris betterservedwithconsistentmultikchannelinteractions. ExtendYourBusinessBeyondCustomerTransactions Advancedanalyticsforbigdatacombinedwithmasterdatagivefinancialservicescompaniesthe abilitytobetteranticipatemarketconditionsandcustomerpreferences.morecustomerkfocused productsandservicescanbeofferedfordifferentdemographiccategories.andthroughadvanced analytics,customerscanbematchedtotheappropriateoffers.whencustomersseeproofthat companiesknowwhotheyareandunderstandwhattheyneed,loyaltyandreferralscomenaturally.

7 6 Onaverage,marketersdependondata forjust11%ofallcustomerkrelated decisions.infact,whenweasked marketerstothinkaboutthe informationtheyusedtomakearecent decision,theysaidthatmorethanhalf oftheinformationcamefromtheir previousexperienceortheirintuition aboutcustomers. Source:,CEB,, Multichannel'and'Digital'Marketing' 'Understanding'your' customers'and'fulfilling'their'needs'on'their'buying'journey' Marketingorganizationsareconstantlychallengedtopulltogetheracomplete understandingofeachcustomer.achievingacomprehensiveviewofcustomersrequiresthe righttechnologiesforcollecting,validatingandanalyzingagreatdealofinformationabout customerinteractions,includingbuyingbehaviorandpurchaseoutcomes.themostupktok dateandusefuldataoftencomesfrombigdatasources. Customerinteractionscontinuetospreadacrossmanydifferentchannels.Companiesneed tomakesurethatthesamereliableandtimelyinformationisavailabletoeverychannelto handleanycustomerexperiencewithspeed,relevanceandaccuracy. Whatdoesthecustomerwant?Doyouhavetheinformationandresourcestohelpthem? PersonalizingCustomerExperiencesthrough MasterDataandBigData Marketerswanttocreatepersonalizedcustomer communicationsthatworkwellforaparticularchannel. Butpersonalizationcanonlybeeffectivewhenit sbased onaccurate,upktokdateinformationoncustomers, products,channels,locationsandotherrelevantdata domains. Whilebigdatacantellmarketersmoreaboutcurrent customerbehaviorandmindset,itoftenstartsoutas nonkcontextualfragments.masterdatadeliversthe meanstobetterconnectallfunctionsintheenterpriseto accuratecustomerintelligence,thecurrentcontextofcustomerneedsandactivities,andthe relationshipsofcustomerstoproductsandchannels.mdmalsohandlesidentityresolutionforthat massofdisparatebigdata,connectingittotherightentities,suchascustomersandproducts. It snotjustcrmanymore Socialnetworksareprolificcreatorsofbigdatarelatedtopotentialandcurrentcustomers.Andsocial mediaisnowanimportantsourceofdataformdm.includingsocialdataletstheenterpriseseethe customer snetworkofrelationshipsandmayrevealnonkobviousspheresofinfluence viewsthat arefrequentlynotpossiblewithtraditionalsystemssuchascrm.mdmhelpsanalyzecustomer relationshipsinsocialnetworksforcorrelationtomasterdatadomains. Mostimportantly,thecombinationofmasterdataandbigdataanalyticstakesmarketersfrom buildingprogramsandcampaignsbasedsolelyonintuitionandpastexperiencetoincluding continuousanalyticsthatbringrealktimeinsights todelivertherightprogramattherighttimeto therightcustomers.sophisticatedmarketinganalyticsareaquantumleapfromthetraditionalidea ofbrandmarketing.brandmarketingnowembracescustomerkresponsivemarketing,withbigdata analyticsfuelingnewprocesses.

8 Dynamic'Delivery'Logistics' 'ensuring'that'your'top'customers' come'first'while'controlling'costs'and'preventing'problems' Today sbusinessconditionshaveaffectedtheprofitabilityandoperationsofthetrucking industrythrough:uncertainanddiminishedeconomicactivity;decreasedcustomerdemand; escalatingfuelprices;andsupplychainrestructuring.thesechallengesarepushingthe truckingindustrytofindwaystocontaincostswhileimprovingcustomerexperiences,on boththesendingandreceivingends.bigdataanalyticsarehelpingtheindustryinthese areas,particularlybyimprovinglogisticalmanagementfortrucksonthego. TheWellPInformedDispatcher 62.8percentoflogisticsexpenseswere relatedtothecostsoftransportinggoods. Thismakesshippinganidealareainwhich tofindadditionalsavingsbyincreasing efficiency. Source:,State,of,the,Logistics,Union,2013,, by,rosalyn,wilson,,published,by,cscmp,,, Thankstobigdatasources,dispatchersnowhaveatremendousamountofrealKtimeinformationto helpthemmakeimprovedroutingdecisionsfortheirdrivers.datafor weatherconditionsalongdifferentroutesiscontinuouslyupdatedfrom sourceslikethenationaloceanicandatmosphericadministration (NOAA).Trafficdataandinformationaboutroadconditionsareavailable fromlocallawenforcementandsiteslikegooglemaps,mapquestor Yahoo.Sensordatafromthetrucksthemselvesprovidescontinualfuel consumptionrates.advancedanalyticsbringallofthisdatatogetherto guidethedispatcherwithrealktimeintelligence. However,this mashedup bigdatahassomesignificantgapsthatmay affectdecisionkmaking.routingdecisionsmustincludefactorslikethe typesofcustomersbeingserved,theirimportancetothebusinessand thekindoffreightbeingtransported notsolelybasedontravelconditionsorfuelconsumption. OrganizingBigDataMashPupswithMasterData CorrelatingbigdatamashKupswithmasterdataforcustomersandproductsaddsimportantcontext forweightingthevalueof:savingmoneyonfuelconsumption;betterservingthecustomerswho havefreightonthetruck;andproperlydeliveringthefreightbeingshipped.mdmaddsinthe intelligencethathelpsthedispatchermakethebestdecisionforhiscompanyandtheircustomers. NewOpportunitiesforPersonalizedService Whentruckingcompaniescorrelatebigdatasourceswithmasterdata,otherusesforthedata emerge.companiescancapitalizeonthecombineddatasourcestoimprovepersonalizedservices notjustfortopcustomers,buttowinovermorecustomersandgrowtheirloyalty.bothshippersand recipientsoffreighthavehigherexpectationsthesedaysandwantmoreservicesandvisibilityinto theirshippingactivities. Byusingallofthebigdataavailabletodayandcombiningitwiththecompany sinternalmasterdata, companiesinthelogisticschaincanmakebetterdecisionstosatisfyboththeirlarge,demanding customersandtheirsmalltomidksizedcustomers. 7

