VARIATION OF CRASH SEVERITY AND INJURY RISK DEPENDING ON COLLISIONS WITH DIFFERENT VEHICLE TYPES AND OBJECTS
|
|
|
- Marilyn Dean
- 10 years ago
- Views:
Transcription
1 VARIATION OF CRASH SEVERITY AND INJURY RISK DEPENDING ON COLLISIONS WITH DIFFERENT VEHICLE TYPES AND OBJECTS Helena Stigson, Anders Ydenius, Anders Kullgren Karolinska Institutet, Sweden, Folksam Research, Sweden ABSTRACT Real-life crashes with cars fitted with on-board crash pulse recorders were used to study the influence of their collision partner, in both two- and single-vehicle crashes, on crash severity and injury risk. The crash severity was lower in single-vehicle crashes compared with two-vehicle crashes. Both average change of velocity and mean acceleration were lower and average pulse duration was longer in collisions with deformable objects compared with collisions with fixed objects. In frontal two-vehicle crashes the average change of velocity in crashes with passenger cars was 21.3 km/h, while it was 35.8 km/h in collisions with trucks. The difference corresponded to an increased average risk of MAIS2+ injury with almost 5 times. The corresponding values for mean acceleration were 6.3 g and 8.8 g respectively, which corresponded to a doubled risk. In rear-end crashes the average change of velocity in crashes with passenger cars was 9.8 km/h, while it was 16.3 km/h in collisions with trucks. The corresponding values for average mean acceleration were 3.7 g and 4.4 g respectively, meaning a doubled average risk of long-term whiplash injury symptoms. In frontal single-vehicle crashes the average mean acceleration in collisions with deformable objects was 4.5 g and in collisions with fixed objects 6.2 g. The increase corresponded to an almost three times higher average risk of an MAIS2+ injury. Keywords: Accelerations, Accident Analysis, Change of Velocity, Crash Pulse Recorder, Injury Risk IN 2001 THE EUROPEAN COMMISSION put up a goal regarding road casualty reduction within the EU member states. The number of road deaths shall be halved in To achieve this target lots of actions need to be taken. Head-on collisions, collisions with fixed roadside objects and side impacts at junctions account for most crashes with serious or fatal injuries (NHTSA 2005, SIKA 2005). However, the majority of long-term disabling injuries occur in rear impacts, often causing soft tissue neck injuries (Kullgren et al. 2002, Krafft 1998, Nygren 1984). Further knowledge of the interaction between roads and vehicles and how crash severity is influenced by the other vehicle or object is needed. Such knowledge and further understanding of the relation between crash severity and injury outcome can be improved by analyzing real-life impacts with recorded crash severity in terms of acceleration-time history. Crash severity The crash severity level a human is exposed to during a crash depends on several factors, such as relative velocity between the case vehicle and it s collision partner, the mass and structure of the case vehicle and it s collision partner, and the crash situation including impact angle, overlap etc. The collision partner could be a vehicle or roadside object. But the various crash severity parameters, such as change of velocity, mean and peak acceleration are differently influenced by these factors. The change of velocity is primarily influenced by car mass and only to a small degree influenced by the stiffness of the involved vehicles and objects, while vehicle acceleration depends on all the factors mentioned. Therefore the vehicle acceleration and change of velocity will be differently influenced by the collision partner depending on their mass and structure, such as stiffness. Such influences can be calculated on theoretical basis. But with help of real-life data with recorded crash pulses they could be verified under real-life conditions.
2 In most studies presenting correlation between crash severity and injury outcome, impact severity is described as change of velocity, ΔV, calculated from the vehicle exterior deformation and/or by for example using the law of conservation of momentum. One problem with such calculations is the lack of accuracy of the output. Studies of the magnitude of such errors often indicate standard deviations between 10% and 15%, but also a systematic underestimation of between 11% and 33% (Lenard et al. 1998, Nolan et al. 1998, Stucki and Fessahaie 1998, O Neill 1994). The magnitude of the errors also depends on crash type and collision partner (Lenard et al. 1998, Stucki and Fessahaie 1998). The use of on-board measurement devices, such as crash pulse recorders, may help to improve the accuracy in such reconstruction calculations (Kullgren 1998). Such devices also entail us the possibility to measure acceleration during the crash phase. Previous studies, based on real-life collisions with cars fitted with crash pulse recorders, have shown that mean acceleration during the crash phase of a car crash well predicts and to a large extent influences the risk of being injured in collisions (Kullgren 1998, Ydenius and Kullgren 1999, Krafft et al. 2002, Krafft et al. 2005). Correlation between injury risk in frontal impacts versus crash severity (change of velocity, mean and peak acceleration) recorded by crash recorders has been presented by Kullgren (1998), Ydenius and Kullgren (2001) and Ydenius and Kullgren (2006). Ydenius and Kullgren (2001) have also shown that a large duration of a crash pulse is not critical for the injury risk. The finding is important for the possibility of protecting car occupants in high speed crashes. With the use of deformable road side objects, such as deformable guard rails and lamp posts, acceleration levels may be kept below critical levels likely to cause serious or fatal injuries. In rear-end crashes, correlation between injury risk and both mean acceleration and change of velocity have been found (Krafft et al. 2002, Krafft et al 2005). The influence of collision partner, both regarding kerb weight and frontal structure of the striking car in a rear-end collision, has been studied in real-life collisions (Krafft 1998). A heavier car seems to increase the injury risk of long-term disability from an AIS 1 neck injury, but there is a large difference in injury risk between different car models with identical kerb weight. Other vehicle parameters than kerb weight have effect on the injury risk. Krafft (1998) showed that car models with longitudinally mounted engines cause higher injury risk than cars with transversally mounted engines. Further knowledge from real-life data regarding the influence of collision partner on crash severity and thereby also on injury risks in rear-end crashes is needed. Distribution of two-vehicle accidents car -car car - LTV car - bus car - Trucks Distribution of car occupant deaths in twovehicle accidents car -car car - LTV car - bus car - Trucks Fig. 1 - Distribution of two-vehicle crashes (Department of transport, 2005) Two-vehicle crashes The distribution of the total number of two-vehicle crashes differs from the distribution of fatalities. Collisions between cars and trucks are not so frequent, but they account for a large proportion of fatal injury crashes (Department of transport 2005, SIKA 2005, NHTSA 2004), see Fig. 1. The distribution of car occupant deaths in the US differs a lot from Europe. Two-vehicle crashes between cars and light truck vehicles (LTV) including MPVs, sports utility vehicles and light trucks, account for nearly the same number of car occupant deaths as in car-to-car collisions (O Neill, 2004). There are large differences within vehicle fleets between Europe and the US, both concerning size and mass. Of all vehicles registered in 2005 the proportion of large vehicles is greater in the US than in the Northern European countries (BIL Sweden 2006, R. L. Polk Marketing Systems 2006). The average kerb weight
