Essential Topic: Continuous cash flows
|
|
|
- Clifton Day
- 10 years ago
- Views:
Transcription
1 Essential Topic: Continuous cash flows Chapters 2 and 3 The Mathematics of Finance: A Deterministic Approach by S. J. Garrett
2 CONTENTS PAGE MATERIAL Continuous payment streams Example Continuously paid annuities Example SUMMARY
3 CONTINUOUS PAYMENT STREAMS Continuously paid cash flows are an important theoretical construction. Although they do not appear in practice, a frequently paid discrete cash flow can be approximated by a continuous payment stream over the long term. For example, consider a pension paid weekly for an extended time period, say, 2 years. The natural time unit here is the week and we should use nominal rates i (52) (t) per annum in the present-value calculation involving 2 52 = 14 payments. Recalling that (t) = lim i (p) (t) we see that i (52) and the importance of the force of interest in the approximation of very frequently paid cash flows is clear.
4 CONTINUOUS PAYMENT STREAMS We define the rate of payment of a continuously paid cash flow stream, ρ(t), such that ρ(t) = dm(t) dt for all t where M(t) is the total payment between time and t. Between times t and t + dt with dt, the total payment is therefore such that lim {M(t + dt) M(t)} = ρ(t)dt. dt
5 PRESENT VALUE AND ACCUMULATION We consider the payment stream as a collection of payment elements, ρ(t)dt, at each time t within the cash flow. In its general form, each element has present value [ ν t ρ(t)dt = ρ(t) exp t ] (s)ds dt We then integrate (i.e. sum) these to give the total present value of the stream [ t ] ν t ρ(t)dt = ρ(t) exp (s)ds dt The equivalent expression for the accumulation of the stream to time t = n is n [ n ] ρ(t) exp (s)ds dt t
6 EXAMPLE If the force of interest at time t is given by {.2 for t < 5 (t) =.2 (t 5) for t 5 calculate a.) the value at time of 1 due at time t = 1, b.) the accumulated value at time t = 2 of a payment stream of rate ρ(t) = 1.5t paid continuously between t = 8 and t = 1.
7 EXAMPLE a.) In this case we have a single payment and should evaluate the present value by breaking the period into two subintervals We have 1 A(, 1) = 1 A(, 5) A(5, 1) A(, 5) = exp (.2 5) = e.1 ( 1 ) A(5, 1) = exp.2 (t 5)dt = e.25 5 Therefore 1 A(, 1) = 1 = e.1+.25
8 EXAMPLE b.) Here we need to consider the payment stream, ρ(t) = 1.5t. Similar arguments to those above can be used to construct the accumulation as 1 ( 1 ) ρ(t) exp (s)ds dt 8 1 = 8 1.5t exp t ( 1 t ).2(s 5)ds dt = Note that here the piecewise nature of (t) does not matter as the integrals are constrained within 8 t 1 where (t) =.2 (t 5).
9 CONTINUOUSLY PAID ANNUITIES Consider the particular case that (t) = and the payment stream is ρ(t) = 1 for t n. This payment stream represents a continuously paid, unit n-year annuity. In order to construct an expression for the present value of the annuity we follow the procedure above n ( 1 exp t ) ds dt = 1 e n It is usual to denote the present value of this annuity as ā n = 1 νn
10 ACCUMULATED VALUE The accumulated value at time n of the continuously paid annuity, s n, can be calculated in a number of ways. One approach is to construct the accumulation of the payment stream as above n ( n ) s n = 1 exp ds dt = (1 + i)n 1 t Alternatively, one can simply accumulate the present value at time t = to time t = n s n = (1 + i) n ā n = (1 + i)n 1
11 EXAMPLE If the effective rate of interest is i = 4% per annum, calculate the following quantities. a.) 3ā 1 b.) 1 s 5 Answers a.) This is the present value of a continuous annuity paying 3 per annum for 1 years, 3ā 1 = 3 1 ν1 = 3 1 (1.4) 1 ln(1.4) = b.) This is the accumulated value at t = 5 of a continuous annuity paying 1 per annum for 5 years, 1 s 5 = 1 (1 + i)5 1 = 1 (1.4)5 1 ln(1.4) =
12 SUMMARY The present value and accumulation of a continuously paid cash flow can be calculated by constructing integral expressions in terms of ρ(t) and (t). A continuously paid unit n-year annuity is the particular case that ρ(t) = 1 for t n years. If (t) =, we denote the present value of this stream as ā n = 1 νn and the accumulated value at time t = n as s n = (1 + i)n 1
Payment streams and variable interest rates
Chapter 4 Payment streams and variable interest rates In this chapter we consider two extensions of the theory Firstly, we look at payment streams A payment stream is a payment that occurs continuously,
Manual for SOA Exam FM/CAS Exam 2.