9 Fraud'Detection'in'Insurance'Claims' WellKorganizedandcomplexfraudnetworksareworkingstealthilytoproliferatefraudulentinsurance claims,targetingmultipleinsuranceprovidersatthesametime.theseorganizedringsofcriminals avoiddetectionbycircumventingthetraditional andoftencumbersome methodsofidentifying fraudthatareusedbyinsuranceadjustersandclaimsprocessors. Insurancefraudimpactsnotonlyevery insurancecompanybutvirtuallyevery consumerandtaxpayerworldwide,andit showsnosignofeasing. AiteGroupestimatesthatclaimsfraudin theu.s.p&cindustryalonecostcarriers US$64billionin2012andwillreachUS$80 billionby2015. Source:,Aite,Group Bigdataanalyticscanputtogetherthefraudpicturefromdatacoming fromunconventionalsources,rootingoutfraudnetworksandincipient fraudschemes flyingundertheradar. Analyticscanbringtolightsuspicioustransactionsandactivities,aswell asanomalies,connectingunlikelypiecesthatcometogetherthroughbig dataanalyticalprocesses.suchprocessesshouldberealktimeinorderto stopfraudassoonaspossible. Forexample,identityresolutionenginescanfind nonkobvious relationships betweenindividualsbasedoninformationfromdisparate sourceswithinandoutsidetheenterprise,lookingforpatternsindicating relationshipsbetweenpeopleinvolvedinadisputedcaraccident. MDMSharpensDetection Masterdatastepsintoprovideidentity,entityandrelationshipresolution vitalaspectsoffraud detection.mdmalsoprovidestheconnectionforcontinuousimprovementandstrengtheningof claimsprocesses,whileintelligencefrombigdataanalyticsfurtherfuelssuchimprovements.the onektwopunchofmdmandbigdatacangreatlyreducecostsandincreaseefficiency. AOnePTwoPunchDeliverstheInsuranceIndustryWin Theinsuranceindustryhastraditionallybeenslowtoadoptnewtechnologies.Butthehighpriceof fraudandtheincreasingavailabilityofcostkeffectivetechnologysolutionsforworkingwithbigdata shouldpushmanyinsurersintotakingadvantageofbigdatainsights,particularlywhenthoseinsights areguidedbymasterdata. Bypreventingfraudintheearlystages,insurancecompaniesgaingreatercontroloverallclaims, providebetterserviceforlegitimateclaims,andpasssavingsontocustomers.insurancecompanies canreapsubstantialgainsfrombigdataanalyticsandmdmworkingtogether. 8

10 What'can'you'do'to'get'your'arms'around'all'of'the'data'that' benefits'your'business?' ThePowerofBigDataandMasterDataWorkingTogether BigdataanalyticsareprovingtobesignificantforthedecisionKmakingandcompetitivenessofmany companies.ifdonewell,richintelligencecanbeattained,particularlyforunderstandingcustomers andbuyingbehavior,andforcreatingtherightproducts. Butfrequently,bigdatainitiativesendinfailure.It simportanttogivepurposetoyourbigdata initiativebyidentifyingrealbusinessproblemstosolve.it salsocriticaltoviewbigdataanalyticsin context contextcomingfromconnectingbigdatatoothersourcesofdata,especiallymasterdata. MDMalsoconnectsbigdataanalyticstotherightbusinessprocessesandbusinessexpertsand ensuresthatanalyticsresultsareaccurateandputtogooduse. Noteverydataproblemisa bigdata problem littledata sourcesarestillimportantforattaining valuableintelligence.byfullyunderstandingwhat sneededtosolveproblemsoranswerquestions, youcandeterminewhichdatasourcesarelikelytoyieldtheinsightsthatyouseek. Finally,makesurethatanalyticsresultsandrecommendationsareshared(nothoarded)across enterpriseprocessesandsystems,wherevertheintelligencecandothemostgood.themore data power youcanprovidetoeveryoneintheenterprise,themoreagileyourorganizationwillbecome whenitfacesdisruptivechallengesandnewopportunities. Getting$Started$with$MDM$and$Big$Data$Initiatives$ InitiateadataimpactassessmentbothforMDMandbigdataanalytics. LayoutcorporatestrategiesforMDMandbigdata.Whatproblemsdoyouneedtosolve? Whatquestionsdoyouwantanswered?Howwillyouproceed? DetermineifyourMDMhouseisinorder makeaplantogetthemostoutofyourmdm program. ConstructawellKthoughtKoutscopeforthefirstinitiativewhereMDMandbigdatawork together. Establishmetrics,thenassessandunderstandthebenefitsandvaluefromtheinitiativeand howitwillimproveyourbusiness. Setupnewdatagovernancepoliciesformanagingbigdata decidewhenitwillandwon tbe storedinmasterdatahubs,andcreateproceduresformaintainingtheintegrityofmaster datawhenworkingwithbigdatasources. TakealookatThe8WorstPracticesinMasterDataManagementandHowtoAvoidThem thesamestepsthatcanensurethesuccessofmdminitiativesshouldbeconsideredforyour bigdatainitiatives. 9

