BomhardtAbbrvnat.sty

Size: px
Start display at page:

Download "BomhardtAbbrvnat.sty"

Transcription

1 BomhardtAbbrvnat.sty BibText Style File Sample If you like this BibText Style, please send a postcard to: Christian Bomhardt Dieselstr Ettlingen

2 2 Here is some sample text. As you can see in Bomhardt et al. (2005) or Bomhardt (2004), life, especially of bib text designers, can be hard. Enjoy!

3 Literaturverzeichnis AdWords: Welcome to AdWords. Bomhardt, C. (2002): Erkennen von Web Robots. Diplomarbeit, Institut für Entscheidungstheorie und Unternehmensforschung. Bomhardt, C. (2004): NewsRec, a SVM-driven Personal Recommendation System for News Websites. In: WI 04: Proceedings of the Web Intelligence, IEEE/WIC/ACM International Conference on (WI 04), pages , Washington, DC, USA. IEEE Computer Society. ISBN Bomhardt, C./Gaul, W. (2003): Web Robot Detection - The Influence of Robots on Web Mining. In: Ahr, D./Fahrion, R./Oswald, M./Reinelt, G. (eds.), Operations Research Proceedings, pages Springer. Bomhardt, C./Gaul, W. (2005): NewsRec, a Personal Recommendation System for News Websites. In: Weihs, C./Gaul, W. (eds.), Classification - the Ubiquitous Challenge, pages , Berlin, Germany. Springer-Verlag. Bomhardt, C./Gaul, W./Schmidt-Thieme, L. (2005): Web Robot Detection - Preprocessing Web Logfiles for Robot Detection. In: Vichi, M./Monari, P./Mignani, S./Montanari, A. (eds.), New Developments in Classification and Data Analysis, pages Springer, Berlin. Borgelt, C. (2003): Efficient Implementations of Apriori and Eclat. In: Goethals, B./Zaki, M. J. (eds.), 1st Workshop of Frequent Item Set Mining Implementations (FIMI 2003, Melbourne, FL, USA), volume 90 of CEUR Workshop Proceedings. CEUR-WS.org. Borgelt, C. (2004): MLP V1.17. ~borgelt/mlp.html [ ]. Borgelt, C./Kruse, R. (2002): Induction of Association Rules: Apriori Implementation. In: Proc. 15th Conf. on Computational Statistics (Compstat 2002, Berlin, Germany), pages , Heidelberg, Germany. Physika Verlag. Brauch, P. (2005): Verteilte Kriminalität, Bedrohung durch vernetzte Schädlinge steigt. c t, 9:

4 4 LITERATURVERZEICHNIS Breiman, L./Friedman, J. H./Olshen, R./Stone, C. (1984): Classification and Regression Trees. Wadsworth. ISBN Cortes, C./Vapnik, V. (1995): Support-Vector Networks. Mach. Learn., 20 (3): ISSN Gaul, W./Bomhardt, C. (2004): Ab ins Netz, Umfrage zum Thema Notebook Universität unter Studierenden. UNIKATH, 1:38f. Gaul, W./Schmidt-Thieme, L. (2001): Mining Generalized Association Rules for Sequential and Path Data. In: ICDM, pages Gaul, W./Bomhardt, C./Schmidt-Mänz, N. (2004): Einsatz von computergestützter Lehrveranstaltungsevaluation. Zeitschrift für Evaluation, 1. HotCaptcha: Captcha Mashup. [ ]. Kerckhoffs, A. (1883): La Cryptographie Militaire. Journal des Sciences Militaires, 9: cryptographie_militaire_ii.htm. Kohavi, R. (1996): Wrappers for performance enhancement and oblivious decision graphs. PhD thesis, Stanford University, Stanford, CA, USA. Koster, M. (1994): A standard for robot exclusion. org/wc/norobots.html [ ]. NameProtect: Digital brand management, trademark clearance and monitoring, NameProtect Inc. [ ]. Quinlan, J. (1986): Induction of Decision Trees. Machine Learning, 1(1): Quinlan, J. (1989): Unknown attribute values in induction. In: Segre, A. (ed.), Proceedings of the Sixth International Workshop on Machine Learning (ML 1989), Cornell University, Ithaca, New York, USA, June 26-27, 1989, pages , San Francisco, CA, USA. Morgan Kaufmann. ISBN Quinlan, J. (1993): C4.5. Kaufmann. ISBN Rappa, M. (2004): Business Models on the Web. org/models/models.html [ ]. Reuters21578: Reuters Text Categorization Test Collection. http: // [ ]. Säuberlich, F. (2000): KDD und Data Mining als Hilfsmittel zur Entscheidungsunterstützung. Lang.