3 of the new sold passenger vehicles in the US is 1750 kg compared to 1420 kg in Sweden. In twovehicle crashes the differences in size, mass and height of the vehicles will influence the crash severity (Hollowell et al. 2002, Hibino et al. 1996, Evans, 1991). Joksch et al (1998) has shown that in twovehicle crashes involving a passenger car the fatality rate is higher in crashes with LTVs than with passenger cars even if their masses were identical. Collisions with different vehicle types often result in underride/override due to geometric mismatching, and thus increases the risk for occupant compartment intrusion and thereby injury risk. Furthermore, Kullgren et al (2001) has shown the influence of mass and structure for different size categories on injury risk in the other vehicle, where small cars appear to be somewhat stiffer than large passenger cars. Further knowledge of how size and vehicle type influence the acceleration in real-life crashes is needed in order to better understand the different injury outcomes in real-life crashes. Single-vehicle crashes Collisions with fixed objects in the roadside area constitute a major problem since they account for between 18 and 42 percent of all fatalities in Europe (ETSC 1998, Department of Transport 2005, SIKA 2005). The same problem has been found in Victoria, Australia, and in the US, where this collision type accounts for more than one third (Delaney et al., 2003) and more than one fifths (IIHS, 2005) of all fatalities. Many studies from different countries have found that trees account for the vast majority of fixed objects leading to fatalities (Evans 1991, Delaney et al. 2003, IIHS 2005). The intention with using deformable objects instead of non-deformable ones is to lower vehicle acceleration in a crash. The resulting vehicle acceleration in a crash must always be kept below critical levels likely to cause an injury. Crash tests indicate reductions in vehicle acceleration for many types of such objects (Steffan et al. 1998, Kloeden et al. 1999, Ydenius and Kullgren 2001). In crash tests with three different types of guard rails and crash barriers Ydenius et al (2001 A) showed that the type of barrier has large influence on the mean acceleration. Furthermore, in a collision with narrow objects like poles and trees, the load will often be concentrated to only a small part of the car. Therefore only a minor part of the energy absorption structure will be involved (Durisek et al 2004). Durisek et al. (2005) showed different vehicle response in crash test with poles depending on impact location. The vehicle response to impact depends on characteristics of the involved part of the vehicle front. Further attention needs to be paid on the performance of deformable objects under real-life conditions, especially regarding their influence on vehicle acceleration and thereby injury risk. Aims The aims with this study were to present differences in average crash severity depending on collision partner, and to compare those differences to injury risks, both in frontal and rear-end twovehicle crashes and in single-vehicle crashes into fixed and deformable objects. MATERIAL AND METHODS Crash recorder data from the Swedish insurance company Folksam were used to determine average change of velocity and mean and peak accelerations of cars depending on their collision partner. The average crash severity was determined for front seat occupants in both frontal and rear-end twovehicle crashes, and for front seat occupants in single-vehicle crashes into various roadside objects. The two-vehicle crashes were divided according to the size of the collision partner, see Table 1, from very small cars to trucks. The single-vehicle crashes were divided according to type of object, see Table 2, with special reference to whether the object was deformable or not. In total 417 occupants in frontal crashes, whereof 244 in two- vehicle and 173 in single-vehicle crashes, and 189 occupants in rear-end crashes with recorded crash pulses were included. Impact severity was measured with a crash pulse recorder (CPR), which measured the acceleration time history in the impact phase. The study includes both frontal and rear impacts where the acceleration was measured in the principle direction of force within +/- 30 degrees. Crash pulses were filtered at approximately 60 Hz. Change of velocity and mean and peak accelerations were calculated from the crash pulses. Since 1992, CPRs have been installed in approximately 220,000 vehicles comprising 4 different car makes and 29 models in Sweden aimed at measuring frontal and rear
4 impacts. The car fleet has been monitored since 1992, and every frontal crash with a repair cost exceeding 5000 EUR and all rear-end crashes, irrespective of repair cost, has been reported. Regarding to the collision partners and objects a mix of vehicle sizes and types were included and categorized in different size classes based on a combination of wheelbase, total length and width, see Equation 1 (from Ydenius et al B). Passenger cars were split into four classes; Superminis, Small Family Cars, Large Family Cars and Executive Cars. The SUVs, MPVs and light trucks were summed into one group denoted LTVs. Large trucks and buses were also summed into a separate group, see Table 1. In the single-vehicle crashes the objects were divided in five groups, see Table 2. Table 1 and Table 2 also present average kerb weight of the cars fitted with crash recorders divided into groups with different collision partners. For each average value of crash severity, a 95% confidence interval was calculated. Size index = wheelbase + 0,4(total length)+1,5(width) Equation 1 Table 1. Average kerb weight for cars in frontal and rear-end crashes with other vehicles in various categories Collision partner Fontal crashes Average kerb weight (kg) n Rear-end crashes Average kerb weight (kg) Superminis Small Family Cars Large Family Cars Executive Cars LTVs Buses and Trucks Total n Table 2. Average kerb weight for cars in single-vehicle crashes and definitions of objects Collision partner Definition Average kerb weight (kg) n Deformable guard rail Semi-rigid guard rails and flexible guard rails Poles Deformable poles and rigid poles Deformable objects Deformable guard rail and poles Roadside area Ditch, embankment and slope Trees Other rigid objects Rigid guard rails, fences, stones, cliffs etc Fixed object, total Roadside area and Trees, Other rigid objects Total In order to relate the differences in average crash severity to injury risk, average change of velocity and mean acceleration were compared with injury risk curves. The comparisons were made for rearend and frontal crashes separately. In frontal impacts a study from Ydenius and Kullgren (2006) was used, see Fig. 2 and Fig. 3. In the paper from Ydenius and Kullgren risk curves for MAIS1+, MAIS2+ and MAIS3+ injuries for belted occupants versus various crash severity parameters are presented. In the study approximately four fifth of the cars were fitted with driver airbags. Both crashes with and
5 without intrusion into the occupant compartment were included. Thus the injury risk curves only show the correlation between injury risk and crash severity based on vehicle acceleration. In this study only risk of an MAIS2+ injury versus change of velocity and mean acceleration is used. For rear-end crashes a study by Krafft et al (2005) was used, see Fig. 4 and Fig. 5. In that paper risk of whiplash injuries with various symptom duration was shown. In this study only risk of whiplash symptoms for more than one month is used. By correlating the average values of crash severity to injury risk for the various collision partners, changes in risk could be estimated. 1 MAIS2+ (n=57) 1 MAIS2+ (n=57) 0,8 0,8 0,6 0,6 Risk 0,4 Risk 0,4 0,2 0, Change of velocity (km/h) n=507 Fig. 2 - Risk of an MAIS2+ injury in frontal impacts versus change of velocity for front seat occupants (from Ydenius and Kullgren 2006) Mean acceleration (g) n=507 Fig. 3 - Risk of an MAIS2+ injury in frontal impacts versus mean acceleration for front seat occupants (from Ydenius and Kullgren 2006). 1 0,8 Symptoms > 1 m 1 0,8 Symptoms > 1 m Risk 0,6 0,4 Risk 0,6 0,4 0,2 0, Change of velocity (km/h) Fig. 4 - Risk of whiplash injury with symptoms for more than one month in rear-end crashes versus change of velocity (from Krafft et al 2005) Mean acceleration (g) Fig. 5 - Risk of whiplash injury with symptoms for more than one month in rear-end crashes versus mean acceleration (from Krafft et al 2005) RESULTS In frontal two-vehicle crashes the average change of velocity for front seat occupants in vehicles with crash recorders varied in accordance with the mass of the collision partner, see Table 3. Highest average change of velocity was found in crashes with Trucks, 35.8 km/h, and lowest in cashes with Superminis, 18.2 km/h. It appears like the mean acceleration is not following the same pattern, although the highest average mean acceleration was found in crashes with Trucks, 8.8 g, and lowest in crashes with Superminis, 5.5 g, see Table 3. Crashes with Small Family Cars appear to have generated somewhat higher mean acceleration than Large Family Cars. In rear-end crashes the average change of velocity was similarly influenced by car mass, while only small differences were found for mean acceleration, see Table 4. Hence, the average pulse duration was longer in collisions with trucks. The average change of velocity for all frontal twovehicle crashes was twice as high as the value of all rear-end crashes, while the corresponding