Manual for SOA Exam FM/CAS Exam 2. Chapter 2. Cashflows. c 29. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall 29 Edition,
Financial Mathematics for Actuaries. Chapter 1 Interest Accumulation and Time Value of Money
Financial Mathematics for Actuaries Chapter 1 Interest Accumulation and Time Value of Money 1 Learning Objectives 1. Basic principles in calculation of interest accumulation 2. Simple and compound interest
Annuity is defined as a sequence of n periodical payments, where n can be either finite or infinite.
1 Annuity Annuity is defined as a sequence of n periodical payments, where n can be either finite or infinite. In order to evaluate an annuity or compare annuities, we need to calculate their present value
Continuous Compounding and Discounting
Continuous Compounding and Discounting Philip A. Viton October 5, 2011 Continuous October 5, 2011 1 / 19 Introduction Most real-world project analysis is carried out as we ve been doing it, with the present
Manual for SOA Exam FM/CAS Exam 2.
Manual for SOA Exam FM/CAS Exam 2. Chapter 3. Annuities. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall 2009 Edition,
MATHEMATICS OF FINANCE AND INVESTMENT
MATHEMATICS OF FINANCE AND INVESTMENT G. I. FALIN Department of Probability Theory Faculty of Mechanics & Mathematics Moscow State Lomonosov University Moscow 119992 [email protected] 2 G.I.Falin. Mathematics
Nominal rates of interest and discount
1 Nominal rates of interest and discount i (m) : The nominal rate of interest payable m times per period, where m is a positive integer > 1. By a nominal rate of interest i (m), we mean a rate payable
Vilnius University. Faculty of Mathematics and Informatics. Gintautas Bareikis
Vilnius University Faculty of Mathematics and Informatics Gintautas Bareikis CONTENT Chapter 1. SIMPLE AND COMPOUND INTEREST 1.1 Simple interest......................................................................
1 Cash-flows, discounting, interest rate models
Assignment 1 BS4a Actuarial Science Oxford MT 2014 1 1 Cash-flows, discounting, interest rate models Please hand in your answers to questions 3, 4, 5 and 8 for marking. The rest are for further practice.