5 LITERATURVERZEICHNIS 5 Schmidt-Mänz, N./Bomhardt, C. (2005): Wie suchen Onliner im Internet? Science Factory, 2/ pdf [ ]. Schmidt-Mänz, N./Gaul, W. (2004): Measurement of Online Visibility. In: Ahr, D./Fahrion, R./Oswald, M./Reinelt, G. (eds.), Operations Research Proceedings 2003, pages Springer, Berlin.

Top Top 10 Algorithms in Data Mining

Top Top 10 Algorithms in Data Mining ICDM 06 Panel on Top Top 10 Algorithms in Data Mining 1. The 3-step identification process 2. The 18 identified candidates 3. Algorithm presentations 4. Top 10 algorithms: summary 5. Open discussions ICDM

More information

Top 10 Algorithms in Data Mining

Top 10 Algorithms in Data Mining Top 10 Algorithms in Data Mining Xindong Wu ( 吴 信 东 ) Department of Computer Science University of Vermont, USA; 合 肥 工 业 大 学 计 算 机 与 信 息 学 院 1 Top 10 Algorithms in Data Mining by the IEEE ICDM Conference

More information

Impact of Boolean factorization as preprocessing methods for classification of Boolean data

Impact of Boolean factorization as preprocessing methods for classification of Boolean data Impact of Boolean factorization as preprocessing methods for classification of Boolean data Radim Belohlavek, Jan Outrata, Martin Trnecka Data Analysis and Modeling Lab (DAMOL) Dept. Computer Science,

More information

Feature vs. Classifier Fusion for Predictive Data Mining a Case Study in Pesticide Classification

Feature vs. Classifier Fusion for Predictive Data Mining a Case Study in Pesticide Classification Feature vs. Classifier Fusion for Predictive Data Mining a Case Study in Pesticide Classification Henrik Boström School of Humanities and Informatics University of Skövde P.O. Box 408, SE-541 28 Skövde

More information

Industrial Adoption of Automatically Extracted GUI Models for Testing

Industrial Adoption of Automatically Extracted GUI Models for Testing Industrial Adoption of Automatically Extracted GUI Models for Testing Pekka Aho 1,2 [email protected], Matias Suarez 3 [email protected], Teemu Kanstrén 1,4 [email protected], and Atif M. Memon

More information

FrIDA Free Intelligent Data Analysis Toolbox.

FrIDA Free Intelligent Data Analysis Toolbox. FrIDA A Free Intelligent Data Analysis Toolbox Christian Borgelt and Gil González Rodríguez Abstract This paper describes a Java-based graphical user interface to a large number of data analysis programs

More information

WebAdaptor: Designing Adaptive Web Sites Using Data Mining Techniques

WebAdaptor: Designing Adaptive Web Sites Using Data Mining Techniques From: FLAIRS-01 Proceedings. Copyright 2001, AAAI (www.aaai.org). All rights reserved. WebAdaptor: Designing Adaptive Web Sites Using Data Mining Techniques Howard J. Hamilton, Xuewei Wang, and Y.Y. Yao

More information

How To Create A Text Classification System For Spam Filtering

How To Create A Text Classification System For Spam Filtering Term Discrimination Based Robust Text Classification with Application to Email Spam Filtering PhD Thesis Khurum Nazir Junejo 2004-03-0018 Advisor: Dr. Asim Karim Department of Computer Science Syed Babar

More information

Dr. Anna Maria Schneider

Dr. Anna Maria Schneider Dr. Anna Maria Schneider Postdoctoral Researcher Faculty of Economics and Business Administration Humboldt Universität zu Berlin Rosenstraße 19 10178 Berlin, Germany anna maria.schneider[at]wiwi.hu berlin.de

More information

Data Mining & Data Stream Mining Open Source Tools

Data Mining & Data Stream Mining Open Source Tools Data Mining & Data Stream Mining Open Source Tools Darshana Parikh, Priyanka Tirkha Student M.Tech, Dept. of CSE, Sri Balaji College Of Engg. & Tech, Jaipur, Rajasthan, India Assistant Professor, Dept.

