SeqArray: an R/Bioconductor Package for Big Data Management of Genome-Wide Sequencing Variants
|
|
|
- Allen Fox
- 10 years ago
- Views:
Transcription
1 SeqArray: an R/Bioconductor Package for Big Data Management of Genome-Wide Sequencing Variants Xiuwen Zheng Department of Biostatistics University of Washington Seattle
2 Introduction Thousands of gigabyte genetic data sets provide significant challenges in data management, even on well-equipped hardware 2 The latest 1000 Genomes Project (1KG): ~39 million variants (differences from the reference genome) of 1092 individuals Variant Call Format (VCF) files: genotypes + annotation, totaling ~184G in a compressed manner
3 Introduction R users, existing R/Bioconductor packages 3 VariantAnnotation allows for the exploration and annotation of genetic variants stored in VCF files not computationally efficient (parsing a text VCF file) GenABEL genome-wide SNP association analysis no support of multi-allelic variants
4 Methods CoreArray, a C/C++ library designed for large-scale data management of genome-wide variants 4 a universal data format to store multiple array-oriented data in a single file Two R packages were developed to address or reduce the associated computational burden gdsfmt a general R interface to CoreArray SeqArray specifically designed for data management of genome-wide sequencing variants
5 Methods Advantages 1. Direct access of data without parsing VCF text files 2. Stored in a binary and array-oriented manner 2 bits are employed as a primitive type to store alleles (e.g., A, G, C, T) efficient access of variants using the R language 3. Genotypic data stored in a compressed manner rare variants -> highly compressed without sacrificing access efficiency e.g., 1KG, 26G genotypes -> 1.5G by the zlib algorithm (5.8%!) 4. Run in parallel! 5
6 Methods Key Functions Table 1: The key functions in the SeqArray package. Function seqvcf2gds Description 6 Reformats VCF files seqsummary Gets the summary of a sequencing file (# of samples, # of variants, INFO/FORMAT variables, etc) seqsetfilter seqgetdata seqapply seqparallel Sets a filter to sample or variant (define a subset of data) Gets data from a sequencing file (from a subset of data) Applies a user-defined function over array margins Applies functions in parallel
7 Dataset: Benchmark the 1000 Genomes Project, chromosome 1 3,007,196 variants, 1092 individuals the original VCF file: 10.7G (compressed!) genotypes + annotations reformat to a single SeqArray file: 10.6G 7 Calculate the frequencies of reference alleles 1. R code (sequential version) 2. R code (parallel version) 3. Seamless R and C++ integration via the Rcpp package (sequential version)
8 Benchmark Test 1 (sequentially) 8 # load the R package library(seqarray) # open the file genofile <- seqopen("1kg.chr1.gds") the typical x looks like: sample allele [,1] [,2] [,3] [,4] [,5] [1,] [2,] # apply the user-defined function variant by variant system.time(afreq <- seqapply(genofile, "genotype", FUN = function(x) { mean(x==0, na.rm=true) }, as.is="double", margin="by.variant") ) 0 reference allele 1 the first alternative allele the user-defined function ~6.8 minutes on a Linux system with two quad-core Intel processors (2.27GHz) and 32 GB RAM
9 Benchmark Test 2 (in parallel) 9 # load the R package library(parallel) # create a computing cluster with 4 cores cl <- makecluster(4) the user-defined kernel function distributed to 4 different computing nodes # run in parallel system.time(afreq <- seqparallel(cl, genofile, FUN = function(gdsfile) { seqapply(gdsfile, "genotype", as.is="double", FUN = function(x) mean(x==0, na.rm=true)) }, split = "by.variant") ) ~2.1 minutes (vs 6.8m in Test 1) divide genotypes into 4 non-overlapping parts