6 difference for mean acceleration was 40%. In rear-end crashes collisions with Trucks generated the highest average change of velocity of 16.3 km/h. In single-vehicle crashes average mean acceleration was 41% higher in collisions with trees and fixed objects compared to collisions with deformable objects, see Table 5. Collisions with trees had the highest average change of velocity and mean acceleration, while collisions with poles had pulses with lower average mean acceleration and longer duration than collisions with other objects. When comparing the average crash severity measurements with injury risk curves some changes could be identified. In frontal two-vehicle crashes the increase in average change of velocity between collisions with passenger cars (21.3 km/h) and with trucks (35.8 km/h) corresponds to an increased average risk of MAIS2+ injury with almost five times (from 3% to 14%). The corresponding increase in mean acceleration (from 6.3 g to 8.8 g) corresponds to a more than twice as high average risk (from 8% to 18%). In rear-end crashes the increase in both average change of velocity and mean acceleration between collisions with passenger cars and with trucks (9.8 km/h to 16.3 km/h and 3.7 g to 4.4 g) corresponds to a doubled average risk of whiplash injury with symptoms for more than one month (from 8% to 17% and from 7% to 13% respectively). In frontal single-vehicle crashes the increase in average change of velocity between collisions with deformable (16.2 km/h) and with fixed objects (22.8 km/h) corresponds to an increased average risk of an MAIS2+ injury of four times (from 1% to 4%). The corresponding increase in average mean acceleration (from 4.5 g to 6.2 g) corresponds to an increased average risk of almost three times (from 3% to 8%). Table 3. Frontal crashes with different collisions partners Average change of velocity, Δ V ( km/h) Average mean acc. (g) Average peak acc. (g) Average duration (ms) n Superminis 18,2 ± 3,8 5,5 ± 0,9 14,4 ± 3,4 93,2 ± 8,8 16 Small Family Cars 21,2 ± 3,3 6,7 ± 0,9 17,4 ± 2,5 91,9 ± 6,2 45 Large Family Cars 21,8 ± 3,3 6,0 ± 0,7 15,4 ± 2,4 99,0 ± 5,6 54 Executive Cars 24,1 ± 3,8 6,9 ± 0,9 17,4 ± 2,5 95,2 ± 4,8 89 Passenger Cars 21,3 ± 2,0 6,3 ± 0,5 16,1 ± 1,4 94,8 ± 2,1 204 LTV 28,6 ± 4,7 7,2 ± 1,3 15,8 ± 4,0 112,4 ± 14,6 12 Bus 24,9 ± 13,0 6,2 ± 2,4 16,71 ± 10,4 89,2 ±16,0 10 Trucks 35,8 ± 14,3 8,8 ± 2,7 20,7 ± 7,5 109,1 ± 8,5 18 Bus and Trucks 30,3 + 10,1 7,5 ± 1,9 18,7 ± 6,0 99,1 ± 7,7 28 LTV, Bus and Trucks 29,7 ± 7,1 7,4 ± 1,4 17,7 ± 4,3 103,6 ± 6,9 40 Total 24,9 ± 2,0 6,7 ± 0,5 16,8 ±1,4 98,4 ± 2,7 244 Table 4. Rear-end crashes with different collisions partners Average change of velocity, Δ V ( km/h) Average mean acc. (g) Average peak acc. (g) Average duration (ms) n Superminis 9,8 ± 3,3 3,5 ± 0,9 8,5 ± 2,5 74,8 ± 13,8 8 Small Family Cars 9,7± 1,4 3,9 ± 0,4 8,7 ± 0,9 67,4 ± 5,1 53 Large Family Cars 8,6 ± 1,6 3,5 ± 0,4 7,5 ± 1,4 60,1 ± 8,9 30 Executive Cars 11,2 ± 1,8 3,8 ± 0,4 8,6 ± 0,9 78,9 ± 6,7 57 Passenger Cars 9,8 ± 0,7 3,7 ± 0,2 8,3 ± 0,4 70,3 ± 2,9 148 LTV 10,8 ± 1,9 3,8 ± 0,5 8,4 ± 1,4 79,1 ± 9,4 29 Trucks 16,3 ± 3,7 4,4 ± 0,6 9,2 ± 1,2 106,1 ± 18,0 12 LTV and Trucks 13,5 ± 4,3 4,1 ± 1,0 8,8 ± 2,6 92,6 ±18,6 41 Total 11,1 ± 0,8 3,8 ± 0,2 8,5 ± 0,5 77,7 ± 3,4 189
7 Table 5. Single-vehicle crashes with different collisions partners Average change of velocity, Δ V ( km/h) Average acc. (g) Average peak acc. (g) Average duration (ms) Deformable guard rail 16,1 ± 3,0 4,8 ± 0,9 12,8 ± 2,6 98,7 + 14,6 23 Poles 16,3 ± 2,3 4,1 ± 0,6 10,4 ± 1,3 113,7 ± 15,2 26 Deformable object 16,2 ± 1,8 4,5 ± 0,5 11,6 ± 1,4 106,3 ± 10,5 49 Roadside 18,1 ± 2,6 5,0 ± 0,6 11,8 ± 1,5 98,1 ± 8,4 53 Tree 25,6 ± 6,8 7,1 ± 1,7 16,6 ± 3,9 98,1 ± 7,4 28 Other rigid objects 24,8 ± 5,0 6,5 ± 1,3 16,6 ± 3,5 106,3 ± 9,6 43 Fixed Objects 22,8 ± 2,5 6,2 ± 0,6 15,0 ± 1,6 100,9 ± 3,7 124 Total 20,2 ± 1,9 5,5 ± 0,5 13,6 ± 1,2 103,0 ± 4,0 173 n DISCUSSION In order to achieve the target for road casualty reductions it is important to know how crash severity should be limited to avoid injuries. The crash recorder data, achieved from studies of real-life crashes, gives a unique possibility to study these limits, especially regarding vehicle acceleration. Such limits may serve as guidelines in the design of a crashworthy road transport system. Limitations The data was limited to 29 car models of 4 car makes with on-board crash pulse recorders. The number of crashes was relatively low, especially regarding single-vehicle crashes and collisions with heavy vehicles. Also the number of impacts at high impact severity was relatively low. One of the inclusion criteria for frontal crashes was a repair cost of at least 5000 EUR. This limit excludes most of the crashes at a change of velocity, ΔV, below 10 km/h. The average kerb weights of the cars with on-board crash pulse recorders were nearly the same for the collisions with vehicles of different size categories and roadside objects. The influence on the results by these differences could therefore be anticipated to be small. In the crashes with deformable and fixed objects in the roadside area, the lateral distance between the object and roadway shoulder varied, which could have an influence on the velocity before impact. The risk curves used for correlating average crash severity to injury risk, Ydenius and Kullgren (2006) and Krafft et al (2005), were based on mainly data from one car manufacturer. Therefore, it is not possible to generalise the results to the whole car fleet. Furthermore the risk curves do not reflect influence of intrusion on injury risk, but only parameters related to vehicle acceleration. However, in this study the objective was not to study influence of collision partner on intrusion. The crash pulse recorder has a trigger level of approximately 3 g. In collisions with deformable objects the acceleration will be relatively low compared to collisions with rigid objects. The total change of velocity measured by the crash pulse recorder will therefore often be too low in these collisions. Information at the beginning and sometimes at the end of the crash pulse may be lost. The mean acceleration may because of that also be somewhat lower than the true value, but not to the same degree as for the change of velocity. Vehicle types within the category LTVs could not be separately analysed due to the limited number of crashes available. It could be anticipated that the vehicle acceleration in collisions with these vehicle types; MPVs, SUVs and light trucks, will vary. Further research is necessary with more data. Two-vehicle crashes In was found that Small Family Cars cause higher acceleration than Large Family Cars in both frontal and rear-end crashes. These differences between the four passenger car categories could be explained by different stiffness of the frontal structure. Small Family Cars seem to be stiffer than Large Family Cars. The same relation has also been presented by Kullgren et al (2001). It could be a consequence of the improvement in frontal crash tests that require stiffer front ends. On the other hand, Superminis were found to have lowest mean acceleration of all car categories. The stiffness