More information

Roulette Sampling for Cost-Sensitive Learning

Roulette Sampling for Cost-Sensitive Learning Roulette Sampling for Cost-Sensitive Learning Victor S. Sheng and Charles X. Ling Department of Computer Science, University of Western Ontario, London, Ontario, Canada N6A 5B7 {ssheng,cling}@csd.uwo.ca

More information

Web Mining Seminar CSE 450. Spring 2008 MWF 11:10 12:00pm Maginnes 113

Web Mining Seminar CSE 450. Spring 2008 MWF 11:10 12:00pm Maginnes 113 CSE 450 Web Mining Seminar Spring 2008 MWF 11:10 12:00pm Maginnes 113 Instructor: Dr. Brian D. Davison Dept. of Computer Science & Engineering Lehigh University [email protected] http://www.cse.lehigh.edu/~brian/course/webmining/

More information

ANALYSIS OF FEATURE SELECTION WITH CLASSFICATION: BREAST CANCER DATASETS

ANALYSIS OF FEATURE SELECTION WITH CLASSFICATION: BREAST CANCER DATASETS ANALYSIS OF FEATURE SELECTION WITH CLASSFICATION: BREAST CANCER DATASETS Abstract D.Lavanya * Department of Computer Science, Sri Padmavathi Mahila University Tirupati, Andhra Pradesh, 517501, India [email protected]

More information

Data Mining: A Preprocessing Engine

Data Mining: A Preprocessing Engine Journal of Computer Science 2 (9): 735-739, 2006 ISSN 1549-3636 2005 Science Publications Data Mining: A Preprocessing Engine Luai Al Shalabi, Zyad Shaaban and Basel Kasasbeh Applied Science University,

More information

AUTO CLAIM FRAUD DETECTION USING MULTI CLASSIFIER SYSTEM

AUTO CLAIM FRAUD DETECTION USING MULTI CLASSIFIER SYSTEM AUTO CLAIM FRAUD DETECTION USING MULTI CLASSIFIER SYSTEM ABSTRACT Luis Alexandre Rodrigues and Nizam Omar Department of Electrical Engineering, Mackenzie Presbiterian University, Brazil, São Paulo [email protected],[email protected]

More information

DATA MINING, DIRTY DATA, AND COSTS (Research-in-Progress)

DATA MINING, DIRTY DATA, AND COSTS (Research-in-Progress) DATA MINING, DIRTY DATA, AND COSTS (Research-in-Progress) Leo Pipino University of Massachusetts Lowell [email protected] David Kopcso Babson College [email protected] Abstract: A series of simulations

More information

A NURSING CARE PLAN RECOMMENDER SYSTEM USING A DATA MINING APPROACH

A NURSING CARE PLAN RECOMMENDER SYSTEM USING A DATA MINING APPROACH Proceedings of the 3 rd INFORMS Workshop on Data Mining and Health Informatics (DM-HI 8) J. Li, D. Aleman, R. Sikora, eds. A NURSING CARE PLAN RECOMMENDER SYSTEM USING A DATA MINING APPROACH Lian Duan

More information

Datawarehousing and Analytics. Data-Warehouse-, Data-Mining- und OLAP-Technologien. Advanced Information Management

Datawarehousing and Analytics. Data-Warehouse-, Data-Mining- und OLAP-Technologien. Advanced Information Management Anwendersoftware a Datawarehousing and Analytics Data-Warehouse-, Data-Mining- und OLAP-Technologien Advanced Information Management Bernhard Mitschang, Holger Schwarz Universität Stuttgart Winter Term

More information

Data Quality Mining: Employing Classifiers for Assuring consistent Datasets

Data Quality Mining: Employing Classifiers for Assuring consistent Datasets Data Quality Mining: Employing Classifiers for Assuring consistent Datasets Fabian Grüning Carl von Ossietzky Universität Oldenburg, Germany, [email protected] Abstract: Independent

More information

Scaling Up the Accuracy of Naive-Bayes Classiers: a Decision-Tree Hybrid. Ron Kohavi. Silicon Graphics, Inc. 2011 N. Shoreline Blvd. ronnyk@sgi.