10 Benchmark Test 3 (C++ Integration) library(rcpp) cppfunction('double RefAlleleFreq(IntegerMatrix x) { int nrow = x.nrow(), ncol = x.ncol(); int cnt=0, zero_cnt=0, g; }') for (int i = 0; i < nrow; i++) { for (int j = 0; j < ncol; j++) { if ((g = x(i, j))!= NA_INTEGER) { cnt ++; if (g == 0) zero_cnt ++; }}} return double(zero_cnt) / cnt; system.time( afreq <- seqapply(genofile, "genotype", RefAlleleFreq, as.is="double", margin="by.variant") ) ~0.7 minutes (significantly faster!!! vs 6.8m in Test 1) 10 dynamically define an inline C/C++ function in R
11 Conclusion SeqArray will be of great interest to R users involved in data analyses of large-scale sequencing variants 11 particularly those with limited experience of high-performance computing SeqVarTools (Bioconductor), coming soon variant analysis, such like allele frequency, PCA, HWE, Mendelian errors, etc functions to display genotypes / annotations in a readable format
12 Acknowledgements Department of Biostatistics at University of Washington Seattle 12 Stephanie M. Gogarten Cathy Laurie Bruce S. Weir
SeqArray: an R/Bioconductor Package for Big Data Management of Genome-Wide Sequence Variants
SeqArray: an R/Bioconductor Package for Big Data Management of Genome-Wide Sequence Variants 1 Dr. Xiuwen Zheng Department of Biostatistics University of Washington Seattle Introduction Thousands of gigabyte
SeqArray: an R/Bioconductor Package for Big Data Management of Genome-Wide Sequencing Variants
SeqArray: an R/Bioconductor Package for Big Data Management of Genome-Wide Sequencing Variants Xiuwen Zheng Department of Biostatistics University of Washington Seattle Jan 14, 2015 Contents 1 Overview
SeqArray: an R/Bioconductor Package for Big Data Management of Genome-Wide Sequencing Variants
SeqArray: an R/Bioconductor Package for Big Data Management of Genome-Wide Sequencing Variants Xiuwen Zheng Department of Biostatistics University of Washington Seattle Dec 28, 2014 Contents 1 Overview
A High-performance Computing Toolset for Big Data Analysis of Genome-Wide Variants
A High-performance Computing Toolset for Big Data Analysis of Genome-Wide Variants Xiuwen Zheng Jan 02, 2014 Contents 1 Overview 1 2 Background 2 2.1 SNP Data in Genome-wide Association Studies................
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM Executive Summary The explosion of internet data, driven in large part by the growth of more and more powerful mobile devices, has created
Scalable Cloud Computing Solutions for Next Generation Sequencing Data
Scalable Cloud Computing Solutions for Next Generation Sequencing Data Matti Niemenmaa 1, Aleksi Kallio 2, André Schumacher 1, Petri Klemelä 2, Eija Korpelainen 2, and Keijo Heljanko 1 1 Department of
Dragon Medical Enterprise Network Edition Technical Note: Requirements for DMENE Networks with virtual servers
Dragon Medical Enterprise Network Edition Technical Note: Requirements for DMENE Networks with virtual servers This section includes system requirements for DMENE Network configurations that utilize virtual
Delivering the power of the world s most successful genomics platform
Delivering the power of the world s most successful genomics platform NextCODE Health is bringing the full power of the world s largest and most successful genomics platform to everyday clinical care NextCODE
UKB_WCSGAX: UK Biobank 500K Samples Genotyping Data Generation by the Affymetrix Research Services Laboratory. April, 2015
UKB_WCSGAX: UK Biobank 500K Samples Genotyping Data Generation by the Affymetrix Research Services Laboratory April, 2015 1 Contents Overview... 3 Rare Variants... 3 Observation... 3 Approach... 3 ApoE
Fast Analytics on Big Data with H20