Lecture Notes on the Mathematics of Finance
Lecture Notes on the Mathematics of Finance Jerry Alan Veeh February 20, 2006 Copyright 2006 Jerry Alan Veeh. All rights reserved. 0. Introduction The objective of these notes is to present the basic aspects
ST334 ACTUARIAL METHODS
ST334 ACTUARIAL METHODS version 214/3 These notes are for ST334 Actuarial Methods. The course covers Actuarial CT1 and some related financial topics. Actuarial CT1 which is called Financial Mathematics
Financial Mathematics for Actuaries. Chapter 2 Annuities
Financial Mathematics for Actuaries Chapter 2 Annuities Learning Objectives 1. Annuity-immediate and annuity-due 2. Present and future values of annuities 3. Perpetuities and deferred annuities 4. Other
Lecture Notes on Actuarial Mathematics
Lecture Notes on Actuarial Mathematics Jerry Alan Veeh May 1, 2006 Copyright 2006 Jerry Alan Veeh. All rights reserved. 0. Introduction The objective of these notes is to present the basic aspects of the
Index Numbers ja Consumer Price Index
1 Excel and Mathematics of Finance Index Numbers ja Consumer Price Index The consumer Price index measures differences in the price of goods and services and calculates a change for a fixed basket of goods
Chapter 03 - Basic Annuities
3-1 Chapter 03 - Basic Annuities Section 7.0 - Sum of a Geometric Sequence The form for the sum of a geometric sequence is: Sum(n) a + ar + ar 2 + ar 3 + + ar n 1 Here a = (the first term) n = (the number
Chapter 04 - More General Annuities
Chapter 04 - More General Annuities 4-1 Section 4.3 - Annuities Payable Less Frequently Than Interest Conversion Payment 0 1 0 1.. k.. 2k... n Time k = interest conversion periods before each payment n
More on annuities with payments in arithmetic progression and yield rates for annuities
More on annuities with payments in arithmetic progression and yield rates for annuities 1 Annuities-due with payments in arithmetic progression 2 Yield rate examples involving annuities More on annuities
Mathematics of Life Contingencies MATH 3281
Mathematics of Life Contingencies MATH 3281 Life annuities contracts Edward Furman Department of Mathematics and Statistics York University February 13, 2012 Edward Furman Mathematics of Life Contingencies
5. Time value of money
1 Simple interest 2 5. Time value of money With simple interest, the amount earned each period is always the same: i = rp o We will review some tools for discounting cash flows. where i = interest earned
n(n + 1) 2 1 + 2 + + n = 1 r (iii) infinite geometric series: if r < 1 then 1 + 2r + 3r 2 1 e x = 1 + x + x2 3! + for x < 1 ln(1 + x) = x x2 2 + x3 3
ACTS 4308 FORMULA SUMMARY Section 1: Calculus review and effective rates of interest and discount 1 Some useful finite and infinite series: (i) sum of the first n positive integers: (ii) finite geometric
Time Value of Money Revisited: Part 1 Terminology. Learning Outcomes. Time Value of Money
Time Value of Money Revisited: Part 1 Terminology Intermediate Accounting II Dr. Chula King 1 Learning Outcomes Definition of Time Value of Money Components of Time Value of Money How to Answer the Question
Chapter 2 Premiums and Reserves in Multiple Decrement Model
Chapter 2 Premiums and Reserves in Multiple Decrement Model 2.1 Introduction A guiding principle in the determination of premiums for a variety of life insurance products is: Expected present value of
CHAPTER 1. Compound Interest
CHAPTER 1 Compound Interest 1. Compound Interest The simplest example of interest is a loan agreement two children might make: I will lend you a dollar, but every day you keep it, you owe me one more penny.
SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM FM SAMPLE QUESTIONS
SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM FM FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS Copyright 2005 by the Society of Actuaries and the Casualty Actuarial Society Some of the questions
Annuities, Insurance and Life
Annuities, Insurance and Life by Pat Goeters Department of Mathematics Auburn University Auburn, AL 36849-5310 1 2 These notes cover a standard one-term course in Actuarial Mathematics with a primer from
The Time Value of Money
The Time Value of Money Time Value Terminology 0 1 2 3 4 PV FV Future value (FV) is the amount an investment is worth after one or more periods. Present value (PV) is the current value of one or more future
2 Applications to Business and Economics
2 Applications to Business and Economics APPLYING THE DEFINITE INTEGRAL 442 Chapter 6 Further Topics in Integration In Section 6.1, you saw that area can be expressed as the limit of a sum, then evaluated
Risk-Free Assets. Case 2. 2.1 Time Value of Money
2 Risk-Free Assets Case 2 Consider a do-it-yourself pension fund based on regular savings invested in a bank account attracting interest at 5% per annum. When you retire after 40 years, you want to receive
2.1 The Present Value of an Annuity
2.1 The Present Value of an Annuity One example of a fixed annuity is an agreement to pay someone a fixed amount x for N periods (commonly months or years), e.g. a fixed pension It is assumed that the
Notes for Lecture 2 (February 7)
CONTINUOUS COMPOUNDING Invest $1 for one year at interest rate r. Annual compounding: you get $(1+r). Semi-annual compounding: you get $(1 + (r/2)) 2. Continuous compounding: you get $e r. Invest $1 for
Chapter 1 The Measurement of Interest
Interest: the compensation that a borrower of capital pays to a lender of capital for its use. It can be viewed as a form of rent that the borrower pays to the lender to compensate for the loss of use
4. Life Insurance. 4.1 Survival Distribution And Life Tables. Introduction. X, Age-at-death. T (x), time-until-death
4. Life Insurance 4.1 Survival Distribution And Life Tables Introduction X, Age-at-death T (x), time-until-death Life Table Engineers use life tables to study the reliability of complex mechanical and
Basic financial arithmetic
2 Basic financial arithmetic Simple interest Compound interest Nominal and effective rates Continuous discounting Conversions and comparisons Exercise Summary File: MFME2_02.xls 13 This chapter deals
2008 AP Calculus AB Multiple Choice Exam
008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus
3. Time value of money. We will review some tools for discounting cash flows.
1 3. Time value of money We will review some tools for discounting cash flows. Simple interest 2 With simple interest, the amount earned each period is always the same: i = rp o where i = interest earned
A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails
12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint
Finance 350: Problem Set 6 Alternative Solutions
Finance 350: Problem Set 6 Alternative Solutions Note: Where appropriate, the final answer for each problem is given in bold italics for those not interested in the discussion of the solution. I. Formulas
E INV 1 AM 11 Name: INTEREST. There are two types of Interest : and. The formula is. I is. P is. r is. t is
E INV 1 AM 11 Name: INTEREST There are two types of Interest : and. SIMPLE INTEREST The formula is I is P is r is t is NOTE: For 8% use r =, for 12% use r =, for 2.5% use r = NOTE: For 6 months use t =
Actuarial Mathematics and Life-Table Statistics. Eric V. Slud Mathematics Department University of Maryland, College Park
Actuarial Mathematics and Life-Table Statistics Eric V. Slud Mathematics Department University of Maryland, College Park c 2001 c 2001 Eric V. Slud Statistics Program Mathematics Department University
The Basics of Interest Theory
Contents Preface 3 The Basics of Interest Theory 9 1 The Meaning of Interest................................... 10 2 Accumulation and Amount Functions............................ 14 3 Effective Interest
5 More on Annuities and Loans
5 More on Annuities and Loans 5.1 Introduction This section introduces Annuities. Much of the mathematics of annuities is similar to that of loans. Indeed, we will see that a loan and an annuity are just
SOA EXAM MLC & CAS EXAM 3L STUDY SUPPLEMENT
SOA EXAM MLC & CAS EXAM 3L STUDY SUPPLEMENT by Paul H. Johnson, Jr., PhD. Last Modified: October 2012 A document prepared by the author as study materials for the Midwestern Actuarial Forum s Exam Preparation
Level Annuities with Payments More Frequent than Each Interest Period
Level Annuities with Payments More Frequent than Each Interest Period 1 Examples 2 Annuity-immediate 3 Annuity-due Level Annuities with Payments More Frequent than Each Interest Period 1 Examples 2 Annuity-immediate
The Fair Valuation of Life Insurance Participating Policies: The Mortality Risk Role
The Fair Valuation of Life Insurance Participating Policies: The Mortality Risk Role Massimiliano Politano Department of Mathematics and Statistics University of Naples Federico II Via Cinthia, Monte S.Angelo
Manual for SOA Exam MLC.