Scaling Up the Accuracy of Naive-Bayes Classiers: a Decision-Tree Hybrid. Ron Kohavi. Silicon Graphics, Inc. 2011 N. Shoreline Blvd. ronnyk@sgi. Scaling Up the Accuracy of Classiers: a Decision-Tree Hybrid Ron Kohavi Data Mining and Visualization Silicon Graphics, Inc. 2011 N. Shoreline Blvd Mountain View, CA 94043-1389 [email protected] Abstract

More information

Requirements Engineering on the Transition to Product and Innovation Management

Requirements Engineering on the Transition to Product and Innovation Management Requirements Engineering on the Transition to Product and Innovation Management The Innovation Perspective Dipl.-Ing. Dr. techn. Mario Pichler ++43 7236 3343 898 [email protected] www.scch.at Technologies

More information

IDENTIFYING BANK FRAUDS USING CRISP-DM AND DECISION TREES

IDENTIFYING BANK FRAUDS USING CRISP-DM AND DECISION TREES IDENTIFYING BANK FRAUDS USING CRISP-DM AND DECISION TREES Bruno Carneiro da Rocha 1,2 and Rafael Timóteo de Sousa Júnior 2 1 Bank of Brazil, Brasília-DF, Brazil [email protected] 2 Network Engineering

More information

Web Mining as a Tool for Understanding Online Learning

Web Mining as a Tool for Understanding Online Learning Web Mining as a Tool for Understanding Online Learning Jiye Ai University of Missouri Columbia Columbia, MO USA [email protected] James Laffey University of Missouri Columbia Columbia, MO USA [email protected]

More information

Financial Trading System using Combination of Textual and Numerical Data

Financial Trading System using Combination of Textual and Numerical Data Financial Trading System using Combination of Textual and Numerical Data Shital N. Dange Computer Science Department, Walchand Institute of Rajesh V. Argiddi Assistant Prof. Computer Science Department,

More information

DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES

DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES Vijayalakshmi Mahanra Rao 1, Yashwant Prasad Singh 2 Multimedia University, Cyberjaya, MALAYSIA 1 [email protected]

More information

Molecular Fragment Mining for Drug Discovery

Molecular Fragment Mining for Drug Discovery Molecular Fragment Mining for Drug Discovery Christian Borgelt 1, Michael R. Berthold 2, and David E. Patterson 3 1 School of Computer Science, tto-von-guericke-university of Magdeburg, Universitätsplatz

More information

Keywords Data mining, Classification Algorithm, Decision tree, J48, Random forest, Random tree, LMT, WEKA 3.7. Fig.1. Data mining techniques.

Keywords Data mining, Classification Algorithm, Decision tree, J48, Random forest, Random tree, LMT, WEKA 3.7. Fig.1. Data mining techniques. International Journal of Emerging Research in Management &Technology Research Article October 2015 Comparative Study of Various Decision Tree Classification Algorithm Using WEKA Purva Sewaiwar, Kamal Kant

More information

An Analysis of Missing Data Treatment Methods and Their Application to Health Care Dataset

An Analysis of Missing Data Treatment Methods and Their Application to Health Care Dataset P P P Health An Analysis of Missing Data Treatment Methods and Their Application to Health Care Dataset Peng Liu 1, Elia El-Darzi 2, Lei Lei 1, Christos Vasilakis 2, Panagiotis Chountas 2, and Wei Huang

More information

LiDDM: A Data Mining System for Linked Data

LiDDM: A Data Mining System for Linked Data LiDDM: A Data Mining System for Linked Data Venkata Narasimha Pavan Kappara Indian Institute of Information Technology Allahabad Allahabad, India [email protected] Ryutaro Ichise National Institute of

More information

Evaluating an Integrated Time-Series Data Mining Environment - A Case Study on a Chronic Hepatitis Data Mining -

Evaluating an Integrated Time-Series Data Mining Environment - A Case Study on a Chronic Hepatitis Data Mining - Evaluating an Integrated Time-Series Data Mining Environment - A Case Study on a Chronic Hepatitis Data Mining - Hidenao Abe, Miho Ohsaki, Hideto Yokoi, and Takahira Yamaguchi Department of Medical Informatics,

More information

Comparative Study in Building of Associations Rules from Commercial Transactions through Data Mining Techniques

Comparative Study in Building of Associations Rules from Commercial Transactions through Data Mining Techniques Third International Conference Modelling and Development of Intelligent Systems October 10-12, 2013 Lucian Blaga University Sibiu - Romania Comparative Study in Building of Associations Rules from Commercial

More information

How To Solve The Kd Cup 2010 Challenge

How To Solve The Kd Cup 2010 Challenge A Lightweight Solution to the Educational Data Mining Challenge Kun Liu Yan Xing Faculty of Automation Guangdong University of Technology Guangzhou, 510090, China [email protected] [email protected]

More information

Mining medical specialist billing patterns for health service management

Mining medical specialist billing patterns for health service management Mining medical specialist billing patterns for health service management Yin Shan 1, David Jeacocke, D. Wayne Murray, Alison Sutinen Program Review Division, Medicare Australia 134 Reed St. North, Tuggeranong