Fast Analytics on Big Data with H20 0xdata.com, h2o.ai Tomas Nykodym, Petr Maj Team About H2O and 0xdata H2O is a platform for distributed in memory predictive analytics and machine learning Pure Java,
Hadoop-BAM and SeqPig
Hadoop-BAM and SeqPig Keijo Heljanko 1, André Schumacher 1,2, Ridvan Döngelci 1, Luca Pireddu 3, Matti Niemenmaa 1, Aleksi Kallio 4, Eija Korpelainen 4, and Gianluigi Zanetti 3 1 Department of Computer
VariantSpark: Applying Spark-based machine learning methods to genomic information
VariantSpark: Applying Spark-based machine learning methods to genomic information Aidan R. O BRIEN a a,1 and Denis C. BAUER a CSIRO, Health and Biosecurity Flagship Abstract. Genomic information is increasingly
RevoScaleR Speed and Scalability
EXECUTIVE WHITE PAPER RevoScaleR Speed and Scalability By Lee Edlefsen Ph.D., Chief Scientist, Revolution Analytics Abstract RevoScaleR, the Big Data predictive analytics library included with Revolution
SeqPig: simple and scalable scripting for large sequencing data sets in Hadoop
SeqPig: simple and scalable scripting for large sequencing data sets in Hadoop André Schumacher, Luca Pireddu, Matti Niemenmaa, Aleksi Kallio, Eija Korpelainen, Gianluigi Zanetti and Keijo Heljanko Abstract
Very Large Enterprise Network Deployment, 25,000+ Users
Very Large Enterprise Network Deployment, 25,000+ Users Websense software can be deployed in different configurations, depending on the size and characteristics of the network, and the organization s filtering
Analysis Tools and Libraries for BigData
+ Analysis Tools and Libraries for BigData Lecture 02 Abhijit Bendale + Office Hours 2 n Terry Boult (Waiting to Confirm) n Abhijit Bendale (Tue 2:45 to 4:45 pm). Best if you email me in advance, but I
Benchmarking Hadoop & HBase on Violin
Technical White Paper Report Technical Report Benchmarking Hadoop & HBase on Violin Harnessing Big Data Analytics at the Speed of Memory Version 1.0 Abstract The purpose of benchmarking is to show advantages
Hardware Configuration Guide
Hardware Configuration Guide Contents Contents... 1 Annotation... 1 Factors to consider... 2 Machine Count... 2 Data Size... 2 Data Size Total... 2 Daily Backup Data Size... 2 Unique Data Percentage...
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
Global Alliance. Ewan Birney Associate Director EMBL-EBI
Global Alliance Ewan Birney Associate Director EMBL-EBI Our world is changing Research to Medical Research English as language Lightweight legal Identical/similar systems Open data Publications Grant-funding
Step by Step Guide to Importing Genetic Data into JMP Genomics
Step by Step Guide to Importing Genetic Data into JMP Genomics Page 1 Introduction Data for genetic analyses can exist in a variety of formats. Before this data can be analyzed it must imported into one
Parallel Compression and Decompression of DNA Sequence Reads in FASTQ Format
, pp.91-100 http://dx.doi.org/10.14257/ijhit.2014.7.4.09 Parallel Compression and Decompression of DNA Sequence Reads in FASTQ Format Jingjing Zheng 1,* and Ting Wang 1, 2 1,* Parallel Software and Computational
The Performance Characteristics of MapReduce Applications on Scalable Clusters
The Performance Characteristics of MapReduce Applications on Scalable Clusters Kenneth Wottrich Denison University Granville, OH 43023 [email protected] ABSTRACT Many cluster owners and operators have
Hands-On Data Science with R Dealing with Big Data. [email protected]. 27th November 2014 DRAFT
Hands-On Data Science with R Dealing with Big Data [email protected] 27th November 2014 Visit http://handsondatascience.com/ for more Chapters. In this module we explore how to load larger datasets
Tutorial on gplink. http://pngu.mgh.harvard.edu/~purcell/plink/gplink.shtml. PLINK tutorial, December 2006; Shaun Purcell, [email protected].
