Vectors. Physics 115: Spring Introduction

Size: px
Start display at page:

Download "Vectors. Physics 115: Spring Introduction"

Transcription

1 Vectors Physics 115: Spring 2005 Introduction The purpose of this laboratory is to examine the hypothesis that forces are vectors and obey the law of vector addition and to observe that the vector sum of the forces acting upon an object at rest is zero. Theory In this exercise, forces are used to illustrate vectors because they are easy to control and measure (in particular, the gravitational forces on some calibrated weights). The object on which the forces act is, in this case, a light metal ring. Horizontal forces are applied to the ring by means of weights and pulleys. Using the fact that a vector can always be broken into its x and y components in a given coordinate system, (i.e. A = A x i+ A y j) we can add three vectors acting on the object at rest by finding the sum of individual x and y components separately (see Figure 1). It is also possible to add vectors graphically by placing them tail to head one after the other. The resultant vector is now just the vector from the tail of the first vector to the head of the last vector. Procedure In the three situations on the following pages, you will be adjusting the three different hanging weights and/or directions in which they point (refer to Figure 2) until the ring is stationary and centered around the nail holding it. In order to minimize the unknown frictional forces in the pulleys, take care that your ring is well centered in the table and that the strings pass straight over the pulley grooves. This will also assure that the measurement of the angles on the calibrated table is as accurate as possible. Determine the magnitude of the force and the angle at which it must act in order for the ring to be centered on the table for each of the following experiments. Record your data in the tables given. For each experiment, include a ``Top View'' diagram of the force configuration in your writeup as shown in Figure 1. Be sure to scale your drawings to indicate the magnitudes as well as the angles of your vectors. (Remember that the force F is mg, and not just equal to the mass.) Figure 1

2 Experiment 1: Three unequal forces, one along the x-axis and one along the y-axis After placing unequal forces along the x and y-axis, experimentally determine the force vector that will balance the two unequal forces. Fill out the table below: Experiment 1 Angle θ 1 Mass m 1 Angle θ 2 Mass m 2 Angle θ 3 Mass m 3 Force F 3 Note that the angle θ is measured in the conventional manner counterclockwise from the positive x-axis (i.e., θ =0 for those forces along the positive x-axis and θ= 90 for those forces along the positive y-axis.) Find the vector sum of the forces above by the following two methods: I. Direct graphical analysis (i.e., a scale drawing as shown in Figure 1). Be sure to label all vectors and explain which vector components add together to make the overall vector sum zero. Draw a second diagram which graphically shows, using the tail to head method, the addition of the vectors. If you put the tail of the first component at the origin, the head of the last component should terminate at the origin (or at least somewhere close to it-see the ensuing error discussion).

3 II. Calculating the x and y components of each force from the recorded magnitudes and angles using trigonometry (as described above). Do the x and y components add to zero? If not, be sure to state what your discrepancy is. III. Use propagation of error to obtain an estimate in the uncertainty of the x and y components of the third vector, the one not lying on the x or y axis.

4 Experiment 2: Three forces, one along the x-axis, and the other two of equal magnitude neither along the x-axis or the y-axis. Create the situation described above and fill out the table below. Experiment 2 Angle θ 1 Mass m 1 Angle θ 2 Mass m 2 Angle θ 3 Mass m 3 Force F 3 Find the vector sum of the forces above by the following two methods: II. Direct graphical analysis (i.e., a scale drawing as shown in Figure 1). Be sure to label all vectors and explain which vector components add together to make the overall vector sum zero. Draw a second diagram which graphically shows, using the tail to head method, that the vector s all add up to zero. III. Calculating the x and y components of each force from the recorded magnitudes and angles using trigonometry (as described above). Do the x and y components add to zero? If not, be sure to state what your discrepancy is.