8 property only has a small influence on the change of velocity. Instead the differences in change of velocity depend on the mass of the collision partners. Heavier collision partners result in higher change of velocity and thereby higher injury risk. Based on the average change of velocity, the corresponding injury risk was more than four times higher in a collision with a truck than in crashes with a passenger car. Such differences can also be seen in the Swedish national statistics on road traffic accidents. In 2004, collisions between trucks/buses and passenger cars accounted for 25 percent of all two-vehicle-crashes with severe injuries and 52 percent of all fatalities in Sweden (SIKA, 2005). The numbers are very high in comparison to the 10% proportion of trucks/buses registered in Sweden (SCB 2002) Registrations per inhabitants Sweden USA Registrations per inhabitants Sweden USA 0 Small Family Cars Large Executive Small Family MPVs Cars Large MPVs Small SUVs Large SUVs 0 Superminis kg Fig. 6 - The 100 most sold passenger vehicles in Sweden versus US during (Source BIL Sweden and R. L. Polk Marketing Systems). Fig. 7 - The 100 most sold passenger vehicles in Sweden versus US during (Source BIL Sweden and R. L. Polk Marketing Systems). Both the US and the Swedish passenger car fleets include vehicles with a wide mass-range, but the proportion of heavy vehicle is larger in the US, see Fig. 6 and Fig. 7. In 2005 the new sold passenger vehicles in the US were dominated by large SUVs (43 %) and the average kerb weight of the new sold passenger vehicles in the US were 1750 kg compared to 1420 kg in Sweden. The average passenger vehicle in the US can be compared with the category LTVs included in this study. Because of the larger proportion of very heavy vehicles in the US, the problem of incompatibility is larger in the US compared to the situation in Sweden. Several studies in the US have analysed the risk of death in collisions between different types of vehicles (Acierno et al. 2004, O Neill et al. 2004, Summers et al. 2003). Summer et al. (2003) showed that a large passenger car is twice as high aggressive than a small passenger car in a car-to-car crash. The death rate was significantly higher in cars colliding with LTVs than in car-to-car crashes. LTVs were more than three times as aggressive as average passenger cars in all two-vehicle crashes. The result in this study points in the same direction. Lund and Chapline (1999) showed that 700 lives per year in the US could be saved if the lightest cars (kerb weight >1,135 kg) and SUVs were replaced. In Northern Europe large trucks and buses constitute the larges incompatibility problem since they account for 52 percent of all fatalities in two-vehicle crashes (SIKA 2005). To prevent head-on collisions with trucks guard rails as median barrier have been shown to be an effective technical solution (Elvik 1995). Such barriers are important to avoid collisions with trucks and other heavy vehicles. But also other solutions are needed to reduce the high acceleration levels in crashes between cars and heavy vehicles. For example re-designing front ends of trucks is needed to reduce the vehicle acceleration and thereby reduce the serious consequences in frontal crashes with cars, even on roads with low speed limits. In rear-end crashes the size of the collision partner only seems to have minor influence of the mean acceleration. Krafft (1998) found a correlation between the kerb weights of the striking car and the injury outcome, but on the other hand there was a large difference in injury risk between car models with identical kerb weight. The findings indicate that there are other vehicle parameters or crash severity parameters that influence the risk of soft tissue injury in rear-end crashes. Previous studies, based on real-life crashes, have found a correlation between mean acceleration and whiplash injuries.
9 Most whiplash injuries leading to long-term disability occur between 3 and 6 g (Krafft et al., 2005). As seen in Fig. 5 the risk of whiplash injury increase rapidly above 4g and the mean acceleration should therefore be kept under this level. Therefore the small differences found in this study may have a large influence on the number of injured in rear-end crashes. Mismatching of car geometry influences crash incompatibility since energy absorbing structures will fail to engage in crashes between vehicles of different geometry. This can result in override and underride, and therefore larger occupant compartment intrusion (O Neill et al., 2004). Override or underride in a rear-end collision may have a positive effect on the vehicle acceleration. This could be an explanation for the small differences in average mean acceleration for crashes with different vehicle categories found in this study. Single-vehicle crashes The average crash severity was found to be lower in single-vehicle crashes compared to twovehicle crashes. In single-vehicle crashes the duration was longer than in two-vehicle crashes. It was also found in a previous study (Ydenius et al., 1999). Ydenius et al. (1999) found that the initial acceleration of the crash pulse seems to be lower in single-vehicle crashes than in two-vehicle crashes. The rate of deployed airbags was lower in single-vehicle crashes, which also indicate that the crash severity is lower in single-vehicle car crashes than in two-vehicle crashes. However, in this study the average mean acceleration of a two-vehicle crash was found to be similar as in collisions with rigid objects, such as trees. Trees were found to generate the highest crash severity, which also can explain way trees account for the majority of single-vehicle crashes with serious or fatal injury outcome in Europe (ETSC, 1998). Results from this study indicate that collisions with poles lead to relatively low crash severity. Both crashes with deformable poles and rigid poles are included in this study. The average mean acceleration was 46% lower in collisions with poles compared to collisions with trees. A reason for this result may be that the pole relents or that the intrusion of the frontal vehicle structure was more favourable in collisions with poles than with trees. Durisek (2005) showed in crash test with poles that impacts that cause intrusion in the centre of the vehicle front give a lower acceleration until the object fully engage the engine than if it involved the frame rail. In collision with trees compared to poles the engagement of the engine may be more frequent and larger, and therefore the crash type will produce higher crash severity. The result in this study with deformable and fixed object seems to agree with the result from the crash test with different types of guard rails. Steffan et al. (1998) and Ydenius et al. (2001 A) showed that deformable objects give a longer duration and thereby lower vehicle acceleration than a rigid barrier. Elvik (1995) showed, as early as 1995, the potential of preventing traffic casualties by using guard rails. The accident rate would increase with 30 % but the number of fatalities and personal injuries would be reduced by 20 % and 10 % respectively by using median barriers (Elvik 1995). He also found that using guard rails to protect the vehicle of running off the road would reduce the fatality rate with 45 % and personal injuries with 50 %. Probably the positive effect of using flexible guard rails like wire rope barriers is even higher. The future road transport system must be more prepared for limiting the consequences of road crashes. The infrastructure plays an important role to avoid critical crashes or to design the road transport system based on the human tolerance to injuries. Good examples are separating lanes, advanced guard rails etc. This study illustrates the difference in crash severity depending on collision partner and indirectly it indicates the type of crash situations that are more critical than others. However, further studies with more data are necessary to better understand the relationship in the road transport system. CONCLUSIONS Both average change of velocity and mean acceleration were lower in single-vehicle crashes compared with two-vehicle crashes. Both average change of velocity and mean acceleration were lower and average pulse duration was longer in collisions with deformable objects compared with collisions with fixed objects.