Tutorial on gplink http://pngu.mgh.harvard.edu/~purcell/plink/gplink.shtml Basic gplink analyses Data management Summary statistics Association analysis Population stratification IBD-based analysis gplink
Removing Sequential Bottlenecks in Analysis of Next-Generation Sequencing Data
Removing Sequential Bottlenecks in Analysis of Next-Generation Sequencing Data Yi Wang, Gagan Agrawal, Gulcin Ozer and Kun Huang The Ohio State University HiCOMB 2014 May 19 th, Phoenix, Arizona 1 Outline
SAP HANA Enabling Genome Analysis
SAP HANA Enabling Genome Analysis Joanna L. Kelley, PhD Postdoctoral Scholar, Stanford University Enakshi Singh, MSc HANA Product Management, SAP Labs LLC Outline Use cases Genomics review Challenges in
Cisco Data Preparation
Data Sheet Cisco Data Preparation Unleash your business analysts to develop the insights that drive better business outcomes, sooner, from all your data. As self-service business intelligence (BI) and
Building Bioinformatics Capacity in Africa. Nicky Mulder CBIO Group, UCT
Building Bioinformatics Capacity in Africa Nicky Mulder CBIO Group, UCT Outline What is bioinformatics? Why do we need IT infrastructure? What e-infrastructure does it require? How we are developing this
MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research
MapReduce and Distributed Data Analysis Google Research 1 Dealing With Massive Data 2 2 Dealing With Massive Data Polynomial Memory Sublinear RAM Sketches External Memory Property Testing 3 3 Dealing With
1 Bull, 2011 Bull Extreme Computing
1 Bull, 2011 Bull Extreme Computing Table of Contents HPC Overview. Cluster Overview. FLOPS. 2 Bull, 2011 Bull Extreme Computing HPC Overview Ares, Gerardo, HPC Team HPC concepts HPC: High Performance
IT Firm Virtualizes Databases: Trims Servers 85 Percent, Ups Performance 50 Percent
Microsoft Virtualization: Data Center to Desktop Customer Solution Case Study IT Firm Virtualizes Databases: Trims Servers 85 Percent, Ups Performance 50 Percent Overview Country or Region: United States
Cluster Computing at HRI
Cluster Computing at HRI J.S.Bagla Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019. E-mail: [email protected] 1 Introduction and some local history High performance computing
A Performance Analysis of Distributed Indexing using Terrier
A Performance Analysis of Distributed Indexing using Terrier Amaury Couste Jakub Kozłowski William Martin Indexing Indexing Used by search
CSE-E5430 Scalable Cloud Computing. Lecture 4
Lecture 4 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 5.10-2015 1/23 Hadoop - Linux of Big Data Hadoop = Open Source Distributed Operating System
Very Large Enterprise Network, Deployment, 25000+ Users
Very Large Enterprise Network, Deployment, 25000+ Users Websense software can be deployed in different configurations, depending on the size and characteristics of the network, and the organization s filtering
CHAPTER FIVE RESULT ANALYSIS
CHAPTER FIVE RESULT ANALYSIS 5.1 Chapter Introduction 5.2 Discussion of Results 5.3 Performance Comparisons 5.4 Chapter Summary 61 5.1 Chapter Introduction This chapter outlines the results obtained from
Scaling Objectivity Database Performance with Panasas Scale-Out NAS Storage
White Paper Scaling Objectivity Database Performance with Panasas Scale-Out NAS Storage A Benchmark Report August 211 Background Objectivity/DB uses a powerful distributed processing architecture to manage
Microsoft SQL Server 2005 on Windows Server 2003
EMC Backup and Recovery for SAP Microsoft SQL Server 2005 on Windows Server 2003 Enabled by EMC CLARiiON CX3, EMC Disk Library, EMC Replication Manager, EMC NetWorker, and Symantec Veritas NetBackup Reference
Towards Integrating the Detection of Genetic Variants into an In-Memory Database
Towards Integrating the Detection of Genetic Variants into an 2nd International Workshop on Big Data in Bioinformatics and Healthcare Oct 27, 2014 Motivation Genome Data Analysis Process DNA Sample Base
Main Memory Data Warehouses
Main Memory Data Warehouses Robert Wrembel Poznan University of Technology Institute of Computing Science [email protected] www.cs.put.poznan.pl/rwrembel Lecture outline Teradata Data Warehouse
Hadoop s Entry into the Traditional Analytical DBMS Market. Daniel Abadi Yale University August 3 rd, 2010
Hadoop s Entry into the Traditional Analytical DBMS Market Daniel Abadi Yale University August 3 rd, 2010 Data, Data, Everywhere Data explosion Web 2.0 more user data More devices that sense data More
Oracle Primavera P6 Enterprise Project Portfolio Management Performance and Sizing Guide. An Oracle White Paper October 2010
Oracle Primavera P6 Enterprise Project Portfolio Management Performance and Sizing Guide An Oracle White Paper October 2010 Disclaimer The following is intended to outline our general product direction.