11 How$Information$Builders$Can$Help$Your$MDM$and$Big$Data$Initiatives$ InformationBuildersprovidesproductsandservicestohelporganizationstransformbigdatainto value.oursoftwaresolutionsforbusinessintelligenceandanalytics,integration,anddataintegrity empowerpeopletomakesmarterdecisions,strengthencustomerrelationships,anddrivegrowth. OurWebFOCUSandiWayproductscoverallinformationneeds fromdatainceptiontoinformation qualityanddelivery.themarket sleadingbusinessintelligence(bi)andanalyticsplatform, WebFOCUSscaleseasilytoextendthepowerofanalyticstoeveryone.iWayproductssimplifythe integrationofcomplexdataandapplicationenvironmentstodeliverprojectsontimeandonbudget, capturelostrevenue,andeliminatehiddencostsgeneratedbyinaccuratedata. WebFOCUSoffersdoKitKyourselfanalyticswithunmatchedscalability.WebFOCUSletsyoutakebig dataandgiveanswerstousersinawaytheycanunderstand.forexample,withwebfocus,youcan: Deliverpredictivescorestoyourcustomerservicerepresentatives,sotheyknowwhich offersaremostlikelytoresultinapositiveoutcome. Providesophisticatedvisualizationtoolstoanalystswhocanseepatternsinmillionsofdata points. DeliveradashboardtoyourVPofMarketingwithsocialmediasentimentscoresaboutthat newproductlaunch. DeployaBISearchappfullypopulatedwithstructureddata,unstructureddata,andlinksto existingreportsandanalysis. TheInformationBuildersiWayMasterDataSuiteoffersrealKtimemultiKdomainMDMcapabilities withcompletedataquality,dataprofiling,anddatagovernancecapabilitiesacrossallvertical domains.thesuiteenablesorganizationstotakeadvantageofmdmacrossbigdata,crm,rdbms, ERP,andevenlegacysystemswithacompleteframeworkforbothITandbusinesstomaster, cleanse,andremediateanydata. InformationBuilders dataqualityassessmentshelporganizationsgetstartedwithmdmanddata quality.ourprofessionalsanalyzeanorganization'sinformation,discoverwhereproblemslie,and determinehowextensivethoseissuesare.wehelpimproveinformation svaluewithexpertswho areavailabletohelpimplement,guide,anddesigndataintegrityinitiativesacrossanyorganization. How$Hub$Designs$Can$Help$Your$MDM$and$Big$Data$Initiatives$ HubDesignsisaglobalconsultingfirmthatfocusesonstrategydevelopment,solutiondeliveryand thoughtleadershipformasterdatamanagement(mdm)anddatagovernance.weareenablingour clientstotacklebigdatachallengesinavarietyofindustries. Weprovideservicescoveringcomprehensiveassessments,strategicroadmaps,softwareselection, businesscasedevelopment,anddatagovernanceformation. Ourconsultantsaretrustedadvisorswhodevelopsolutions,deliverbestpractices,provideanalysis, anddemonstratetheirthoughtleadershipbyspeakingandpublishingoftenoninformation management. 10