10 In frontal two-vehicle crashes the average change of velocity in crashes with passenger cars was 21.3 km/h, while it was 35.8 km/h in collisions with trucks. The difference corresponded to an increased average risk of MAIS2+ injury with almost 5 times (from 3% to 14%). The corresponding values for average mean acceleration were 6.3 g and 8.8 g respectively, which corresponded to a doubled risk (from 8% to 18%). In rear-end crashes the average change of velocity in crashes with passenger cars was 9.8 km/h, while it was 16.3 km/h in collisions with trucks. The corresponding values for average mean acceleration were 3.7 g and 4.4 g respectively. The differences corresponded to a doubled average risk of whiplash injury with symptoms for more than one month. In frontal single-vehicle crashes the average mean acceleration in collisions with deformable objects was 4.5 g and in collisions with fixed objects 6.2 g. The increase corresponded to an increased average risk of an MAIS2+ injury of almost 3 times (from 3% to 8%). REFERENCES AAAM, Association for the Advancement of Automotive Medicine, Abbreviated Injury Scale, 2005 Aciernao S, Kaufman R, Rivara F P, Grossman D C, Mock C. Vehicle mismatch: injury patterns and severity, Accident Analysis and Prevention 36, 2004, pp BIL Sweden, Definitiva nyregistreringar under 2005; New sold passenger vehicle 2005 in Sweden, URL: ( ) Delaney A, Langford J, Corben B, Newstead S, Jacques N. Roadside Environment Safety, Report to RACV, Monash University Accident Research Center, 2003 Department of transport, Road Casualties Great Britain 2004, ISBN , 2005 Durisek N J, Tanner C B, Chen H F, Guenther D A. Vehicle characterization through pole impact testing, part I: Vehicle response in terms of acceleration pulses, SAE technical report , 2004 Durisek N J, Tanner C B, Brantman R, Guenther D A.. Vehicle Characterization Through Pole Impact Testing, Part II: Analysis of Center and Offset Center Impacts, SAE technical report , 2005 Elvik R. The Safety Value of Guard Rails and Crash Cushions: a meta-analysis of evidence from evaluation studies. Accident Analysis and Prevention 27(4) 1995, pp ETSC 1998 Forgiving Roadside URL: ( ) Evans, L. Traffic Safety and the Driver. Van Nostrand Reinhold, ISBN , 1991 Hibino T, Aeano M, Sato K. Body Structure of Mitsubishi s Advanced Safety Vehicle Mitsubishi Motors Corporation, Japan, SAE Society of Automotive engineers, Paper No. 96-S3-W-20, 1996 Hollowell W, Summers S, Prasad A. NHTSA s Research Programme for Vehicle Aggressivity and Fleet Compatibility, ImechE Vehicle Safety 2002 Conference, UK; London, May, Paper No. C607/022/2002, 2002
11 IIHS, Fatality Facts 2004: Roadside Hazards URL: ( ) Joksch H, Massie D, Pichler R. Vehicle Aggressivity: Fleet Characterization Using Traffic Collision Data, University of Michigan Transportation Institute, Report DOT HS February Kloeden CN, McLean AJ, MRJ Baldock and Cockington AJT, Severe and Fatal Car Crashes Due to Roadside Hazards, NHMRC Road Accident Research Unit The University of Adelaide, Krafft M, Kullgren A, Tingvall C. Influence of Crash Pulse Characteristics on Whiplash Associated Disorder in Rear Impacts - Crash Recording in Real Life Crashes. Accident Analysis and Prevention, 3, 2002, pp Krafft M, Kullgren A, Malm S, Ydenius A. Influence of Crash Severity on Various Whiplash Injury Symptoms: A Study Based on Real-life Rear-end Crashes with Recorded Crash Pulses, Proc. 19th Int. Techn. Conf. on ESV, Paper No , 2005 Krafft M. Non-fatal injuries to car occupants, Injury assessment and analysis of impacts causing shortand long-term consequences with special reference to neck injuries, Institute of Clinical Neuroscience, Section on Injury Prevention Karolinska Institute, Folksam Research, Stockholm, Sweden Kullgren A, Krafft M, Ydenius A, Lie A, Tingvall C. Developments in Car Safety with Respect to Disability - Injury Distributions for Car Occupants in Cars from The 80 s and 90 s. Proc. of the 2002 IRCOBI Conf. on the Biomechanics of Impacts, München, 2002: Kullgren A, Lie A, Tingvall C. Mass Data Evaluation of the Importance of Structural and Mass Related Aggressivity. Proc. of the 17th Techn. Conf. on ESV, Paper No. 172, Amsterdam, Kullgren A. Validity and Reliability of Vehicle Collision Data: Crash Pulse Recorders for Impact Severity and Injury Risk Assessments in Real-Life Frontal Impacts. Folksam Research, Stockholm, Sweden, 1998 Lenard J, Hurley B, Thomas P. The Accuracy of Crash3 for Calculating Collision Severity in Modern European Cars, Proc. 16th Int. Techn. Conf. on ESV, Windsor, Canada, Paper No. 98-S6-O Lund A K, Chapline J F. Potential strategies for improving crash compatibility in the U.S. vehicle fleet (SAE ). Vehicle Aggressivity and Compatibility in Automotive Crashes (SP-1442), Warrendale, PA: Society of Automotive Engineers NHTSA, Traffic Safety Fact 2004 Data, Large Trucks, DOT HS URL: ( ) Nolan J M, Preuss C A, Jones S L, O Neill B. An Update on the Relationships Between Computed Delta Vs and Impact Speed for Offset Crash Tests. Proc. 16 th Int. Techn. Conf. On ESV, Winsor Canada, 1998 Nygren Å. Injuries to Car Occupants - Some Aspects of the Interior Safety of Cars, Thesis for the degree of Doctor in Medical Science, Acta Oto-Laryngologica, supplement 395, Stockholm, 1984 O Neill B, Kyrychenko S Y. Crash Incompatibilities Between Cars and Light Trucks: Issues and Potential Countermeasures, SAE Technical Paper Series, O Neill B, Lund A, Preuss C, Zuby D. Offset Frontal Impacts a Comparision of Real-world Crashes with Laboratory Tests, Proc. 14 th Int. Techn. Conf. on ESV, Paper No. 94-S4-O-19, Munich, 1994
12 SCB, Statistics Sweden, Transportstatistik, 2002 URL: ( ) SIKA, Vägskador 2004, Road Traffic Injuries 2004, 2005:14, ISBN , 2005 Steffan H, Hoschkopf H, Geigl B, Moser A. Development of New Crash-Cushion Concept for Compatibility Purposes of Rigid Obstacles Near the Road, Proc. 16 th Int. Techn. Conf. on ESV, Paper nr. 98-S3-O-11, Winsor Canada, 1998 Stucki S L, Fessahaie O. Comparison of Measured Velocity Change in Frontal Crash Tests to NASS Computed Velocity Change, Proc. SAE Conf., Paper , Summers S M, Hollowell W T, Prasad A. NHTSA s Research Program for Vehicle Compatibility, 18 th ESV Conference, 2003 Ydenius A, Kullgren A, Tingvall C. Development of a Crashworthy System: Interaction Between Car Structural Integrity, Restraint System and Guardrails. 17 th Int. Techn. Conf. on ESV, Amsterdam, 2001 A Ydenius, A. Kullgren, A. Injury Risk Functions in Frontal Impacts Using Recorded Crash Pulses, International IRCOBI Conference on the Biomechanics of Impact, Isle of Man UK, 2001 Ydenius A, Kullgren A. Influence of crash severity on injury risk in frontal impacts: A study based on real-life crashes with recorded crash pulses, Traffic Injury Prevention (submitted 2006), 2006 Ydenius A, Kullgren A, Pulse Shapes and Injury Risk in Collisions with Roadside Objects: Result from Real-Life Impacts with Recorded Crash Pulses, Folksam Research, Stockholm, Sweden 1999 Ydenius A, Kullgren A, Fildes B, Sferco R. Vehicle Classification and Identification, SARAC, 2001 B
How Do Euro NCAP Results Correlate with Real-Life Injury Risks? A Paired Comparison Study of Car-to-Car Crashes
Traffic Injury Prevention, 3:288 293, 2002 Copyright C 2002 Taylor & Francis 1538-9588/02 $12.00 +.00 DOI: 10.1080/15389580290129044 How Do Euro NCAP Results Correlate with Real-Life Injury Risks? A Paired
INFLUENCE OF CRASH SEVERITY ON VARIOUS WHIPLASH INJURY SYMPTOMS: A STUDY BASED ON REAL-LIFE REAR-END CRASHES WITH RECORDED CRASH PULSES
INFLUENCE OF CRASH SEVERITY ON VARIOUS WHIPLASH INJURY SYMPTOMS: A STUDY BASED ON REAL-LIFE REAR-END CRASHES WITH RECORDED CRASH PULSES Maria Krafft*, Anders Kullgren*, Sigrun Malm**, Anders Ydenius* *Folksam
THE EFFECT OF WHIPLASH PROTECTION SYSTEMS IN REAL-LIFE CRASHES AND THEIR CORRELATION TO CONSUMER CRASH TEST PROGRAMMES
THE EFFECT OF WHIPLASH PROTECTION SYSTEMS IN REAL-LIFE CRASHES AND THEIR CORRELATION TO CONSUMER CRASH TEST PROGRAMMES Anders Kullgren Maria Krafft Folksam Research and Karolinska Institutet, Sweden Anders
Head on collisions between passenger cars and heavy goods vehicles: Injury risk functions and benefits of Autonomous Emergency Braking.