Sawmill Log Analyzer Best Practices!! Page 1 of 6. Sawmill Log Analyzer Best Practices
Sawmill Log Analyzer Best Practices!! Page 1 of 6 Sawmill Log Analyzer Best Practices! Sawmill Log Analyzer Best Practices!! Page 2 of 6 This document describes best practices for the Sawmill universal
Your Best Next Business Solution Big Data In R 24/3/2010
Your Best Next Business Solution Big Data In R 24/3/2010 Big Data In R R Works on RAM Causing Scalability issues Maximum length of an object is 2^31-1 Some packages developed to help overcome this problem
Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging
Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging In some markets and scenarios where competitive advantage is all about speed, speed is measured in micro- and even nano-seconds.
Performance Guideline for syslog-ng Premium Edition 5 LTS
Performance Guideline for syslog-ng Premium Edition 5 LTS May 08, 2015 Abstract Performance analysis of syslog-ng Premium Edition Copyright 1996-2015 BalaBit S.a.r.l. Table of Contents 1. Preface... 3
Fusion iomemory iodrive PCIe Application Accelerator Performance Testing
WHITE PAPER Fusion iomemory iodrive PCIe Application Accelerator Performance Testing SPAWAR Systems Center Atlantic Cary Humphries, Steven Tully and Karl Burkheimer 2/1/2011 Product testing of the Fusion
Lytec 2014 Hardware and Software Requirements. Lytec Single-User Hardware and Software Requirements
Workstation Hardware - Required This chapter identifies the hardware and software requirements for this release. Lytec Single-User Hardware and Software Requirements Hardware Minimum Required Intel Pentium
IP Video Rendering Basics
CohuHD offers a broad line of High Definition network based cameras, positioning systems and VMS solutions designed for the performance requirements associated with critical infrastructure applications.
Integrated Grid Solutions. and Greenplum
EMC Perspective Integrated Grid Solutions from SAS, EMC Isilon and Greenplum Introduction Intensifying competitive pressure and vast growth in the capabilities of analytic computing platforms are driving
Processing NGS Data with Hadoop-BAM and SeqPig
Processing NGS Data with Hadoop-BAM and SeqPig Keijo Heljanko 1, André Schumacher 1,2, Ridvan Döngelci 1, Luca Pireddu 3, Matti Niemenmaa 1, Aleksi Kallio 4, Eija Korpelainen 4, and Gianluigi Zanetti 3
SeattleSNPs Interactive Tutorial: Web Tools for Site Selection, Linkage Disequilibrium and Haplotype Analysis
SeattleSNPs Interactive Tutorial: Web Tools for Site Selection, Linkage Disequilibrium and Haplotype Analysis Goal: This tutorial introduces several websites and tools useful for determining linkage disequilibrium
OpenCB a next generation big data analytics and visualisation platform for the Omics revolution
OpenCB a next generation big data analytics and visualisation platform for the Omics revolution Development at the University of Cambridge - Closing the Omics / Moore s law gap with Dell & Intel Ignacio
Big Data and Parallel Work with R
Big Data and Parallel Work with R What We'll Cover Data Limits in R Optional Data packages Optional Function packages Going parallel Deciding what to do Data Limits in R Big Data? What is big data? More
Testing Database Performance with HelperCore on Multi-Core Processors
Project Report on Testing Database Performance with HelperCore on Multi-Core Processors Submitted by Mayuresh P. Kunjir M.E. (CSA) Mahesh R. Bale M.E. (CSA) Under Guidance of Dr. T. Matthew Jacob Problem
SNPbrowser Software v3.5
Product Bulletin SNP Genotyping SNPbrowser Software v3.5 A Free Software Tool for the Knowledge-Driven Selection of SNP Genotyping Assays Easily visualize SNPs integrated with a physical map, linkage disequilibrium
Cloud-Based Big Data Analytics in Bioinformatics
Cloud-Based Big Data Analytics in Bioinformatics Presented By Cephas Mawere Harare Institute of Technology, Zimbabwe 1 Introduction 2 Big Data Analytics Big Data are a collection of data sets so large
From GWS to MapReduce: Google s Cloud Technology in the Early Days
Large-Scale Distributed Systems From GWS to MapReduce: Google s Cloud Technology in the Early Days Part II: MapReduce in a Datacenter COMP6511A Spring 2014 HKUST Lin Gu [email protected] MapReduce/Hadoop