12 About$Hub$Designs$ HubDesignsisagloballeaderinthedevelopmentanddeliveryofhighimpactmasterdata management(mdm)anddatagovernancestrategies.thecompanypublisheshubdesignsmagazine, oneofthefirstonlinepublicationsspecificallyfortheinformationgovernanceindustry.thefirm s ThoughtLeadershippracticeproduceswhitepapersandwebinars,andHubDesigns President,Dan Power,isafrequentpresenteratconferencesandtradeshows.Formoreinformation,pleasevisit hubdesigns.comorfollowusontwitterat@hubdesigns. About$Information$Builders$ InformationBuildershelpsorganizationstransformdataintobusinessvalue.Oursoftwaresolutions forbusinessintelligenceandanalytics,integration,anddataintegrityempowerpeopletomake smarterdecisions,strengthencustomerrelationships,anddrivegrowth.ourdedicationtocustomer successisunmatchedintheindustry.that swhytensofthousandsofleadingorganizationsrelyon InformationBuilderstobetheirtrustedpartner.Foundedin1975,InformationBuildersis headquarteredinnewyork,ny,withofficesaroundtheworld,andremainsoneofthelargest independent,privatelyheldcompaniesintheindustry.visitusatinformationbuilders.com,followus ontwitterat@infobldrs,likeusonfacebook,andvisitourlinkedinpage. Hub$Designs$ 188WhitingStreet,Suite6A Hingham,MA02043USA +1(781)749K8910office +1(781)735K0318fax hubdesigns.com hubdesignsmagazine.com Information$Builders$Inc. TwoPennPlaza NewYork,NY10121USA +1(212)736K4433office +1(212)967K6406fax informationbuilders.com informationbuilders.com/blog 2013HubSolutionDesigns,Inc.andInformationBuilders,Inc. Allrightsreserved.Nopartofthispublicationmaybereproducedorstoredinaretrievalsystemortransmitted inanyformorbyanymeans,withoutthepriorwrittenpermissionofthecopyrightholder.hubdesignsand InformationBuildersarethejointcopyrightownersofthispublication.Alltrademarkshereinarethepropertyof theirrespectiveowners. 11

Multidomain!MDM:!! The!Best!Value!For!Your!Business!

Multidomain!MDM:!! The!Best!Value!For!Your!Business! AHubDesignsWhitePaper MultidomainMDM: TheBestValueForYourBusiness ByDan$Power,Founder&President,HubDesigns andjulie$hunt,editor,hubdesignsmagazine PhotobyDauphineMartine Sponsoredby EXECUTIVESUMMARY Everyday,ineveryindustry,thedamagingconsequencesofunreliable,outdatedinformationare

More information

Onboarding Guide for Prodanet Master Data Service

Onboarding Guide for Prodanet Master Data Service Onboarding Guide for Prodanet Master Data Service Version 1.0 Creation date Status: DRAFT Page 1 of 6 Contents Introduction... 3 Process Diagramm... 3 Detailed On-boarding Procedure... 4 Roles... 6 Contact

More information

5A Tonality, Modality and Polarity

5A Tonality, Modality and Polarity Music171Assignment#14 akafinalexampart1 50QuestionsonAFeelingforHarmony,Chapter5 Due:Friday,Dec.5,withaportionturnedinonWed,Dec3 CanbeturnedinonMonday,December8 th withemailconfirmation. NAME: PLEASEUSEAPENCIL,NOTAPEN,FORTHISASSIGNMENT!

More information

Anemoon project K.U.LEUVEN

Anemoon project K.U.LEUVEN K.U.LEUVEN Domain Education Individual Study Programme 09/05/2007 Overview 1. Introduction 2. Registration 3. Portal service-k.u.loket 4. My Individual Study Programme (ISP) 5. Reports and interfaces 1

More information

Data Governance Policy. Version 2.0 19 October 2015

Data Governance Policy. Version 2.0 19 October 2015 Version 2.0 19 October 2015 Document Title: Summary: Date of Issue: Status: Contact Officer: Applies To: References: This policy provides the Cancer Institute NSW with an instrument to formally manage

More information

2.5 Transformations of Functions

2.5 Transformations of Functions 2.5 Transformations of Functions Section 2.5 Notes Page 1 We will first look at the major graphs you should know how to sketch: Square Root Function Absolute Value Function Identity Function Domain: [

More information

The Role of Minimum Benefits within Private Health Insurance

The Role of Minimum Benefits within Private Health Insurance ... n HEATHCAHE The Role of Minimum Benefits within Private Health Insurance A Vhi Healthcare submission to the Health Insurance Authority June, 2004 Table of Contents 1 INTRODUCTION 3 1.1 BACKGROUND...

More information

MATH 110 College Algebra Online Families of Functions Transformations

MATH 110 College Algebra Online Families of Functions Transformations MATH 110 College Algebra Online Families of Functions Transformations Functions are important in mathematics. Being able to tell what family a function comes from, its domain and range and finding a function

More information

!!!!!!!!!! Big!Data!Revealed!! An!Information!Difference!Research!Study!! December!2013!!!!!!!!!!!! Sponsored!by!!!!!!!!!!!!!

!!!!!!!!!! Big!Data!Revealed!! An!Information!Difference!Research!Study!! December!2013!!!!!!!!!!!! Sponsored!by!!!!!!!!!!!!! BigDataRevealed AnInformationDifferenceResearchStudy December2013 Sponsoredby TABLEOFCONTENTS Big$Data$Revealed$ 2$ EXECUTIVE$SUMMARY$...$4 BACKGROUND$TO$THE$SURVEY$...$6 THE$APPROACH$...$6 ABOUT$THE$RESPONDENTS$...$7

More information

SMEs and Internet of Things

SMEs and Internet of Things White Paper SMEs and Internet of Things Angele Giuliano & Johan E. Bengtsson AcrossLimits (Malta) February 2013 This white paper has been produced by the OpenIoT project as part of their requirements analysis

More information

Price and Revenue Management - Manual Price Changes. SAP Best Practices for Retail