More information

Data Mining Solutions for the Business Environment

Data Mining Solutions for the Business Environment Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over

More information

INTRODUCTION TO KNOWLEDGE DISCOVERY IN DATABASES

INTRODUCTION TO KNOWLEDGE DISCOVERY IN DATABASES Chapter 1 INTRODUCTION TO KNOWLEDGE DISCOVERY IN DATABASES Oded Maimon Department of Industrial Engineering Tel-Aviv University [email protected] Lior Rokach Department of Industrial Engineering Tel-Aviv

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.7 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Linear Regression Other Regression Models References Introduction Introduction Numerical prediction is

More information

Subject Description Form

Subject Description Form Subject Description Form Subject Code Subject Title COMP417 Data Warehousing and Data Mining Techniques in Business and Commerce Credit Value 3 Level 4 Pre-requisite / Co-requisite/ Exclusion Objectives

More information

Application of Data Mining Methods in Health Care Databases

Application of Data Mining Methods in Health Care Databases 6 th International Conference on Applied Informatics Eger, Hungary, January 27 31, 2004. Application of Data Mining Methods in Health Care Databases Ágnes Vathy-Fogarassy Department of Mathematics and

More information

Horizontal Aggregations in SQL to Prepare Data Sets for Data Mining Analysis

Horizontal Aggregations in SQL to Prepare Data Sets for Data Mining Analysis IOSR Journal of Computer Engineering (IOSRJCE) ISSN: 2278-0661, ISBN: 2278-8727 Volume 6, Issue 5 (Nov. - Dec. 2012), PP 36-41 Horizontal Aggregations in SQL to Prepare Data Sets for Data Mining Analysis

More information

Discretization and grouping: preprocessing steps for Data Mining

Discretization and grouping: preprocessing steps for Data Mining Discretization and grouping: preprocessing steps for Data Mining PetrBerka 1 andivanbruha 2 1 LaboratoryofIntelligentSystems Prague University of Economic W. Churchill Sq. 4, Prague CZ 13067, Czech Republic

More information

First Steps towards a Frequent Pattern Mining with Nephrology Data in the Medical Domain. - Extended Abstract -

First Steps towards a Frequent Pattern Mining with Nephrology Data in the Medical Domain. - Extended Abstract - First Steps towards a Frequent Pattern Mining with Nephrology Data in the Medical Domain - Extended Abstract - Matthias Niemann 1, Danilo Schmidt 2, Gabriela Lindemann von Trzebiatowski 3, Carl Hinrichs

More information

Data Mining in Education: Data Classification and Decision Tree Approach

Data Mining in Education: Data Classification and Decision Tree Approach Data Mining in Education: Data Classification and Decision Tree Approach Sonali Agarwal, G. N. Pandey, and M. D. Tiwari Abstract Educational organizations are one of the important parts of our society

More information

Syllabus. HMI 7437: Data Warehousing and Data/Text Mining for Healthcare

Syllabus. HMI 7437: Data Warehousing and Data/Text Mining for Healthcare Syllabus HMI 7437: Data Warehousing and Data/Text Mining for Healthcare 1. Instructor Illhoi Yoo, Ph.D Office: 404 Clark Hall Email: [email protected] Office hours: TBA Classroom: TBA Class hours: TBA

More information

A Research Article on Data Mining in Addition to Process Mining: Similarities and Dissimilarities

A Research Article on Data Mining in Addition to Process Mining: Similarities and Dissimilarities A Research Article on Data Mining in Addition to Process Mining: Similarities and Dissimilarities S. Sowjanya Chintalapati 1, Ch.G.V.N.Prasad 2, J. Sowjanya 3, R.Vineela 4 1, 3, 4 Assistant Professor,

More information

BPMN Process Design for Complex Product Development and Production

BPMN Process Design for Complex Product Development and Production BPMN Process Design for Complex Development and ion Dieter Roller, Erik Engesser Institute of Computer-aided Development Systems Universität Stuttgart Universitätsstrasse 38 D-70569 Stuttgart, Germany

More information

Advanced Ensemble Strategies for Polynomial Models

Advanced Ensemble Strategies for Polynomial Models Advanced Ensemble Strategies for Polynomial Models Pavel Kordík 1, Jan Černý 2 1 Dept. of Computer Science, Faculty of Information Technology, Czech Technical University in Prague, 2 Dept. of Computer

More information

On the effect of data set size on bias and variance in classification learning

On the effect of data set size on bias and variance in classification learning On the effect of data set size on bias and variance in classification learning Abstract Damien Brain Geoffrey I Webb School of Computing and Mathematics Deakin University Geelong Vic 3217 With the advent