Packet-based Network Traffic Monitoring and Analysis with GPUs
Packet-based Network Traffic Monitoring and Analysis with GPUs Wenji Wu, Phil DeMar [email protected], [email protected] GPU Technology Conference 2014 March 24-27, 2014 SAN JOSE, CALIFORNIA Background Main
Scalable Data Analysis in R. Lee E. Edlefsen Chief Scientist UserR! 2011
Scalable Data Analysis in R Lee E. Edlefsen Chief Scientist UserR! 2011 1 Introduction Our ability to collect and store data has rapidly been outpacing our ability to analyze it We need scalable data analysis
School of Nursing. Presented by Yvette Conley, PhD
Presented by Yvette Conley, PhD What we will cover during this webcast: Briefly discuss the approaches introduced in the paper: Genome Sequencing Genome Wide Association Studies Epigenomics Gene Expression
GraySort and MinuteSort at Yahoo on Hadoop 0.23
GraySort and at Yahoo on Hadoop.23 Thomas Graves Yahoo! May, 213 The Apache Hadoop[1] software library is an open source framework that allows for the distributed processing of large data sets across clusters
Biomedical Big Data and Precision Medicine
Biomedical Big Data and Precision Medicine Jie Yang Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago October 8, 2015 1 Explosion of Biomedical Data 2 Types
SWARM: A Parallel Programming Framework for Multicore Processors. David A. Bader, Varun N. Kanade and Kamesh Madduri
SWARM: A Parallel Programming Framework for Multicore Processors David A. Bader, Varun N. Kanade and Kamesh Madduri Our Contributions SWARM: SoftWare and Algorithms for Running on Multicore, a portable
Leading Genomics. Diagnostic. Discove. Collab. harma. Shanghai Cambridge, MA Reykjavik
Leading Genomics Diagnostic harma Discove Collab Shanghai Cambridge, MA Reykjavik Global leadership for using the genome to create better medicine WuXi NextCODE provides a uniquely proven and integrated
Project Management Professional (PMP) Certification: PMBOK Guide Fifth Edition
Project Management Professional (PMP) Certification: PMBOK Guide Fifth Edition Course Specifications Course Number: 095001 Course Length: 5 days Course Description Overview: If you are taking this course,
Distributed Image Processing using Hadoop MapReduce framework. Binoy A Fernandez (200950006) Sameer Kumar (200950031)
using Hadoop MapReduce framework Binoy A Fernandez (200950006) Sameer Kumar (200950031) Objective To demonstrate how the hadoop mapreduce framework can be extended to work with image data for distributed
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Family-Based Platforms Executive Summary Complex simulations of structural and systems performance, such as car crash simulations,
PERFORMANCE ENHANCEMENTS IN TreeAge Pro 2014 R1.0
PERFORMANCE ENHANCEMENTS IN TreeAge Pro 2014 R1.0 15 th January 2014 Al Chrosny Director, Software Engineering TreeAge Software, Inc. [email protected] Andrew Munzer Director, Training and Customer
A stream computing approach towards scalable NLP
A stream computing approach towards scalable NLP Xabier Artola, Zuhaitz Beloki, Aitor Soroa IXA group. University of the Basque Country. LREC, Reykjavík 2014 Table of contents 1
Reference Architecture. EMC Global Solutions. 42 South Street Hopkinton MA 01748-9103 1.508.435.1000 www.emc.com
EMC Backup and Recovery for SAP with IBM DB2 on IBM AIX Enabled by EMC Symmetrix DMX-4, EMC CLARiiON CX3, EMC Replication Manager, IBM Tivoli Storage Manager, and EMC NetWorker Reference Architecture EMC
Multicore Parallel Computing with OpenMP
Multicore Parallel Computing with OpenMP Tan Chee Chiang (SVU/Academic Computing, Computer Centre) 1. OpenMP Programming The death of OpenMP was anticipated when cluster systems rapidly replaced large
Comparative performance test Red Hat Enterprise Linux 5.1 and Red Hat Enterprise Linux 3 AS on Intel-based servers
Principled Technologies Comparative performance test Red Hat Enterprise Linux 5.1 and Red Hat Enterprise Linux 3 AS on Intel-based servers Principled Technologies, Inc. Agenda Overview System configurations
Acceleration for Personalized Medicine Big Data Applications
Acceleration for Personalized Medicine Big Data Applications Zaid Al-Ars Computer Engineering (CE) Lab Delft Data Science Delft University of Technology 1" Introduction Definition & relevance Personalized