Price and Revenue Management - Manual Price Changes. SAP Best Practices for Retail Price and Revenue Management - Manual Price Changes SAP Best Practices for Retail Purpose, Benefits, and Key Process Steps Purpose For the creation of manual price changes via the Price Planning Workbench,

More information

MCR3U - Practice Test - Periodic Functions - W2012

MCR3U - Practice Test - Periodic Functions - W2012 Name: Date: May 25, 2012 ID: A MCR3U - Practice Test - Periodic Functions - W2012 1. One cycle of the graph of a periodic function is shown below. State the period and amplitude. 2. One cycle of the graph

More information

List the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated

List the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated MATH 142 Review #1 (4717995) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Description This is the review for Exam #1. Please work as many problems as possible

More information

MySQL Backup Strategy @ IEDR

MySQL Backup Strategy @ IEDR MySQL Backup Strategy @ IEDR Marcelo Altmann Oracle Certified Professional, MySQL 5 Database Administrator Oracle Certified Professional, MySQL 5 Developer Percona Live London November 2014 Who am I? MySQL

More information

Enterprise Solutions. Data Warehouse & Business Intelligence Chapter-8

Enterprise Solutions. Data Warehouse & Business Intelligence Chapter-8 Enterprise Solutions Data Warehouse & Business Intelligence Chapter-8 Learning Objectives Concepts of Data Warehouse Business Intelligence, Analytics & Big Data Tools for DWH & BI Concepts of Data Warehouse

More information

The figure below provides an overview of the VICOS MP architecture. The major MP applications are shown with their internal and external interfaces. Figure 2: VICOS MP Integration The generated movement

More information

WINTER WEIGHT TRAINING PROGRAM FOR CYCLING

WINTER WEIGHT TRAINING PROGRAM FOR CYCLING Body2Bike WinterWeightTrainingProgramforCycling WINTERWEIGHTTRAININGPROGRAMFORCYCLING BASICPRINCIPLES First4 6weeks: Technique: Thisisyourhighestpriority,neversacrificetechniqueforweight.Beginwithlongerrepsofbetween12and16

More information

Join the Lean Wave. Asanka Abeysinghe Director, Solutions Architecture. WSO2, Inc. Friday, July 22, 11

Join the Lean Wave. Asanka Abeysinghe Director, Solutions Architecture. WSO2, Inc. Friday, July 22, 11 Join the Lean Wave Asanka Abeysinghe Director, Solutions Architecture. WSO2, Inc. 1 Asanka Abeysinghe 10 + years industry experience working on projects ranging from desktop, web applications through to

More information

DOORWAY'TO'THE'' NEXT'INDUSTRIAL'REVOLUTION:' THE$INDUSTRIAL$INTERNET$

DOORWAY'TO'THE'' NEXT'INDUSTRIAL'REVOLUTION:' THE$INDUSTRIAL$INTERNET$ DOORWAYTOTHE NEXTINDUSTRIALREVOLUTION: THEINDUSTRIALINTERNET GESo=ware Deutsche Bank Conference BillRuh June3,2015 ForwardCLookingStatements: Thisdocumentcontains forwardclookingstatements thatis,statementsrelatedtofuture,notpast,events.inthiscontext,forwardclookingstatementso=enaddressourexpectedfuturebusinessandfinancialperformanceandfinancial

More information

Call Logging Quick Reference User Guide

Call Logging Quick Reference User Guide Call Logging provides companywide call records, comparison and analytical tools for tracking and improving the efficiency and effectiveness of business communications. An intuitive, feature rich interface

More information

[/ V / X .* " ' ' < -> <-*~1 1 H 1 ^ 1-1 -I -' CHAPTER 5. Section 5.1

[/ V / X .*  ' ' < -> <-*~1 1 H 1 ^ 1-1 -I -' CHAPTER 5. Section 5.1 CHAPTER 5 Section 5.1 Objectives Determine whether a function is exponential. Identify the characteristics of exponential functions of the form/(x) = b x, including the domain, range, intercept, asymptote,

More information

BIG DATA AND OFFICIAL STATISTICS. Filomena Maggino, Monica Pratesi

BIG DATA AND OFFICIAL STATISTICS. Filomena Maggino, Monica Pratesi BIG DATA AND OFFICIAL STATISTICS Filomena Maggino, Monica Pratesi What about risks, needs, and challenges of big-data in the context of measuring wellbeing? «Data are widely available, what is scarce is

More information

Customer Centricity in Banking: Driving Revenue and Loyalty. Developing the 21st century workforce TM

Customer Centricity in Banking: Driving Revenue and Loyalty. Developing the 21st century workforce TM Customer Centricity in Banking: Driving Revenue and Loyalty Developing the 21st century workforce TM In today s hypercompetitive banking environment, most financial-services firms are overlooking the one

More information

Configuring Outlook to send mail via your Exchange mailbox using an alternative email address

Configuring Outlook to send mail via your Exchange mailbox using an alternative email address Configuring Outlook to send mail via your Exchange mailbox using an alternative email address This document is based on Exchange mailboxes and using Outlook 2007. The principles outlined are equally valid

More information

Tech Note 868 Troubleshooting Wonderware Software Resource Issues with Performance Monitor

Tech Note 868 Troubleshooting Wonderware Software Resource Issues with Performance Monitor Tech Note 868 Troubleshooting Wonderware Software Resource Issues with Performance Monitor All Tech Notes, Tech Alerts and KBCD documents and software are provided "as is" without warranty of any kind.