5 Experiment 3: Three unequal forces in arbitrary directions, with none of the forces along either the x-axis or the y-axis. In this experiment, you will place two unequal forces in arbitrary directions, and then theoretically calculate the magnitude and direction of the third force which will cancel the first two forces. Experiment 2 Angle θ 1 Mass m 1 Angle θ 2 Mass m 2 Calculate the x and y components of these forces and show them in the table below. Show your work. Remember to be careful about your signs. F 1x F 1y F 2x F 2y Mathematically calculate the magnitude and direction of the third vector. Show your work. If you are stuck, drawing a diagram may help.

6 Once you have determined a theoretical value for the third vector, try it out! Does it work? Try adjusting only the force. Record the force change needed. If changing the force alone does not work, try adjusting both the angle and the force. What is the final experimental value for the third vector and how does it compare to the theoretical value? Scalar Dot Product Given the definition of the scalar (dot) product, A B= A B cosθ (1) where θ is the angle between vectors A and B, it is possible to find the dot product of any two of your vectors. Another method of finding the dot product will be used as well and involves using individual x and y components. This method uses the following formula: A B = (A x i + A y j) (B x i + B y j) = A x B x + A y B y (2) Now, for the three arbitrary forces in Experiment 3, calculate the scalar (dot) product of any two of the force vectors using: I. Magnitudes and angles. Show your work below. (See Equation 1 above). II. x and y components. Show your work below. (See Equation 2 above).

7 Do both methods result in the same answer? Prove it by showing mathematically that the two equations are identical. (A note of caution, θ in equation 1 always refers to the smallest angle between the two vectors.) Conclusion: Is the hypothesis stated in the introduction confirmed? Why or why not? One last question: In determining the theoretical vector in experiment 3, was this the only vector that would work? That is, while keeping F 1 and F 2 the same (same weight and same angles as they had in experiment 3), would another combination of a different weight and different angle for F 3 work? Why or why not?

Lab 2: Vector Analysis

Lab 2: Vector Analysis Lab 2: Vector Analysis Objectives: to practice using graphical and analytical methods to add vectors in two dimensions Equipment: Meter stick Ruler Protractor Force table Ring Pulleys with attachments

More information

The Force Table Introduction: Theory:

The Force Table Introduction: Theory: 1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

Experiment 4. Vector Addition: The Force Table

Experiment 4. Vector Addition: The Force Table ETSU Physics and Astronomy Technical Physics Lab Exp 4 Page 29 Experiment 4. Vector Addition: The Force Table As we have learned in lecture, to the extent that pulleys are massless and frictionless, they

More information

Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR

Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR Candidates should be able to : Examples of Scalar and Vector Quantities 1 QUANTITY VECTOR SCALAR Define scalar and vector quantities and give examples. Draw and use a vector triangle to determine the resultant

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

Units, Physical Quantities, and Vectors

Units, Physical Quantities, and Vectors Chapter 1 Units, Physical Quantities, and Vectors PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 1 To learn

More information

Section 10.4 Vectors

Section 10.4 Vectors Section 10.4 Vectors A vector is represented by using a ray, or arrow, that starts at an initial point and ends at a terminal point. Your textbook will always use a bold letter to indicate a vector (such

More information

Because the slope is, a slope of 5 would mean that for every 1cm increase in diameter, the circumference would increase by 5cm.

Because the slope is, a slope of 5 would mean that for every 1cm increase in diameter, the circumference would increase by 5cm. Measurement Lab You will be graphing circumference (cm) vs. diameter (cm) for several different circular objects, and finding the slope of the line of best fit using the CapStone program. Write out or

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

Conservation of Energy Physics Lab VI

Conservation of Energy Physics Lab VI Conservation of Energy Physics Lab VI Objective This lab experiment explores the principle of energy conservation. You will analyze the final speed of an air track glider pulled along an air track by a

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

6. Block and Tackle* Block and tackle

6. Block and Tackle* Block and tackle 6. Block and Tackle* A block and tackle is a combination of pulleys and ropes often used for lifting. Pulleys grouped together in a single frame make up what is called a pulley block. The tackle refers

More information

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu)

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu) 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

One advantage of this algebraic approach is that we can write down

One advantage of this algebraic approach is that we can write down . Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the x-axis points out

More information

Torque and Rotary Motion

Torque and Rotary Motion Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

More information

Experiment 9. The Pendulum

Experiment 9. The Pendulum Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

More information

A vector is a directed line segment used to represent a vector quantity.