Chapter 5 Life annuities Extract from: Arcones Manual for the SOA Exam MLC Fall 2009 Edition available at http://wwwactexmadrivercom/ 1/94 Due n year temporary annuity Definition 1 A due n year term annuity
Guaranteed Annuity Options
Guaranteed Annuity Options Hansjörg Furrer Market-consistent Actuarial Valuation ETH Zürich, Frühjahrssemester 2008 Guaranteed Annuity Options Contents A. Guaranteed Annuity Options B. Valuation and Risk
Time Value of Money. Background
Time Value of Money (Text reference: Chapter 4) Topics Background One period case - single cash flow Multi-period case - single cash flow Multi-period case - compounding periods Multi-period case - multiple
6 Insurances on Joint Lives
6 Insurances on Joint Lives 6.1 Introduction Itiscommonforlifeinsurancepoliciesandannuitiestodependonthedeathorsurvivalof more than one life. For example: (i) Apolicywhichpaysamonthlybenefittoawifeorotherdependentsafterthedeathof
PowerPoint. to accompany. Chapter 5. Interest Rates
PowerPoint to accompany Chapter 5 Interest Rates 5.1 Interest Rate Quotes and Adjustments To understand interest rates, it s important to think of interest rates as a price the price of using money. When
Introduction (I) Present Value Concepts. Introduction (II) Introduction (III)
Introduction (I) Present Value Concepts Philip A. Viton February 19, 2014 Many projects lead to impacts that occur at different times. We will refer to those impacts as constituting an (inter)temporal
o13 Actuarial Science
o13 Actuarial Science Matthias Winkel 1 University of Oxford MT 2003 1 Departmental lecturer at the Department of Statistics, supported by Aon Ltd. and the Institute of Actuaries o13 Actuarial Science
1. Present Value. 2. Bonds. 3. Stocks
Stocks and Bonds 1. Present Value 2. Bonds 3. Stocks 1 Present Value = today s value of income at a future date Income at one future date value today of X dollars in one year V t = X t+1 (1 + i t ) where
Manual for SOA Exam MLC.
Chapter 5 Life annuities Extract from: Arcones Manual for the SOA Exam MLC Fall 2009 Edition available at http://wwwactexmadrivercom/ 1/70 Due n year deferred annuity Definition 1 A due n year deferred
How To Calculate The Value Of A Project
Chapter 02 How to Calculate Present Values Multiple Choice Questions 1. The present value of $100 expected in two years from today at a discount rate of 6% is: A. $116.64 B. $108.00 C. $100.00 D. $89.00
4 Annuities and Loans
4 Annuities and Loans 4.1 Introduction In previous section, we discussed different methods for crediting interest, and we claimed that compound interest is the correct way to credit interest. This section
Chapter Two. THE TIME VALUE OF MONEY Conventions & Definitions
Chapter Two THE TIME VALUE OF MONEY Conventions & Definitions Introduction Now, we are going to learn one of the most important topics in finance, that is, the time value of money. Note that almost every
Financial Mathematics for Actuaries. Chapter 8 Bond Management
Financial Mathematics for Actuaries Chapter 8 Bond Management Learning Objectives 1. Macaulay duration and modified duration 2. Duration and interest-rate sensitivity 3. Convexity 4. Some rules for duration
May 2012 Course MLC Examination, Problem No. 1 For a 2-year select and ultimate mortality model, you are given:
Solutions to the May 2012 Course MLC Examination by Krzysztof Ostaszewski, http://www.krzysio.net, [email protected] Copyright 2012 by Krzysztof Ostaszewski All rights reserved. No reproduction in any
Manual for SOA Exam MLC.