More information

Technip Data Management Journey. IPMA Italy. Jean-Luc Brunat VP, Business Support Functions & Group Data Systems Group IT. Rome, December 3 rd 2013

Technip Data Management Journey. IPMA Italy. Jean-Luc Brunat VP, Business Support Functions & Group Data Systems Group IT. Rome, December 3 rd 2013 Technip Data Management Journey IPMA Italy Jean-Luc Brunat VP, Business Support Functions & Group Data Systems Group IT Rome, December 3 rd 2013 1 Sezione Informatica This is Business Intelligence! 2 What

More information

Unit 3 - Lesson 3. MM3A2 - Logarithmic Functions and Inverses of exponential functions

Unit 3 - Lesson 3. MM3A2 - Logarithmic Functions and Inverses of exponential functions Math Instructional Framework Time Frame Unit Name Learning Task/Topics/ Themes Standards and Elements Lesson Essential Questions Activator Unit 3 - Lesson 3 MM3A2 - Logarithmic Functions and Inverses of

More information

Merck: Revitalizing Master-Data Management

Merck: Revitalizing Master-Data Management 2013 SAP AG or an SAP affiliate company. All rights reserved. Merck: Revitalizing Master-Data Management Partner Merck KGaA Industry Pharmaceuticals, Chemicals & Life Sciences Products and Services Pharmaceutical

More information

SAP White Paper Enterprise Information Management

SAP White Paper Enterprise Information Management SAP White Paper Enterprise Information Management Including Business Content in a Comprehensive Information Management Program Enhance Efficiency and Compliance Through Process-Centric Information Management

More information

Semantic Web Success Story

Semantic Web Success Story Semantic Web Success Story Practical Integration of Semantic Web Technology Chris Chaulk, Software Architect EMC Corporation 1 Who is this guy? Software Architect at EMC 12 years, Storage Management Software

More information

ikompass PMP Exam tips

ikompass PMP Exam tips ikompass PMP Certification Singapore ikompass PMP Exam tips Taking an exam can be a daunting task for people of any age. The unique structure of the PMP exam which involves rules like being sensitive to

More information

5.3 Graphing Cubic Functions

5.3 Graphing Cubic Functions Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1

More information

Intensity transformations

Intensity transformations Intensity transformations Stefano Ferrari Università degli Studi di Milano [email protected] Elaborazione delle immagini (Image processing I) academic year 2011 2012 Spatial domain The spatial domain

More information

MASTER OF SCIENCE (MSc) IN ENGINEERING (SOFTWARE ENGINEERING) (Civilingeniør, Cand. Polyt. i Software Engineering)

MASTER OF SCIENCE (MSc) IN ENGINEERING (SOFTWARE ENGINEERING) (Civilingeniør, Cand. Polyt. i Software Engineering) Chapter 9 The programme specific part of the curriculum for: MASTER OF SCIENCE (MSc) IN ENGINEERING (SOFTWARE ENGINEERING) (Civilingeniør, Cand. Polyt. i Software Engineering) Applicable to students admitted

More information

BIG DATA PREDICTIVE ANALYTICS PDF

BIG DATA PREDICTIVE ANALYTICS PDF BIG DATA PREDICTIVE ANALYTICS PDF ==> Download: BIG DATA PREDICTIVE ANALYTICS PDF BIG DATA PREDICTIVE ANALYTICS PDF - Are you searching for Big Data Predictive Analytics Books? Now, you will be happy that

More information

Cello How-To Guide. Master Data Management

Cello How-To Guide. Master Data Management Cello How-To Guide Master Data Management Contents 1 Master Data Management... 3 1.1 MasterData Configuration... 3 1.2 MasterData Configuration Tags... 5 Contact Information... 8 2 1 Master Data Management

More information

Topology. Shapefile versus Coverage Views

Topology. Shapefile versus Coverage Views Topology Defined as the the science and mathematics of relationships used to validate the geometry of vector entities, and for operations such as network tracing and tests of polygon adjacency Longley

More information

Brand Journalism, Making your Mark

Brand Journalism, Making your Mark Brand Journalism, Making your Mark Constance Aguilar @ConnieAguilar Connie Anderson @ConnieaPR What is Brand Journalism? Brand Journalism is a way to record what happens or has happened to a brand and

More information

Be part of the Smart Future of #Energy

Be part of the Smart Future of #Energy INCENSE project has received funding from the European Union Seventh Framework Programme under grant agreement n 632852 Be part of the Smart Future of #Energy Javier Garrido Chamorro ENDESA Málaga, February

More information

Big Data Driven Knowledge Discovery for Autonomic Future Internet

Big Data Driven Knowledge Discovery for Autonomic Future Internet Big Data Driven Knowledge Discovery for Autonomic Future Internet Professor Geyong Min Chair in High Performance Computing and Networking Department of Mathematics and Computer Science College of Engineering,

More information

Kodak Trūper 3210-3610 Series Scanners Software Release Notes

Kodak Trūper 3210-3610 Series Scanners Software Release Notes Kdak Trūper 3210-3610 Series Scanners Sftware Release Ntes InstallSftware_Trūper3210-3610_v1.6 Summary Purpse f Release: This release includes an update t Kdak OEM VRS 5.1 Prfessinal t supprt Windws 8.