Head on collisions between passenger cars and heavy goods vehicles: Injury risk functions and benefits of Autonomous Emergency Braking. Johan Strandroth, Matteo Rizzi, Anders Kullgren, Claes Tingvall Abstract
REAL-WORLD PERFORMANCE OF CITY SAFETY BASED ON SWEDISH INSURANCE DATA
REAL-WORLD PERFORMANCE OF CITY SAFETY BASED ON SWEDISH INSURANCE DATA Irene Isaksson-Hellman If P&C Insurance Sweden Magdalena Lindman Volvo Car Corporation Sweden Paper Number 15-0121 ABSTRACT The number
COMPARISON OF BIORID INJURY CRITERIA BETWEEN DYNAMIC SLED TESTS AND VEHICLE CRASH TESTS
COMPARISON OF BIORID INJURY CRITERIA BETWEEN DYNAMIC SLED TESTS AND VEHICLE CRASH TESTS David A. Aylor David S. Zuby Insurance Institute for Highway Safety United States Paper No. 11-235 ABSTRACT The Insurance
Assessment of Whiplash Protection in Rear Impacts. Crash Tests and Real-life Crashes
Assessment of Whiplash Protection in Rear Impacts Crash Tests and Real-life Crashes Maria Krafft, Anders Kullgren Folksam Anders Lie, Claes Tingvall Swedish National Road Administration June 24 Summary
Long-term medical consequences to children injured in car crashes and influence of crash directions
Long-term medical consequences to children injured in car crashes and influence of crash directions Katarina Bohman 1,2), Helena Stigson 2,3), Maria Krafft 3,4) 1) Autoliv Research, 2) Karolinska Institutet,
Car Crash Compatibility: The Prospects for International Harmonization
1999-01-0069 Car Crash Compatibility: The Prospects for International Harmonization Copyright 1999 Society of Automotive Engineers, Inc. Hampton C. Gabler Rowan University Brian N. Fildes Monash University
Factors related to serious injury in post ncap european cars involved in frontal crashes
Loughborough University Institutional Repository Factors related to serious injury in post ncap european cars involved in frontal crashes This item was submitted to Loughborough University's Institutional
Table 1. Summary of Crashworthiness Rating Methods and Databases. Essential characteristics
COMPARATIVE ANALYSIS OF SEVERAL VEHICLE SAFETY RATING SYSTEMS Max Cameron Sanjeev Narayan Stuart Newstead Monash University Accident Research Centre Australia Timo Ernvall Vesa Laine University of Oulu,
Pole/Tree Crashes; Injury Outcomes; New Car Assessment Programme; Australian design Rules (ADR s)
Injury Outcomes in Pole/Tree Crashes Andrew Morris and Niklas Truedsson Monash University Accident Research Centre Clayton, Victoria, Australia. Martina Stallgardh and Maria Magnisson Halmsted University,
The Increasing Role of SUVs in Crash Involvement in Germany
Gesamtverband der Deutschen Versicherungswirtschaft e. V. The Increasing Role of SUVs in Crash Involvement in Germany Dr. Axel Malczyk German Insurers Accident Research ICROBI Dublin, 12.09.2012 Gesamtverband
UPDATED REVIEW OF POTENTIAL TEST PROCEDURES FOR FMVSS NO. 208
UPDATED REVIEW OF POTENTIAL TEST PROCEDURES FOR FMVSS NO. 208 Prepared By The OFFICE OF VEHICLE SAFETY RESEARCH WILLIAM T. HOLLOWELL HAMPTON C. GABLER SHELDON L. STUCKI STEPHEN SUMMERS JAMES R. HACKNEY,
Curriculum Vitae Helena Stigson +46 (0) 70 284 96 97 [email protected]
Updated 2 October 2015 Page: 1 / 5 Department of Clinical Neuroscience Division of Insurance Medicine Curriculum Vitae Helena Stigson +46 (0) 70 284 96 97 [email protected] Education 2005 2009
20XX. Car safety rating 2015 by Folksam
20XX Car safety rating 2015 by Folksam Preface Folksam has a long tradition in the area of traffic safety research. We have been collecting and analyzing information about road traffic crashes and injuries
Vehicle Weight, Fatality Risk and Crash Compatibility of Model Year 1991-99 Passenger Cars and Light Trucks
U.S. Department of Transportation http://www.nhtsa.dot.gov National Highway Traffic Safety Administration DOT HS 809 662 October 2003 NHTSA Technical Report Vehicle Weight, Fatality Risk and Crash Compatibility
Digges 1 INJURIES TO RESTRAINED OCCUPANTS IN FAR-SIDE CRASHES. Kennerly Digges The Automotive Safety Research Institute Charlottesville, Virginia, USA
INJURIES TO RESTRAINED OCCUPANTS IN FAR-SIDE CRASHES Kennerly Digges The Automotive Safety Research Institute Charlottesville, Virginia, USA Dainius Dalmotas Transport Canada Ottawa, Canada Paper Number
IIHS crashworthiness evaluation programs and the U.S. vehicle fleet
Bulletin Vol. 30, No. 7 : April 2013 IIHS crashworthiness evaluation programs and the U.S. vehicle fleet The Insurance Institute for Highway Safety (IIHS) conducts several different vehicle crashworthiness
Classification of Crash Pattern Based on Vehicle Acceleration and Prediction Algorithm for Occupant Injury
M. Katagiri et al./international Journal of Automotive Engineering 4 (3) 9-6 Research Paper 3497 Classification of Crash Pattern Based on Vehicle Acceleration and Prediction Algorithm for Occupant Injury
Assessing the Female Neck Injury Risk
Content 1 Assessing the Female Neck Injury Risk 3 Thesis About why Females are at Greater Risk of Sustaining Whiplash Injuries Assessing the Female Neck Injury Risk 4 High Speed X-Ray Motion Analysis of
Car occupants intoxication and non-use of safety belts
TØI report 499/2000 Authors: Fridulv Sagberg, Terje Assum Oslo 2000, 63 pages Norwegian language Summary: In-depth road accident investigations Aggregated results from 96 fatal accidents in Mälardalen,
Working Paper. Extended Validation of the Finite Element Model for the 2010 Toyota Yaris Passenger Sedan
Working Paper NCAC 2012-W-005 July 2012 Extended Validation of the Finite Element Model for the 2010 Toyota Yaris Passenger Sedan Dhafer Marzougui Randa Radwan Samaha Chongzhen Cui Cing-Dao (Steve) Kan
How To Compare Head Injury Risk From A Front Crash Test To Head Injury From A Head Injury
Comparison of HIC and BrIC head injury risk in IIHS frontal crash tests to real-world head injuries 2015 ESV Conference Gothenburg, Sweden June 10, 2015 Becky Mueller Senior Research Engineer iihs.org
Motorcycle Crashes into Road Barriers: the Role of Stability and Different Types of Barriers for Injury Outcome
Motorcycle Crashes into Road Barriers: the Role of Stability and Different Types of Barriers for Injury Outcome Matteo Rizzi, Johan Strandroth, Simon Sternlund, Claes Tingvall, Brian Fildes Abstract This
The Relationship between Speed and Car Driver Injury Severity
Road Safety Web Publication 9 The Relationship between Speed and Car Driver Injury Severity D. Richards and R. Cuerden Transport Research Laboratory April 2009 Department for Transport: London Although
Types and Extent of Damage to Passenger Vehicles in Low-Speed Front and Rear Crashes. Anne T. McCartt Laurie A. Hellinga
Types and Extent of Damage to Passenger Vehicles in Low-Speed Front and Rear Crashes Anne T. McCartt Laurie A. Hellinga February 2003 ABSTRACT A survey of vehicles brought to five insurance drive-in claims
Alternative lower rail design to lower injury level of occupant caused by frontal crash
Alternative lower rail design to lower injury level of occupant caused by frontal crash W. Beek (0557959) MT06.20 Internal traineeship Supervisor: Dr. ir. W.J. Witteman Eindhoven University of Technology
German Insurance Association No. 38. Compact accident research. Small-overlap frontal impacts involving passenger cars in Germany
German Insurance Association No. 38 Compact accident research Small-overlap frontal impacts involving passenger cars in Germany Imprint German Insurance Association Insurers Accident Research Wilhelmstraße