Chapter 5. Life annuities Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/60 (#24, Exam M, Fall 2005) For a special increasing whole life annuity-due on (40), you
( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( )
{ } ( ) = ( ) = {,,, } ( ) β ( ), < 1 ( ) + ( ) = ( ) + ( ) max, ( ) [ ( )] + ( ) [ ( )], [ ( )] [ ( )] = =, ( ) = ( ) = 0 ( ) = ( ) ( ) ( ) =, ( ), ( ) =, ( ), ( ). ln ( ) = ln ( ). + 1 ( ) = ( ) Ω[ (
Annuities-Certain and their Value at Fixed Rate
Chapter 5 Annuities-Certain and their Value at Fixed Rate 5.1. General aspects From now on we will consider problems that more frequently come into the financial practice, solving them in light of given
ANALYZING INVESTMENT RETURN OF ASSET PORTFOLIOS WITH MULTIVARIATE ORNSTEIN-UHLENBECK PROCESSES
ANALYZING INVESTMENT RETURN OF ASSET PORTFOLIOS WITH MULTIVARIATE ORNSTEIN-UHLENBECK PROCESSES by Xiaofeng Qian Doctor of Philosophy, Boston University, 27 Bachelor of Science, Peking University, 2 a Project
Analysis of Deterministic Cash Flows and the Term Structure of Interest Rates
Analysis of Deterministic Cash Flows and the Term Structure of Interest Rates Cash Flow Financial transactions and investment opportunities are described by cash flows they generate. Cash flow: payment
Chapter 1. Theory of Interest 1. The measurement of interest 1.1 Introduction
Chapter 1. Theory of Interest 1. The measurement of interest 1.1 Introduction Interest may be defined as the compensation that a borrower of capital pays to lender of capital for its use. Thus, interest
Chapter 21: Savings Models
October 16, 2013 Last time Arithmetic Growth Simple Interest Geometric Growth Compound Interest A limit to Compounding Problems Question: I put $1,000 dollars in a savings account with 2% nominal interest
Actuarial Mathematics and Life-Table Statistics. Eric V. Slud Mathematics Department University of Maryland, College Park
Actuarial Mathematics and Life-Table Statistics Eric V. Slud Mathematics Department University of Maryland, College Park c 2006 Chapter 4 Expected Present Values of Insurance Contracts We are now ready
A new continuous dependence result for impulsive retarded functional differential equations
CADERNOS DE MATEMÁTICA 11, 37 47 May (2010) ARTIGO NÚMERO SMA#324 A new continuous dependence result for impulsive retarded functional differential equations M. Federson * Instituto de Ciências Matemáticas
Chapter 6. Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams
Chapter 6 Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams 1. Distinguish between an ordinary annuity and an annuity due, and calculate present
Chapter 2: Binomial Methods and the Black-Scholes Formula
Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the
The Time Value of Money
CHAPTER 7 The Time Value of Money After studying this chapter, you should be able to: 1. Explain the concept of the time value of money. 2. Calculate the present value and future value of a stream of cash
Introduction to Real Estate Investment Appraisal
Introduction to Real Estate Investment Appraisal Maths of Finance Present and Future Values Pat McAllister INVESTMENT APPRAISAL: INTEREST Interest is a reward or rent paid to a lender or investor who has
Expected default frequency
KM Model Expected default frequency Expected default frequency (EDF) is a forward-looking measure of actual probability of default. EDF is firm specific. KM model is based on the structural approach to
Dick Schwanke Finite Math 111 Harford Community College Fall 2013
Annuities and Amortization Finite Mathematics 111 Dick Schwanke Session #3 1 In the Previous Two Sessions Calculating Simple Interest Finding the Amount Owed Computing Discounted Loans Quick Review of
Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model
INSTITUTE OF ACTUARIES OF INDIA
INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS 15 th November 2010 Subject CT1 Financial Mathematics Time allowed: Three Hours (15.00 18.00 Hrs) Total Marks: 100 INSTRUCTIONS TO THE CANDIDATES 1. Please
Certified Actuarial Analyst Resource Guide Module 1
Certified Actuarial Analyst Resource Guide Module 1 2014/2015 November 2014 Disclaimer: This Module 1 Resource Guide has been prepared by and/or on behalf of the Institute and Faculty of Actuaries (IFoA).