A vector is a directed line segment used to represent a vector quantity. Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

More information

13.4 THE CROSS PRODUCT

13.4 THE CROSS PRODUCT 710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

More information

Physics Lab Report Guidelines

Physics Lab Report Guidelines Physics Lab Report Guidelines Summary The following is an outline of the requirements for a physics lab report. A. Experimental Description 1. Provide a statement of the physical theory or principle observed

More information

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7 Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

More information

Two-Body System: Two Hanging Masses

Two-Body System: Two Hanging Masses Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.

More information

5.1 The First Law: The Law of Inertia

5.1 The First Law: The Law of Inertia The First Law: The Law of Inertia Investigation 5.1 5.1 The First Law: The Law of Inertia How does changing an object s inertia affect its motion? Newton s first law states that objects tend to keep doing

More information

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work. PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

More information

Laboratory Report Scoring and Cover Sheet

Laboratory Report Scoring and Cover Sheet Laboratory Report Scoring and Cover Sheet Title of Lab _Newton s Laws Course and Lab Section Number: PHY 1103-100 Date _23 Sept 2014 Principle Investigator _Thomas Edison Co-Investigator _Nikola Tesla

More information

PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013

PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013 PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7 February 13, 2013 0.1 A 2.00-kg object undergoes an acceleration given by a = (6.00î + 4.00ĵ)m/s 2 a) Find the resultatnt force acting on the object

More information

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables. Vectors Objectives State the definition and give examples of vector and scalar variables. Analyze and describe position and movement in two dimensions using graphs and Cartesian coordinates. Organize and

More information

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 Dear Student: The AP physics course you have signed up for is designed to prepare you for a superior performance on the AP test. To complete material

More information

In order to describe motion you need to describe the following properties.

In order to describe motion you need to describe the following properties. Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

More information

2 Session Two - Complex Numbers and Vectors

2 Session Two - Complex Numbers and Vectors PH2011 Physics 2A Maths Revision - Session 2: Complex Numbers and Vectors 1 2 Session Two - Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar

More information

ex) What is the component form of the vector shown in the picture above?

ex) What is the component form of the vector shown in the picture above? Vectors A ector is a directed line segment, which has both a magnitude (length) and direction. A ector can be created using any two points in the plane, the direction of the ector is usually denoted by

More information

ENERGYand WORK (PART I and II) 9-MAC

ENERGYand WORK (PART I and II) 9-MAC ENERGYand WORK (PART I and II) 9-MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:

More information

The Force Table Vector Addition and Resolution

The Force Table Vector Addition and Resolution Name School Date The Force Table Vector Addition and Resolution Vectors? I don't have any vectors, I'm just a kid. From Flight of the Navigator Explore the Apparatus/Theory We ll use the Force Table Apparatus

More information

Study Guide for Mechanics Lab Final

Study Guide for Mechanics Lab Final Study Guide for Mechanics Lab Final This study guide is provided to help you prepare for the lab final. The lab final consists of multiple-choice questions, usually 2 for each unit, and 4 work-out problems

More information

Name Partners Date. Energy Diagrams I

Name Partners Date. Energy Diagrams I Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy

More information

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces

More information

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Geometric Optics Converging Lenses and Mirrors Physics Lab IV Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

Ideal Cable. Linear Spring - 1. Cables, Springs and Pulleys

Ideal Cable. Linear Spring - 1. Cables, Springs and Pulleys Cables, Springs and Pulleys ME 202 Ideal Cable Neglect weight (massless) Neglect bending stiffness Force parallel to cable Force only tensile (cable taut) Neglect stretching (inextensible) 1 2 Sketch a

More information

Experiment: Static and Kinetic Friction

Experiment: Static and Kinetic Friction PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static