More information

E-commerce Transaction Anomaly Classification

E-commerce Transaction Anomaly Classification E-commerce Transaction Anomaly Classification Minyong Lee [email protected] Seunghee Ham [email protected] Qiyi Jiang [email protected] I. INTRODUCTION Due to the increasing popularity of e-commerce

More information

International Journal of World Research, Vol: I Issue XIII, December 2008, Print ISSN: 2347-937X DATA MINING TECHNIQUES AND STOCK MARKET

International Journal of World Research, Vol: I Issue XIII, December 2008, Print ISSN: 2347-937X DATA MINING TECHNIQUES AND STOCK MARKET DATA MINING TECHNIQUES AND STOCK MARKET Mr. Rahul Thakkar, Lecturer and HOD, Naran Lala College of Professional & Applied Sciences, Navsari ABSTRACT Without trading in a stock market we can t understand

More information

Single Level Drill Down Interactive Visualization Technique for Descriptive Data Mining Results

Single Level Drill Down Interactive Visualization Technique for Descriptive Data Mining Results , pp.33-40 http://dx.doi.org/10.14257/ijgdc.2014.7.4.04 Single Level Drill Down Interactive Visualization Technique for Descriptive Data Mining Results Muzammil Khan, Fida Hussain and Imran Khan Department

More information

Three Perspectives of Data Mining

Three Perspectives of Data Mining Three Perspectives of Data Mining Zhi-Hua Zhou * National Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China Abstract This paper reviews three recent books on data mining

More information

Extension of Decision Tree Algorithm for Stream Data Mining Using Real Data

Extension of Decision Tree Algorithm for Stream Data Mining Using Real Data Fifth International Workshop on Computational Intelligence & Applications IEEE SMC Hiroshima Chapter, Hiroshima University, Japan, November 10, 11 & 12, 2009 Extension of Decision Tree Algorithm for Stream

More information

Application of Data Mining to Network Intrusion Detection: Classifier Selection Model

Application of Data Mining to Network Intrusion Detection: Classifier Selection Model Application of Data Mining to Network Intrusion Detection: Classifier Selection Model Huy Anh Nguyen and Deokjai Choi Chonnam National University, Computer Science Department, 300 Yongbong-dong, Buk-ku,

More information

ArneKesting. Publication List. Journal Articles as First Author { A. Kesting, M. Treiber, D. Helbing: Enhanced Intelligent Driver Model to Access the

ArneKesting. Publication List. Journal Articles as First Author { A. Kesting, M. Treiber, D. Helbing: Enhanced Intelligent Driver Model to Access the ArneKesting Publication List Journal Articles as First Author { A. Kesting, M. Treiber, D. Helbing: Enhanced Intelligent Driver Model to Access the Impact of Driving Strategies on Traffic Capacity Philosophical

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

A Hybrid Forecasting Methodology using Feature Selection and Support Vector Regression

A Hybrid Forecasting Methodology using Feature Selection and Support Vector Regression A Hybrid Forecasting Methodology using Feature Selection and Support Vector Regression José Guajardo, Jaime Miranda, and Richard Weber, Department of Industrial Engineering, University of Chile Abstract

More information

Florida International University - University of Miami TRECVID 2014

Florida International University - University of Miami TRECVID 2014 Florida International University - University of Miami TRECVID 2014 Miguel Gavidia 3, Tarek Sayed 1, Yilin Yan 1, Quisha Zhu 1, Mei-Ling Shyu 1, Shu-Ching Chen 2, Hsin-Yu Ha 2, Ming Ma 1, Winnie Chen 4,

More information

Rule based Classification of BSE Stock Data with Data Mining

Rule based Classification of BSE Stock Data with Data Mining International Journal of Information Sciences and Application. ISSN 0974-2255 Volume 4, Number 1 (2012), pp. 1-9 International Research Publication House http://www.irphouse.com Rule based Classification

More information

Getting Even More Out of Ensemble Selection

Getting Even More Out of Ensemble Selection Getting Even More Out of Ensemble Selection Quan Sun Department of Computer Science The University of Waikato Hamilton, New Zealand [email protected] ABSTRACT Ensemble Selection uses forward stepwise

More information

Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov

Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov Search and Data Mining: Techniques Applications Anya Yarygina Boris Novikov Introduction Data mining applications Data mining system products and research prototypes Additional themes on data mining Social