Icepak High-Performance Computing at Rockwell Automation: Benefits and Benchmarks
Icepak High-Performance Computing at Rockwell Automation: Benefits and Benchmarks Garron K. Morris Senior Project Thermal Engineer [email protected] Standard Drives Division Bruce W. Weiss Principal
Package hoarder. June 30, 2015
Type Package Title Information Retrieval for Genetic Datasets Version 0.1 Date 2015-06-29 Author [aut, cre], Anu Sironen [aut] Package hoarder June 30, 2015 Maintainer Depends
Efficient Parallel Execution of Sequence Similarity Analysis Via Dynamic Load Balancing
Efficient Parallel Execution of Sequence Similarity Analysis Via Dynamic Load Balancing James D. Jackson Philip J. Hatcher Department of Computer Science Kingsbury Hall University of New Hampshire Durham,
New Design and Layout Tips For Processing Multiple Tasks
Novel, Highly-Parallel Software for the Online Storage System of the ATLAS Experiment at CERN: Design and Performances Tommaso Colombo a,b Wainer Vandelli b a Università degli Studi di Pavia b CERN IEEE
Large-scale Research Data Management and Analysis Using Globus Services. Ravi Madduri Argonne National Lab University of Chicago @madduri
Large-scale Research Data Management and Analysis Using Globus Services Ravi Madduri Argonne National Lab University of Chicago @madduri Outline Who we are Challenges in Big Data Management and Analysis
Introduction to Parallel Programming and MapReduce
Introduction to Parallel Programming and MapReduce Audience and Pre-Requisites This tutorial covers the basics of parallel programming and the MapReduce programming model. The pre-requisites are significant
Clustering Big Data. Anil K. Jain. (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012
Clustering Big Data Anil K. Jain (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012 Outline Big Data How to extract information? Data clustering
Recommended hardware system configurations for ANSYS users
Recommended hardware system configurations for ANSYS users The purpose of this document is to recommend system configurations that will deliver high performance for ANSYS users across the entire range
INTEL PARALLEL STUDIO XE EVALUATION GUIDE
Introduction This guide will illustrate how you use Intel Parallel Studio XE to find the hotspots (areas that are taking a lot of time) in your application and then recompiling those parts to improve overall
Intro to GPU computing. Spring 2015 Mark Silberstein, 048661, Technion 1
Intro to GPU computing Spring 2015 Mark Silberstein, 048661, Technion 1 Serial vs. parallel program One instruction at a time Multiple instructions in parallel Spring 2015 Mark Silberstein, 048661, Technion
SGI. High Throughput Computing (HTC) Wrapper Program for Bioinformatics on SGI ICE and SGI UV Systems. January, 2012. Abstract. Haruna Cofer*, PhD
White Paper SGI High Throughput Computing (HTC) Wrapper Program for Bioinformatics on SGI ICE and SGI UV Systems Haruna Cofer*, PhD January, 2012 Abstract The SGI High Throughput Computing (HTC) Wrapper
The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices
WS on Models, Algorithms and Methodologies for Hierarchical Parallelism in new HPC Systems The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices
Vocera Voice 4.3 and 4.4 Server Sizing Matrix
Vocera Voice 4.3 and 4.4 Server Sizing Matrix Vocera Server Recommended Configuration Guidelines Maximum Simultaneous Users 450 5,000 Sites Single Site or Multiple Sites Requires Multiple Sites Entities
ITG Software Engineering
Introduction to Cloudera Course ID: Page 1 Last Updated 12/15/2014 Introduction to Cloudera Course : This 5 day course introduces the student to the Hadoop architecture, file system, and the Hadoop Ecosystem.
High-Performance Processing of Large Data Sets via Memory Mapping A Case Study in R and C++
High-Performance Processing of Large Data Sets via Memory Mapping A Case Study in R and C++ Daniel Adler, Jens Oelschlägel, Oleg Nenadic, Walter Zucchini Georg-August University Göttingen, Germany - Research
On the Cost of Mining Very Large Open Source Repositories
On the Cost of Mining Very Large Open Source Repositories Sean Banerjee Carnegie Mellon University Bojan Cukic University of North Carolina at Charlotte BIGDSE, Florence 2015 Introduction Issue tracking