More information

EXPERIMENT: MOMENT OF INERTIA

EXPERIMENT: MOMENT OF INERTIA OBJECTIVES EXPERIMENT: MOMENT OF INERTIA to familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body as mass plays in

More information

Levers and Pulleys. 5 th Grade Science Investigation. Unit

Levers and Pulleys. 5 th Grade Science Investigation. Unit Levers and Pulleys 5 th Grade Science Investigation Unit What Do We Already Know? A lever and pulley are mechanical advantages=makes work easier, and helps lift things you couldn t t normally lift Combined

More information

Questions: Does it always take the same amount of force to lift a load? Where should you press to lift a load with the least amount of force?

Questions: Does it always take the same amount of force to lift a load? Where should you press to lift a load with the least amount of force? Lifting A Load 1 NAME LIFTING A LOAD Questions: Does it always take the same amount of force to lift a load? Where should you press to lift a load with the least amount of force? Background Information:

More information

Proving the Law of Conservation of Energy

Proving the Law of Conservation of Energy Table of Contents List of Tables & Figures: Table 1: Data/6 Figure 1: Example Diagram/4 Figure 2: Setup Diagram/8 1. Abstract/2 2. Introduction & Discussion/3 3. Procedure/5 4. Results/6 5. Summary/6 Proving

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Vector Algebra II: Scalar and Vector Products

Vector Algebra II: Scalar and Vector Products Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define

More information

AP Physics Applying Forces

AP Physics Applying Forces AP Physics Applying Forces This section of your text will be very tedious, very tedious indeed. (The Physics Kahuna is just as sorry as he can be.) It s mostly just a bunch of complicated problems and

More information

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)} Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Pendulum Force and Centripetal Acceleration

Pendulum Force and Centripetal Acceleration Pendulum Force and Centripetal Acceleration 1 Objectives 1. To calibrate and use a force probe and motion detector. 2. To understand centripetal acceleration. 3. To solve force problems involving centripetal

More information

Conservation of Momentum and Energy

Conservation of Momentum and Energy Conservation of Momentum and Energy OBJECTIVES to investigate simple elastic and inelastic collisions in one dimension to study the conservation of momentum and energy phenomena EQUIPMENT horizontal dynamics

More information

Vector Spaces; the Space R n

Vector Spaces; the Space R n Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which

More information

Chapter 4. Moment - the tendency of a force to rotate an object

Chapter 4. Moment - the tendency of a force to rotate an object Chapter 4 Moment - the tendency of a force to rotate an object Finding the moment - 2D Scalar Formulation Magnitude of force Mo = F d Rotation is clockwise or counter clockwise Moment about 0 Perpendicular

More information

PHYSICS 151 Notes for Online Lecture #6

PHYSICS 151 Notes for Online Lecture #6 PHYSICS 151 Notes for Online Lecture #6 Vectors - A vector is basically an arrow. The length of the arrow represents the magnitude (value) and the arrow points in the direction. Many different quantities

More information

Experiment 5 ~ Friction

Experiment 5 ~ Friction Purpose: Experiment 5 ~ Friction In this lab, you will make some basic measurements of friction. First you will measure the coefficients of static friction between several combinations of surfaces using

More information

General Physics Lab: Atwood s Machine

General Physics Lab: Atwood s Machine General Physics Lab: Atwood s Machine Introduction One may study Newton s second law using a device known as Atwood s machine, shown below. It consists of a pulley and two hanging masses. The difference

More information

FURTHER VECTORS (MEI)

FURTHER VECTORS (MEI) Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

More information

E X P E R I M E N T 8

E X P E R I M E N T 8 E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:

More information

AP Physics - Vector Algrebra Tutorial

AP Physics - Vector Algrebra Tutorial AP Physics - Vector Algrebra Tutorial Thomas Jefferson High School for Science and Technology AP Physics Team Summer 2013 1 CONTENTS CONTENTS Contents 1 Scalars and Vectors 3 2 Rectangular and Polar Form

More information

F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.