More information

Senior Project Proposal: Web Design. Adam Peterson

Senior Project Proposal: Web Design. Adam Peterson Senior Project Proposal: Web Design By Adam Peterson Carson High School AP Literature Al Mr. Macy October 19,2013 Page One: Task Analysis and Timeline 1. Describe your project, including what you plan

More information

BIG DATA AND PREDICTIVE ANALYTICS PDF

BIG DATA AND PREDICTIVE ANALYTICS PDF BIG DATA AND PREDICTIVE ANALYTICS PDF ==> Download: BIG DATA AND PREDICTIVE ANALYTICS PDF BIG DATA AND PREDICTIVE ANALYTICS PDF - Are you searching for Big Data And Predictive Analytics Books? Now, you

More information

For the best possible implementation, it is important that the sections Service Account and Servers are completed before installation.

For the best possible implementation, it is important that the sections Service Account and Servers are completed before installation. Anders+Kern UK Ltd Norderstedt House James Carter Road Mildenhall, Suffolk IP28 7RQ Phone: +44 (0)1638 510 900 Fax: +44 (0)1638 510 901 www.anders-kern.co.uk [email protected] PAGE: 1 OF 12 THIS

More information

Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory

Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory Vocabulary: VSEPR Valence Shell Electron Pair Repulsion Theory domain = any electron pair, or any double or triple bond is considered one domain. lone pair = non-bonding pair = unshared pair = any electron

More information

Multiple Connection Telephone System with Voice Messaging

Multiple Connection Telephone System with Voice Messaging Multiple Connection Telephone System with Voice Messaging Rumen Hristov, Alan Medina 6.111 Project Proposal Fall 2015 Introduction We propose building a two-way telephone system. We will utilize two FPGAs,

More information

SALARY GUIDE New South Wales

SALARY GUIDE New South Wales SALARY GUIDE New South Wales April 2015 INTRODUCTION April 2015 Welcome to the Davidson Technology Salary Guide for April 2015. The past six months have been an encouraging period for the technology recruitment

More information

- Understand that servers on the Internet are located across the planet

- Understand that servers on the Internet are located across the planet Year 4 Lesson 1 Learning objective - Understand that servers on the Internet are located across the planet Lesson summary: In this lesson pupils revisit what they learnt in Year 3 as they discuss the difference

More information

Six Ways to be SMART in Setting Performance Goals

Six Ways to be SMART in Setting Performance Goals viapeople Insight - Whitepaper Six Ways to be SMART in Setting Performance Goals Jackie A. Caruso, M.A. Karen N. Caruso, Ph.D. How SMART Are You? Goal setting theory is generally accepted as among the

More information

Chapter 11 Supporting a Small Business Network

Chapter 11 Supporting a Small Business Network Chapter 11 Supporting a Small Business Network Objectives Address the needs of a small business network Identify small business network equipment requirements Identify small business application requirements

More information

ADVANCED UNIFIED MESSAGING FEATURES

ADVANCED UNIFIED MESSAGING FEATURES ADVANCED UNIFIED MESSAGING FEATURES Information Technology Systems Division Unified Messaging (UM) at UNCW, 2 Installing and Using the Outlook plug-in, 2 Optional Customization of Unified Messaging within

More information

How to complete the FCE Online Practice Test Free Sample: Reading

How to complete the FCE Online Practice Test Free Sample: Reading First Certificate in English Online Practice Test Free Sample How to complete the FCE Online Practice Test Free Sample: Reading Welcome to the First Certificate in English Online Practice Test Free Sample.

More information

Session 4 Cloud computing for future ICT Knowledge platforms

Session 4 Cloud computing for future ICT Knowledge platforms ITU Workshop on "Future Trust and Knowledge Infrastructure", Phase 1 Geneva, Switzerland, 24 April 2015 Session 4 Cloud computing for future ICT Knowledge platforms Olivier Le Grand, Senior Standardization

More information

Intelligent Supply Chain

Intelligent Supply Chain Data Science & Big Data Practice INSIGHTS ANALYTICS INNOVATIONS Intelligent Supply Chain Enable Better Decision Making Through Effective use of Data Supply Chain is generating significantly large unstructured

More information

ELECTRONIC MEDICAL RECORD SOLUTION FOR CHIROPRACTIC INDUSTRY CASE STUDY

ELECTRONIC MEDICAL RECORD SOLUTION FOR CHIROPRACTIC INDUSTRY CASE STUDY ELECTRONIC MEDICAL RECORD SOLUTION FOR CHIROPRACTIC INDUSTRY CASE STUDY Business Needs The client had approached us to outsource the development of MS Windows-based electronic medical records system (EMR)

More information

Developing School Wellness Centers. Contact Information: Roberta Stokes, Professor Emeritus, Miami-Dade College, Miami, FL rstokes5@yahoo.