NEW CAR SAFETY INNOVATIONS ANCAP RATINGS. Michael Paine - ANCAP Technical Manager
NEW CAR SAFETY INNOVATIONS ANCAP RATINGS Michael Paine - ANCAP Technical Manager Outline Background on crash testing by ANCAP Improvements in vehicle occupant protection Technologies to avoid serious crashes
Vehicle Mismatch: A Critical New Safety Defect Issue
Vehicle Mismatch: A Critical New Safety Defect Issue by Byron Bloch, Auto Safety Expert Auto Safety Design, Inc. 7731 Tuckerman Lane, Potomac, Maryland 20854 Published in New Jersey Lawyer March 8, 2004
The Relative Safety of Large and Small Passenger Vehicles
The Relative Safety of Large and Small Passenger Vehicles NHTSA Mass-Size Safety Symposium Washington, DC February 25, 2011 Adrian Lund, Ph.D. Overview What is the history of motor vehicle crash safety
RISER. Roadside Infrastructure for Safer European Roads
Roadside Infrastructure for Safer European Roads PROJECT START DATE: 01/01/2003 DURATION: 36 months CONTRACT NUMBER: GRD2/2001/50088//S07.15369 Co-Sponsored by DG-TREN TU-Graz Institute for Mechanics Heinz
COMBINING CRASH RECORDER AND PAIRED COMPARISON TECHNIQUE: INJURY RISK FUNCTIONS IN FRONTAL AND REAR IMPACTS WITH SPECIAL REFERENCE TO NECK INJURIES
COMBINING CRASH RECORDER AND AIRED COMARISON TECHNIQUE: INJURY RISK FUNCTIONS IN FRONTAL AND REAR IMACTS WITH SECIAL REFERENCE TO NECK INJURIES Anders Kullgren, Maria Krafft Folksa Research, 66 Stockhol,
Characteristics of High Injury Severity Crashes on 80 110 km/h Rural Roads in South Australia
Characteristics of High Injury Crashes on 80 110 km/h Rural Roads in South Australia, J. R. R. Centre for Automotive Safety Research, University of Adelaide, SOUTH AUSTRALIA, 5005 email: [email protected]
Correlating crash severity with injury risk, injury severity, and long-term symptoms in low velocity motor vehicle collisions
Correlating crash severity with injury risk, injury severity, and long-term symptoms in low velocity motor vehicle collisions Medical Science Monitor, October 2005; 11(10): RA316-321 FROM ABSTRACT: Arthur
Volvo Trucks view on Truck Rollover Accidents
Volvo Trucks view on Truck Rollover Accidents Mario Ligovic, Volvo Truck Corporation, Göteborg, Sweden INTRODUCTION Rollover is the most common heavy truck accident type. Experiencing a rollover is like
ACCIDENTS AND NEAR-MISSES ANALYSIS BY USING VIDEO DRIVE-RECORDERS IN A FLEET TEST
ACCIDENTS AND NEAR-MISSES ANALYSIS BY USING VIDEO DRIVE-RECORDERS IN A FLEET TEST Yuji Arai Tetsuya Nishimoto apan Automobile Research Institute apan Yukihiro Ezaka Ministry of Land, Infrastructure and
Four-wheel drive vehicle crash involvement patterns
Four-wheel drive vehicle crash involvement patterns August 2006 Report Summary 06/05 Introduction This document is a summary of a larger research report prepared by the Monash University Accident Research
Suzuki Vitara SPECIFICATION SAFETY EQUIPMENT TEST RESULTS. Supermini. Year Of Publication 2015. Driver Passenger Rear FRONTAL CRASH PROTECTION
Suzuki Vitara Supermini Adult Occupant Child Occupant Pedestrian Safety Assist SPECIFICATION Tested Model Suzuki Vitara 1.6 GL+, LHD Body Type 5 door hatchback Year Of Publication 2015 Kerb Weight 1114kg
Workshop of the Americas for Decisions on Traffic Safety and Education. Plenary Session IX: Financing Activities, Plans, and Programs
Workshop of the Americas for Decisions on Traffic Safety and Education Plenary Session IX: Financing Activities, Plans, and Programs Paying the Cost: Legal Responsibility, Participation of the Private
ENERGY ABSORBING MATERIALS AND STRUCTURES IN THE FUTURE DESIGN OF THE ROAD SAFETY EQUIPMENT
ENERGY ABSORBING MATERIALS AND STRUCTURES IN THE FUTURE DESIGN OF THE ROAD SAFETY EQUIPMENT Dr.sc. Dražen Živković, Mechanical engineer The University of Split, Faculty for Electrical Engineering, Mechanical
European New Car Assessment Program (EuroNCAP) and Crash Test Ratings of New Vehicles
European New Car Assessment Program (EuroNCAP) and Crash Test Ratings of New Vehicles Car safety is now an important issue that many people consider when buying a new car. There are crash test standards
INSURANCE INSTITUTE FOR HIGHWAY SAFETY 1005 NORTH GLEBE ROAD ARLINGTON, VA 22201 PHONE 703/247-1500 FAX 703/247-1678 http://www.highwaysafety.
Statement before the Committee on Energy and Commerce U.S. House of Representatives Approaches to achieving vehicle safety improvements Brian O Neill INSURANCE INSTITUTE FOR HIGHWAY SAFETY 1005 NORTH GLEBE
COMPATIBILITY AND STRUCTURAL INTERACTION IN PASSENGER VEHICLE
COMPATIBILITY AND STRUCTURAL INTERACTION IN PASSENGER VEHICLE COLLISIONS A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Gareth E Thomas B.Eng. School of Aerospace,
Field Accident Data Analysis of 2 nd Row Children and Individual Case Reviews
Field Accident Data Analysis of 2 nd Row Children and Individual Case Reviews David C Viano, Chantal S Parenteau ProBiomechanics LLC SAE 2008-01 01-18511851 CSS 38% U 50% Front 45% Background Children
Dr. Eric D. Hildebrand and Dr. Frank R. Wilson University of New Brunswick Transportation Group New Brunswick, Canada
PERFORMANCE OF CANADIAN LIGHT TRUCKS AND VANS IN COLLISIONS -FINDINGS FROM A LEVEL IV STUDY Dr. Eric D. Hildebrand and Dr. Frank R. Wilson University of New Brunswick Transportation Group New Brunswick,
The influence of passive safety systems on head injuries suffered by the vehicle s driver
The influence of passive safety systems on head injuries suffered by the vehicle s driver Oana V. Oţăt, Nicolae Dumitru, and Victor Oţăt Abstract - The present research paper underpins a thorough comparative
Influence of stability control for fatal car accidents in Finland
F2008-SC-038 Influence of stability control for fatal car accidents in Finland 1 Lahti, Otto *, 1 Tuononen, Ari, 1 Sainio, Panu 1 Helsinki University of Technology, Finland KEYWORDS ESC, Active safety,
Identification of Energy Distribution for Crash Deformational Processes of Road Vehicles
Acta Polytechnica Hungarica Vol. 4, No., 007 Identification of Energy Distribution for Crash Deformational Processes of Road Vehicles István Harmati, Péter Várlaki Department of Chassis and Lightweight
Whiplash Testing and Assessment Summary of Current Activities in Europe
136 B. Lorenz Federal Highway Research Institute (BASt), Passive Safety & Biomechanics, Bergisch Gladbach, Germany R. Sferco Ford Motor Company, Vehicle Safety, Automotive Safety Office (ASO), Köln, Germany
ANCIS. The Australian National Crash In-depth Study. David Logan (MUARC)
ANCIS The Australian National Crash In-depth Study David Logan (MUARC) What is ANCIS? Study of modern vehicle real world crash performance and occupant injuries Criteria: Occupants of crashed vehicles
WHIPLASH INJURIES, NOT ONLY A PROBLEM IN REAR-END IMPACT
WHIPLASH INJURIES, NOT ONLY A PROBLEM IN REAR-END IMPACT Hans Cappon Michiel van Ratingen Jac Wismans TNO Automotive The Netherlands Wolf Hell and Dina Lang German Institute for Vehicle Safety (GDV) Germany
INFORMATION SUBMISSION FOR NAS. December 2010. Office Vehicle Safety Research National Highway Traffic Safety Administration
INFORMATION SUBMISSION FOR NAS December 2010 Office Vehicle Safety Research National Highway Traffic Safety Administration 1.0 INTRODUCTION The Office of Vehicle Safety Research (OVSR) consists of three
Mazda CX-3 79% 85% 84% 64% SPECIFICATION SAFETY EQUIPMENT TEST RESULTS. Supermini. Child Occupant. Adult Occupant. Safety Assist.