F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below. PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

3. KINEMATICS IN TWO DIMENSIONS; VECTORS.

3. KINEMATICS IN TWO DIMENSIONS; VECTORS. 3. KINEMATICS IN TWO DIMENSIONS; VECTORS. Key words: Motion in Two Dimensions, Scalars, Vectors, Addition of Vectors by Graphical Methods, Tail to Tip Method, Parallelogram Method, Negative Vector, Vector

More information

Difference between a vector and a scalar quantity. N or 90 o. S or 270 o

Difference between a vector and a scalar quantity. N or 90 o. S or 270 o Vectors Vectors and Scalars Distinguish between vector and scalar quantities, and give examples of each. method. A vector is represented in print by a bold italicized symbol, for example, F. A vector has

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

Chapter 11 Equilibrium

Chapter 11 Equilibrium 11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

More information

EXPERIMENTAL ERROR AND DATA ANALYSIS

EXPERIMENTAL ERROR AND DATA ANALYSIS EXPERIMENTAL ERROR AND DATA ANALYSIS 1. INTRODUCTION: Laboratory experiments involve taking measurements of physical quantities. No measurement of any physical quantity is ever perfectly accurate, except

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

Vector has a magnitude and a direction. Scalar has a magnitude

Vector has a magnitude and a direction. Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude

More information

Vector Math Computer Graphics Scott D. Anderson

Vector Math Computer Graphics Scott D. Anderson Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about

More information

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

More information

Chapter 2 An Introduction to Forwards and Options

Chapter 2 An Introduction to Forwards and Options Chapter 2 An Introduction to Forwards and Options Question 2.1. The payoff diagram of the stock is just a graph of the stock price as a function of the stock price: In order to obtain the profit diagram

More information

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law. 260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information

Newton s Law of Motion

Newton s Law of Motion chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

Standing Waves on a String

Standing Waves on a String 1 of 6 Standing Waves on a String Summer 2004 Standing Waves on a String If a string is tied between two fixed supports, pulled tightly and sharply plucked at one end, a pulse will travel from one end

More information

Torque and Rotational Equilibrium

Torque and Rotational Equilibrium Torque and Rotational Equilibrium Name Section Torque is the rotational analog of force. If you want something to move (translation), you apply a force; if you want something to rotate, you apply a torque.

More information

Unit 8A: Systems in Action (Pg. 2 85) Chapter 2: Getting to Work (pg. 28 55)

Unit 8A: Systems in Action (Pg. 2 85) Chapter 2: Getting to Work (pg. 28 55) Unit 8A: Systems in Action (Pg. 2 85) Chapter 2: Getting to Work (pg. 28 55) Name: Date: 2.1: Physical Systems: Simple Machines (Pg. 30 35): Read Pages 30-35. Answer the following questions on pg. 35:

More information

When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes.

When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes. When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes. mass M, the force of attraction exerted by the Earth on an object, acts downwards.

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

More information

Elements of a graph. Click on the links below to jump directly to the relevant section

Elements of a graph. Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

More information

One- and Two-dimensional Motion

One- and Two-dimensional Motion PHYS-101 LAB-02 One- and Two-dimensional Motion 1. Objective The objectives of this experiment are: to measure the acceleration of gravity using one-dimensional motion to demonstrate the independence of

More information

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple

More information

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA What are phasors??? In normal practice, the phasor represents the rms maximum value of the positive half cycle of the sinusoid

More information

SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES

SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 4. On completion of this tutorial

More information

Exercise 1: How to Record and Present Your Data Graphically Using Excel Dr. Chris Paradise, edited by Steven J. Price

Exercise 1: How to Record and Present Your Data Graphically Using Excel Dr. Chris Paradise, edited by Steven J. Price Biology 1 Exercise 1: How to Record and Present Your Data Graphically Using Excel Dr. Chris Paradise, edited by Steven J. Price Introduction In this world of high technology and information overload scientists

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com

Copyright 2011 Casa Software Ltd. www.casaxps.com Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Gravitational Potential Energy

Gravitational Potential Energy Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

More information

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N) Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

More information