Developing School Wellness Centers. Contact Information: Roberta Stokes, Professor Emeritus, Miami-Dade College, Miami, FL rstokes5@yahoo. Developing School Wellness Centers Contact Information: Roberta Stokes, Professor Emeritus, Miami-Dade College, Miami, FL [email protected] Jayne Greenberg, District Director, Physical Education and Health

More information

Cloud Computing after the Hype

Cloud Computing after the Hype Cloud Computing after the Hype Open Cloud Day 2015, Bern Prof-Dr. Thomas Michael Bohnert (TMB) and the entire ICCLab-Team Objective To reflect on the past and to try understanding what drives the future

More information

PPPoE Monitor. User Manual. Copyright (C) 2011 Winsent Lab

PPPoE Monitor. User Manual. Copyright (C) 2011 Winsent Lab PPPoE Monitor User Manual Copyright (C) 2011 Winsent Lab Table of contents Table of contents...2 1 Program Overview...3 2 System Requirements...5 3 Installing the Program...6 4 Using the Program...7 4.1

More information

Proposal for the Theme on Big Data. Analytics. Qiang Yang, HKUST Jiannong Cao, PolyU Qi-man Shao, CUHK. May 2015

Proposal for the Theme on Big Data. Analytics. Qiang Yang, HKUST Jiannong Cao, PolyU Qi-man Shao, CUHK. May 2015 Proposal for the Theme on Big Data Analytics May 2015 Qiang Yang, HKUST Jiannong Cao, PolyU Qi-man Shao, CUHK Motivation The world's technological per-capita capacity to store information doubled every

More information

Pre Calculus Math 40S: Explained!

Pre Calculus Math 40S: Explained! www.math0s.com 97 Conics Lesson Part I The Double Napped Cone Conic Sections: There are main conic sections: circle, ellipse, parabola, and hyperbola. It is possible to create each of these shapes by passing

More information

INTERNET OF THINGS EUROPE

INTERNET OF THINGS EUROPE INTERNET OF THINGS EUROPE www.internet-of-things.eu Internet of Things 2010 Conference 29-1 Nov/Dez 2010, Tokyo Workshop Session: From the INTRAnet of Things to the INTERnet of Things Establishing a common

More information

Software Defined Perimeter: Securing the Cloud to the Internet of Things

Software Defined Perimeter: Securing the Cloud to the Internet of Things Software Defined Perimeter: Securing the Cloud to the Internet of Things SESSION ID: CDS-T08 Jim Reavis Chief Executive Officer Cloud Security Alliance @cloudsa About Cloud Security Alliance Global, not-for-profit

More information

How To Get Up To Speed In Healthcare It

How To Get Up To Speed In Healthcare It What s New In Healthcare IT And How Do I Get Up To Speed? John Dietle EVP Connecticut Computer Service, Inc. Agenda What s New In Healthcare IT And How Do I Get Up To Speed? 1 Connecticut Computer Service,

More information

OAuth 2.0 andinternet Standard. Torsten Lodderstedt Deutsche Telekom AG

OAuth 2.0 andinternet Standard. Torsten Lodderstedt Deutsche Telekom AG OAuth 2.0 andinternet Standard Protocols Torsten Lodderstedt Deutsche Telekom AG Whatshallweaimfor? make OAuth the authorization framework of choice for any internet standard protocol, such as WebDAV,

More information

Setting up an Amazon Web Services Account

Setting up an Amazon Web Services Account SettingupanAmazonWebServicesAccount DianaMacleanforCS448G2011 Firstofall,whatdoweneed? Forthisassignment,we llberunningmapreduceworkflowsonamazon selastic MapReduceframework.You llneedtodoacoupleofthingstogetsetup:

More information

How to complete the FCE Online Practice Test Free Sample: Use of English

How to complete the FCE Online Practice Test Free Sample: Use of English First Certificate in English Online Practice Test Free Sample How to complete the FCE Online Practice Test Free Sample: Use of English Welcome to the First Certificate in English Online Practice Test Free

More information

Period of Trigonometric Functions

Period of Trigonometric Functions Period of Trigonometric Functions In previous lessons we have learned how to translate any primary trigonometric function horizontally or vertically, and how to Stretch Vertically (change Amplitude). In

More information

Graduate School of Informatics

Graduate School of Informatics Graduate School of Informatics Admissions Policy '( ) ' ' - Master's Degree Program Major Enrollment Capacity 40 40 Doctor's Degree Program Major Enrollment Capacity 8 1 M. Entrance examination for international

More information

NGDATA positions Lily as a 'big data' platform for consumer intelligence

NGDATA positions Lily as a 'big data' platform for consumer intelligence NGDATA positions Lily as a 'big data' platform for consumer intelligence Analyst: Matt Aslett 15 Oct, 2012 NGDATA recently announced the launch of Lily a platform for storing, processing and analyzing

More information

Smart Social Spaces Opportunities and challenges of the Social Web of Things

Smart Social Spaces Opportunities and challenges of the Social Web of Things GRUPPO TELECOM ITALIA W3C workshop on the Web of Things 25/26 June 2014 Berlin, Germany Smart Social Spaces Opportunities and challenges of the Social Web of Things Laurent-Walter Goix, Fabio Luciano Mondin,

More information

Alternative Biometric as Method of Information Security of Healthcare Systems

Alternative Biometric as Method of Information Security of Healthcare Systems Alternative Biometric as Method of Information Security of Healthcare Systems Ekaterina Andreeva Saint-Petersburg State University of Aerospace Instrumentation Saint-Petersburg, Russia [email protected]

More information