More information

Software Measurement Frameworks

Software Measurement Frameworks Software Frameworks, Germany Fakultät für Informatik, Institut für Verteilte Systeme, AG Softwaretechnik http://ivs.cs.uni ivs.cs.uni-magdeburg.de/sw-eng/agruppe/ Software Frameworks Contents Software

More information

Information Security in Big Data using Encryption and Decryption

Information Security in Big Data using Encryption and Decryption International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842 Information Security in Big Data using Encryption and Decryption SHASHANK -PG Student II year MCA S.K.Saravanan, Assistant Professor

More information

Enhancing Quality of Data using Data Mining Method

Enhancing Quality of Data using Data Mining Method JOURNAL OF COMPUTING, VOLUME 2, ISSUE 9, SEPTEMBER 2, ISSN 25-967 WWW.JOURNALOFCOMPUTING.ORG 9 Enhancing Quality of Data using Data Mining Method Fatemeh Ghorbanpour A., Mir M. Pedram, Kambiz Badie, Mohammad

More information

Dataset Preparation and Indexing for Data Mining Analysis Using Horizontal Aggregations

Dataset Preparation and Indexing for Data Mining Analysis Using Horizontal Aggregations Dataset Preparation and Indexing for Data Mining Analysis Using Horizontal Aggregations Binomol George, Ambily Balaram Abstract To analyze data efficiently, data mining systems are widely using datasets

More information

Interactive Exploration of Decision Tree Results

Interactive Exploration of Decision Tree Results Interactive Exploration of Decision Tree Results 1 IRISA Campus de Beaulieu F35042 Rennes Cedex, France (email: pnguyenk,[email protected]) 2 INRIA Futurs L.R.I., University Paris-Sud F91405 ORSAY Cedex,

More information

International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014

International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014 RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer

More information

Data Mining Classification: Decision Trees

Data Mining Classification: Decision Trees Data Mining Classification: Decision Trees Classification Decision Trees: what they are and how they work Hunt s (TDIDT) algorithm How to select the best split How to handle Inconsistent data Continuous

More information

Publikationsverzeichnis

Publikationsverzeichnis Publikationsverzeichnis Fachzeitschriften: - U. Werner, Mathematical rotordynamic model for lateral vibration analysis of induction motors with dynamic eccentricities regarding start-up, published online

More information

Mining Direct Marketing Data by Ensembles of Weak Learners and Rough Set Methods

Mining Direct Marketing Data by Ensembles of Weak Learners and Rough Set Methods Mining Direct Marketing Data by Ensembles of Weak Learners and Rough Set Methods Jerzy B laszczyński 1, Krzysztof Dembczyński 1, Wojciech Kot lowski 1, and Mariusz Paw lowski 2 1 Institute of Computing

More information

Modeling Suspicious Email Detection Using Enhanced Feature Selection

Modeling Suspicious Email Detection Using Enhanced Feature Selection Modeling Suspicious Email Detection Using Enhanced Feature Selection Sarwat Nizamani, Nasrullah Memon, Uffe Kock Wiil, and Panagiotis Karampelas Abstract The paper presents a suspicious email detection

More information

ASSESSING DECISION TREE MODELS FOR CLINICAL IN VITRO FERTILIZATION DATA

ASSESSING DECISION TREE MODELS FOR CLINICAL IN VITRO FERTILIZATION DATA ASSESSING DECISION TREE MODELS FOR CLINICAL IN VITRO FERTILIZATION DATA Technical Report TR03 296 Dept. of Computer Science and Statistics University of Rhode Island LEAH PASSMORE 1, JULIE GOODSIDE 1,

More information

SPMF: a Java Open-Source Pattern Mining Library

SPMF: a Java Open-Source Pattern Mining Library Journal of Machine Learning Research 1 (2014) 1-5 Submitted 4/12; Published 10/14 SPMF: a Java Open-Source Pattern Mining Library Philippe Fournier-Viger [email protected] Department

More information

Inclusion in early childhood education in Germany: a sketch

Inclusion in early childhood education in Germany: a sketch Inclusion in early childhood education in Germany: a sketch Weiterbildungsinitiative Frühpädagogische Fachkräfte Dr. Carola Nürnberg European Agency for Special Needs and Inclusive Education, bi-annual

More information

1 Results from Prior Support

1 Results from Prior Support 1 Results from Prior Support Dr. Shashi Shekhar s work has been supported by multiple NSF grants [21, 23, 18, 14, 15, 16, 17, 19, 24, 22]. His most recent grant relating to spatiotemporal network databases