Time Value of Money Concepts
BASIC ANNUITIES There are many accounting transactions that require the payment of a specific amount each period. A payment for a auto loan or a mortgage payment are examples of this type of transaction.
A spot price model feasible for electricity forward pricing Part II
A spot price model feasible for electricity forward pricing Part II Fred Espen Benth Centre of Mathematics for Applications (CMA) University of Oslo, Norway Wolfgang Pauli Institute, Wien January 17-18
Chapter 4: Time Value of Money
FIN 301 Homework Solution Ch4 Chapter 4: Time Value of Money 1. a. 10,000/(1.10) 10 = 3,855.43 b. 10,000/(1.10) 20 = 1,486.44 c. 10,000/(1.05) 10 = 6,139.13 d. 10,000/(1.05) 20 = 3,768.89 2. a. $100 (1.10)
Solution. Let us write s for the policy year. Then the mortality rate during year s is q 30+s 1. q 30+s 1
Solutions to the May 213 Course MLC Examination by Krzysztof Ostaszewski, http://wwwkrzysionet, krzysio@krzysionet Copyright 213 by Krzysztof Ostaszewski All rights reserved No reproduction in any form
Constant Elasticity of Variance (CEV) Option Pricing Model:Integration and Detailed Derivation
Constant Elasticity of Variance (CEV) Option Pricing Model:Integration and Detailed Derivation Ying-Lin Hsu Department of Applied Mathematics National Chung Hsing University Co-authors: T. I. Lin and C.
Manual for SOA Exam MLC.
Chapter 5. Life annuities. Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/114 Whole life annuity A whole life annuity is a series of
Monte Carlo Methods in Finance
Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction
SOCIETY OF ACTUARIES FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS
SOCIETY OF ACTUARIES EXAM FM FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS This page indicates changes made to Study Note FM-09-05. April 28, 2014: Question and solutions 61 were added. January 14, 2014:
Perpetuities and Annuities: Derivation of shortcut formulas
Perpetuities and Annuities: Derivation of shortcut formulas Outline Perpetuity formula... 2 The mathematical derivation of the PV formula... 2 Derivation of the perpetuity formula using the Law of One
Building a Smooth Yield Curve. University of Chicago. Jeff Greco
Building a Smooth Yield Curve University of Chicago Jeff Greco email: [email protected] Preliminaries As before, we will use continuously compounding Act/365 rates for both the zero coupon rates
Example. L.N. Stout () Problems on annuities 1 / 14
Example A credit card charges an annual rate of 14% compounded monthly. This month s bill is $6000. The minimum payment is $5. Suppose I keep paying $5 each month. How long will it take to pay off the
1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%?
Chapter 2 - Sample Problems 1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%? 2. What will $247,000 grow to be in
HOW TO CALCULATE PRESENT VALUES
Chapter 2 HOW TO CALCULATE PRESENT VALUES Brealey, Myers, and Allen Principles of Corporate Finance 11th Edition McGraw-Hill/Irwin Copyright 2014 by The McGraw-Hill Companies, Inc. All rights reserved.
2. How would (a) a decrease in the interest rate or (b) an increase in the holding period of a deposit affect its future value? Why?
CHAPTER 3 CONCEPT REVIEW QUESTIONS 1. Will a deposit made into an account paying compound interest (assuming compounding occurs once per year) yield a higher future value after one period than an equal-sized
Financial Mathematics for Actuaries. Chapter 5 LoansandCostsofBorrowing
Financial Mathematics for Actuaries Chapter 5 LoansandCostsofBorrowing 1 Learning Objectives 1. Loan balance: prospective method and retrospective method 2. Amortization schedule 3. Sinking fund 4. Varying
ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE
ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.
Retirement Request Form Personal Pension Plans
Retirement Request Form Personal Pension Plans Phoenix Ireland Please complete this form using BLOCK CAPITALS SECTION 1 Your Details Policy Number (s) PPS Number Forename (s) (In Full) Surname Address