Mazda CX-3 Supermini 2015 Adult Occupant Child Occupant 85% 79% Pedestrian Safety Assist 84% 64% SPECIFICATION Tested Model Body Type Mazda CX-3 2.0 'Core', LHD 5 door wagon Year Of Publication 2015 Kerb
Vehicle Safety. Vehicle Safety web text. Please refer to this document as: SafetyNet (2009) Vehicle Safety, retrieved <add date of retrieval here>
Vehicle Safety Please refer to this document as: SafetyNet (2009) Vehicle Safety, retrieved 16/10/2009 Page 1 Vehicle Safety...1 1. Vehicle Safety...3 2. Vehicle design and
GENDER ANALYSIS ON WHIPLASH SEAT EFFECTIVENESS: RESULTS FROM REAL-WORLD CRASHES
GENDER ANALYSIS ON WHIPLASH SEAT EFFECTIVENESS: RESULTS FROM REAL-WORLD CRASHES Anders Kullgren * **, Maria Krafft * * Folksam Research ** Department for Public Health Science, Karolinska Institutet, Sweden
Prevention of Head Injuries to Car Occupants: An Investigation of Interior Padding Options
Prevention of Head Injuries to Car Occupants: An Investigation of Interior Padding Options Prepared by: AJ McLean¹ BN Fildes² CN Kloeden¹ KH Digges² RWG Anderson¹ VM Moore¹ DA Simpson¹ ¹NHMRC Road Accident
CASE STUDY. Test Laboratories. Volvo Cars Safety Centre Accelerometers Help Improve Car Safety. Sweden. Automotive. Transducers
CASE STUDY Volvo Cars Safety Centre Accelerometers Help Improve Car Safety Sweden Automotive Transducers The name of Volvo is synonymous with car safety. The new Volvo Cars Safety Centre at Gothenburg,
A Review of Serious Casualty Motorcycle Crashes in Tasmania
A Review of Serious Casualty Motorcycle Crashes in Tasmania D epart ment of Infrastructure, Energy and Resources A Review of Serious Casualty Motorcycle Crashes in Tasmania Traffic and Infrastructure Branch
CITY SAFETY A SYSTEM ADDRESSING REAR-END COLLISIONS AT LOW SPEEDS
CITY SAFETY A SYSTEM ADDRESSING REAR-END COLLISIONS AT LOW SPEEDS Martin Distner Mattias Bengtsson Thomas Broberg Lotta Jakobsson Volvo Cars Sweden Paper Number 09-0371 ABSTRACT Rear-end collisions account
Characteristics of Motorcycle Crashes in the U.S.
Characteristics of Motorcycle Crashes in the U.S. Jeya Padmanaban, M.S. JP Research Inc., USA. 7 West El Camino Real, Suite 2 Mountain View, CA, 944 [email protected] Vitaly Eyges, PhD., JP Research,
Passenger Vehicle Occupant Fatality Rates by Type and Size of Vehicle
DOT HS 809 979 January 2006 Passenger Vehicle Occupant Fatality Rates by Type and Size of Vehicle By Rajesh Subramanian * Summary The National Highway Traffic Safety Administration (NHTSA) has routinely
Cyclist Injuries Leading to Permanent Medical Impairment in Sweden and the Effect of Bicycle Helmets
Cyclist Injuries Leading to Permanent Medical Impairment in Sweden and the Effect of Bicycle Helmets Matteo Rizzi, Helena Stigson, Maria Krafft Abstract Cyclist injuries leading to long term consequences
The SIPS (Side Impact Protection System) includes side and Inflatable Curtain (IC) airbags that protect both front and rear occupants.
SAFETY In brief: Volvo s commitment to safety is as old as the company itself, and the Volvo S60 has been extensively crash tested in the award winning Volvo Safety Centre in Gothenburg, Sweden and features
Some injury scaling issues in UK crash research
Loughborough University Institutional Repository Some injury scaling issues in UK crash research This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation:
PREDICTING THE USED CAR SAFETY RATINGS CRASHWORTHINESS RATING FROM ANCAP SCORES
PREDICTING THE USED CAR SAFETY RATINGS CRASHWORTHINESS RATING FROM ANCAP SCORES by Stuart Newstead and Jim Scully April 2012 Report No. 309 Project Sponsored By The Vehicle Safety Research Group ii MONASH
FIMCAR III Car-to-Car Test Results
Peter Sandqvist, Robert Thompson, Anders Kling, Linus Wagström, Pascal Delannoy, Nicolas Vie, Ignacio Lazaro, Stefano Candellero, Jean-Louis Nicaise, Fabien Duboc FIMCAR III Car-to-Car Test Results The
THE ACCIDENT REDUCTION EFFECTIVENESS OF ESC EQUIPPED CARS IN GREAT BRITAIN.
THE ACCIDENT REDUCTION EFFECTIVENESS OF ESC EQUIPPED CARS IN GREAT BRITAIN. ABSTRACT Pete Thomas, Vehicle Safety Research Centre, Loughborough University, UK Ph: +44 509 22693, [email protected] This
The momentum of a moving object has a magnitude, in kg m/s, and a... (1)
Q. (a) Complete the following sentence. The momentum of a moving object has a magnitude, in kg m/s, and a.... () (b) A car being driven at 9.0 m/s collides with the back of a stationary lorry. The car
The New Car Assessment Program Suggested Approaches for Future Program Enhancements
DOT HS 810 698 January 2007 The New Car Assessment Program Suggested Approaches for Future Program Enhancements National Highway Traffic Safety Administration Department of Transportation 2 Table of Contents
An Evaluation of Side Impact Protection
U.S. Department of Transportation National Highway Traffic Safety Administration DOT HS 810 748 January 2007 NHTSA Technical Report An Evaluation of Side Impact Protection FMVSS 214 TTI(d) Improvements
A Systematic Approach for Improving Occupant Protection in Rollover Crashes
SAE 2011 Government / Industry Meeting A Systematic Approach for Improving Occupant Protection in Rollover Crashes Jingwen Hu, PhD University of Michigan Transportation Research Institute King H. Yang,
Relationship of Dynamic Seat/Head Restraint Ratings to Real-world Neck Injury Rates
Relationship of Dynamic Seat/Head Restraint Ratings to Real-world Neck Injury Rates Charles M. Farmer, Laurie A. Hellinga, Jo Ann K. Wells, David S. Zuby Basic method Collect insurance claims for late
Evaluation of Frequency and Injury Outcomes of Lane Departure Crashes
University of Massachusetts Traffic Safety Research Program www.ecs.umass.edu/umasssafe Evaluation of Frequency and Injury Outcomes of Lane Departure Crashes Marta Benavente, Heather Rothenberg, Michael
Correlating crash severity with injury risk, injury severity, and long-term symptoms in low velocity motor vehicle collisions
Med Sci Monit, 2005; 11(10): RA316-321 PMID: 16192914 WWW.MEDSCIMONIT.COM Review Article Received: 2005.08.04 Accepted: 2005.09.02 Published: 2005.10.01 Correlating crash severity with injury risk, injury
NCAP New Car Assessment Programme
New Car Assessment Programme Harald Zellmer Autoliv B.V. & Co. KG, Elmshorn, Germany International Course on Transportation Planning and Safety New Delhi December 2010 PRIVATE/PROPRIETARY : New Car Assessment
Does the Federal government require them? No, the Federal government does not require manufacturers to install EDRs.
EDR Q&As THE BASICS What is an EDR? What is its purpose? An Event Data Recorder (EDR) is a function or device installed in a motor vehicle to record technical vehicle and occupant information for a brief
Paper Number 15-0328. Paine, Page 1
VEHICLE SAFETY TRENDS AND THE INFLUENCE OF NCAP SAFETY RATINGS Michael Paine David Paine Jason Smith Australasian NCAP, Australia Michael Case RACV, Australia Jack Haley NRMA Motoring & Services, Australia