More information

A Data Mining Tutorial

A Data Mining Tutorial A Data Mining Tutorial Presented at the Second IASTED International Conference on Parallel and Distributed Computing and Networks (PDCN 98) 14 December 1998 Graham Williams, Markus Hegland and Stephen

More information

Lecture Notes in Computer Science 5161

Lecture Notes in Computer Science 5161 Lecture Notes in Computer Science 5161 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen Editorial Board David Hutchison Lancaster University,

More information

Outlier Detection in Stream Data by Machine Learning and Feature Selection Methods

Outlier Detection in Stream Data by Machine Learning and Feature Selection Methods International Journal of Advanced Computer Science and Information Technology (IJACSIT) Vol. 2, No. 3, 2013, Page: 17-24, ISSN: 2296-1739 Helvetic Editions LTD, Switzerland www.elvedit.com Outlier Detection

More information

Towards applying Data Mining Techniques for Talent Mangement

Towards applying Data Mining Techniques for Talent Mangement 2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore Towards applying Data Mining Techniques for Talent Mangement Hamidah Jantan 1,

More information

Benchmarking Open-Source Tree Learners in R/RWeka

Benchmarking Open-Source Tree Learners in R/RWeka Benchmarking Open-Source Tree Learners in R/RWeka Michael Schauerhuber 1, Achim Zeileis 1, David Meyer 2, Kurt Hornik 1 Department of Statistics and Mathematics 1 Institute for Management Information Systems

More information

Explanation-Oriented Association Mining Using a Combination of Unsupervised and Supervised Learning Algorithms

Explanation-Oriented Association Mining Using a Combination of Unsupervised and Supervised Learning Algorithms Explanation-Oriented Association Mining Using a Combination of Unsupervised and Supervised Learning Algorithms Y.Y. Yao, Y. Zhao, R.B. Maguire Department of Computer Science, University of Regina Regina,

More information

Knowledge Discovery from Data Bases Proposal for a MAP-I UC

Knowledge Discovery from Data Bases Proposal for a MAP-I UC Knowledge Discovery from Data Bases Proposal for a MAP-I UC P. Brazdil 1, João Gama 1, P. Azevedo 2 1 Universidade do Porto; 2 Universidade do Minho; 1 Knowledge Discovery from Data Bases We are deluged

More information

Demonstration of an Automated Integrated Test Environment for Web-based Applications

Demonstration of an Automated Integrated Test Environment for Web-based Applications Demonstration of an Automated Integrated Test Environment for Web-based Applications Tiziana Margaria 1,2, Oliver Niese 2, and Bernhard Steffen 2 1 METAFrame Technologies GmbH, Dortmund, Germany [email protected]

More information

An application for clickstream analysis

An application for clickstream analysis An application for clickstream analysis C. E. Dinucă Abstract In the Internet age there are stored enormous amounts of data daily. Nowadays, using data mining techniques to extract knowledge from web log

More information

270107 - MD - Data Mining

270107 - MD - Data Mining Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 015 70 - FIB - Barcelona School of Informatics 715 - EIO - Department of Statistics and Operations Research 73 - CS - Department of

More information

Selecting Data Mining Model for Web Advertising in Virtual Communities

Selecting Data Mining Model for Web Advertising in Virtual Communities Selecting Data Mining for Web Advertising in Virtual Communities Jerzy Surma Faculty of Business Administration Warsaw School of Economics Warsaw, Poland e-mail: [email protected] Mariusz Łapczyński

More information

An Overview of Knowledge Discovery Database and Data mining Techniques

An Overview of Knowledge Discovery Database and Data mining Techniques An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,

More information

Testmanagement / [ISQI, International Software Quality Institute]. Andreas Spillner.,

Testmanagement / [ISQI, International Software Quality Institute]. Andreas Spillner., Testmanagement / [ISQI, International Software Quality Institute]. Andreas Spillner., Download: Testmanagement / [ISQI, International Software Quality Institute]. Andreas Spillner., PDF ebook Testmanagement

More information

131-1. Adding New Level in KDD to Make the Web Usage Mining More Efficient. Abstract. 1. Introduction [1]. 1/10

131-1. Adding New Level in KDD to Make the Web Usage Mining More Efficient. Abstract. 1. Introduction [1]. 1/10 1/10 131-1 Adding New Level in KDD to Make the Web Usage Mining More Efficient Mohammad Ala a AL_Hamami PHD Student, Lecturer m_ah_1@yahoocom Soukaena Hassan Hashem PHD Student, Lecturer soukaena_hassan@yahoocom

More information